SCHOOL OF BIO SCIENCES AND TECHNOLOGY

M.Tech Biotechnology (MBT)

Curriculum and Syllabus

(2023-2024 admitted students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

- World class Education: Excellence in education, grounded in ethics and critical thinking,for improvement of life.
- Cutting edge Research: An innovation ecosystem to extend knowledge and solve criticalproblems.
- Impactful People: Happy, accountable, caring and effective workforce and students. Rewarding Co-creations: Active collaboration with national \& international industries \&universities for productivity and economic development.
- Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF BIO SCIENCES AND TECHNOLOGY

- To nurture high-quality bioengineers and science graduates with the potential to innovate, invent and disseminate knowledge for the benefit of society and environment

MISSION STATEMENTOF THE SCHOOL OF BIO SCIENCES AND TECHNOLOGY

- To offer academic programs to impart knowledge skills to cater to the dynamic needs of the bio sciences and the food industry
- To foster the spirit of innovation and creativity in the young minds in solving the real-time problems arising in society and industry
- To instill confidence, ethics, values, and employability skills in the future citizens to focus on the sustainable growth of the economy

Mission of M.Tech., Biotechnology

- Acquire students with skills of biotechnology and provide solutions through industry-academia interface
- Empower the students to be effective entrepreneurs and excellent researchers to invent unique products for societal need with proper ethical statutes

VIT
Vellore Institute of Technology

M.TECH BIOTECHNOLOGY

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs).

1. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry
2. Graduates will function in their profession with social awareness and responsibility
3. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country
4. Graduates will be successful in pursuing higher studies in engineering or management
5. Graduates will pursue career paths in teaching or research

M.TECH BIOTECHNOLOGY

Programme Outcomes

POs

Statements

PO_01 Having an ability to apply mathematics and science in engineering applications

PO_02 Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment

PO_03 Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information

PO_04 Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice

PO_05 Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems

PO_06 Having adaptive thinking and adaptability in relation to environmental context and sustainable development

PO_07 Having a clear understanding of professional and ethical responsibility
PO_08 Having a good cognitive load management skills related to project management and finance

M.TECH BIOTECHNOLOGY

PROGRAMME SPECIFIC OUTCOMES (PSOs)

1 Acquire students with skills of biotechnology and provide solutions through industryacademia interface

2 Empower the students to be effective entrepreneurs and excellent researchers to invent unique products for societal need with proper ethical statutes

3 Ability to independently carry out research and development work to solve the practical problems

VIT
Vellore Institute of Technology
(Depued tu be Dimireviry mider uection Solvac Act 1956)

CREDIT INFO			
S.no	Catagory		Credit
1	Discipline Core		24
2	Discipline Elective		12
3	Projects and Internship		26
4	Open Elective		3
5	Skill Enhancement		5
		Total Credits	70

Discipline Core									
sl.no	Course Code	Course Title	Course Type	$\begin{aligned} & \text { Ver } \\ & \text { sio } \\ & \mathrm{n} \end{aligned}$	L	T	\mathbf{P}	J	Credit
1	MBIT501L	Advanced Biochemistry	Theory Only	1.0	3	0	0	0	3.0
2	MBIT501P	Advanced Biochemistry Lab	Lab Only	1.0	0	0	2	0	1.0
3	MBIT502L	Analytical Techniques in Biotechnology	Theory Only	1.0	3	0	0	0	3.0
4	MBIT503L	Bioprocess Technology	Theory Only	1.0	3	0	0	0	3.0
5	MBIT503P	Bioprocess Technology Lab	Lab Only	1.0	0	0	4	0	2.0
6	MBIT504L	Computational Biology	Theory Only	1.0	3	0	0	0	3.0
7	MBIT504P	Computational Biology Lab	Lab Only	1.0	0	0	2	0	1.0
8	MBIT505L	Genetic Engineering	Theory Only	1.0	3	0	0	0	3.0
9	MBIT505P	Genetic Engineering Lab	Lab Only	1.0	0	0	4	0	2.0
10	MBIT506L	Immunotechnology	Theory Only	1.0	3	0	0	0	3.0

Discipline Elective			Course Type	Ver sio sl.no	Course Code	Course Title	T	P	J
			Credit						
1	MBIT601L	Industrial Biotechnology	Theory Only	1.0	3	0	0	0	3.0
2	MBIT602L	Nanobiotechnology	Theory Only	1.0	3	0	0	0	3.0
3	MBIT603L	Protein Engineering and Technology	Theory Only	1.0	3	0	0	0	3.0
4	MBIT604L	Programming for Biologists	Theory Only	1.0	3	0	0	0	3.0
5	MBIT605L	Food Process Technology	Theory Only	1.0	3	0	0	0	3.0

6	MBIT606L	Natural Product Technology	Theory Only	1.0	3	0	0	0	3.0
7	MBIT607L	Plant Biotechnology	Theory Only	1.0	3	0	0	0	3.0
8	MBIT608L	Animal Biotechnology	Theory Only	1.0	3	0	0	0	3.0
9	MBIT609L	Pharmaceutical Biotechnology	Theory Only	1.0	3	0	0	0	3.0
10	MBIT610L	Environmental Biotechnology	Theory Only	1.0	3	0	0	0	3.0
11	MBIT611L	Aquatic Biotechnology	Theory Only	1.0	3	0	0	0	3.0
12	MBIT612L	Proteomics	Theory Only	1.0	3	0	0	0	3.0
13	MBIT613L	Cancer Biology	Theory Only	1.0	3	0	0	0	3.0
14	MBIT614L	Medical Biotechnology	Theory Only	1.0	3	0	0	0	3.0
15	MBIT615L	Microbial Biotechnology	Theory Only	1.0	3	0	0	0	3.0

VIT
Vellore Institute of Technology

Projects and Internship									
sl.no	Course Code	Course Title	Course Type	Ver sio n	L	T	P	J	Credit
1	MBIT696J	Study Oriented Project	Project	1.0	0	0	0	0	2.0
2	MBIT697J	Design Project	Project	1.0	0	0	0	0	2.0
3	MBIT698J	Internship I/ Dissertation I	Project	1.0	0	0	0	0	10.0
4	MBIT699J	Internship II/ Dissertation II	Project	1.0	0	0	0	0	12.0

Open Elective									
sl.no	Course Code	Course Title	Course Type	$\begin{aligned} & \text { Ver } \\ & \text { sio } \\ & \mathrm{n} \end{aligned}$	L	T	\mathbf{P}	J	Credit
1	MFRE501L	Francais Fonctionnel	Theory Only	1.0	3	0	0	0	3.0
2	MGER501L	Deutsch fuer Anfaenger	Theory Only	1.0	3	0	0	0	3.0

Skill Enhancement									
sl.no	Course Code	Course Title	Course Type	$\begin{aligned} & \text { Ver } \\ & \text { sio } \\ & \mathrm{n} \end{aligned}$	L	T	P	J	Credit
1	MENG501P	Technical Report Writing	Lab Only	1.0	0	0	4	0	2.0
2	MSTS501P	Qualitative Skills Practice	Soft Skill	1.0	0	0	3	0	1.5
3	MSTS502P	Quantitative Skills Practice	Soft Skill	1.0	0	0	3	0	1.5

VIT
Vellore Institute of Technology

Module:1	Solubility of Macromolecules	$\mathbf{5}$ hours
Effect of solvent and additive, Mechanism of solvation, Buffers for biochemical reagents, buffering capacity, and numerical problems on buffer preparation, pH and the Henderson-Hasselbalch equation.		

Module:2 2 Carbohydrates 5 hours

Classification, cyclic structure of monosaccharides, stereoisomerism, sugar derivatives, disaccharides, homo and heteropolysaccharides, glycosaminoglycan (GAGs), proteoglycans, bacterial cell wall polysaccharides, glycoproteins, lectins and medical applications of oligosaccharides

Module:3	Carbohydrate metabolism	
Carbohydrate metabolism and regulation in microbes, plants and animals	4 hours	
Module:4	Proteins	$\mathbf{7}$ hours

Structural organisation of Proteins. Structure activity relationship of proteins- haemoglobin, myoglobin, collagen, keratin, Insulin, Enzyme coenzymes and cofactors. Mechanism of enzyme action, with particular reference to serine proteases

Module:5	Bioenergetics	$\mathbf{7}$ hours

Recap of redox reactions, redox potential and Nernst equation. Thermodynamics. High energy compounds. Role of ATP in energy metabolism. Substrate level phosphorylation, Oxidativephosphorylation and photophosphorylation

Module:6 Lipids and membranes

Membrane lipids \& proteins; structure \& properties of membrane lipids; fluid mosaic model;function (carriers, receptors, enzymes, anchors, cell-cell recognition); osmosis \& diffusion, tonicity; TAG catabolism, anabolism (animal metabolism)
Module:7

Signaling types, receptor types (intra vs surface); transport: bulk (endocytosis, exocytosis), selective (facilitated, active); ion channels, transporters; signal transduction cascades: GPCRs,cytokine, TK; apoptosis.

Module:8	Contemporary Issues				2 hours
	Total Lecture hours:				
					45 hours
Text Book(s)					
David L Nelson, Michael M Cox, Albert L Lehninger (2013) Lehninger Principles ofBiochemistry - $6^{\text {th }}$ edition, New York : W.H. Freeman.					
Reference Books					
Jeremy M Berg, John L Tymoczko, Gregory J Gatto, Lubert Stryer (2015) Biochemistry - $8^{\text {th }}$ Edition, Palgrave MacMillan.					
2. Donald Voet, Judith G Voet (2010) Biochemistry - 4 ${ }^{\text {th }}$ Edition, Wiley India Pvt Ltd.					
Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final assessment test					
Recommended by Board of Studies Approved by Academic Council		27-05-202			
		No. 67	Date	08-08-2022	

Vellore Institute of Technology

$\frac{\text { Vellore Institute of Technology }}{\text { (Derues th be Livernaly mier mection servoc Act i956) }}$

Module:1	Absorption spectroscopy	$\mathbf{5}$ hours
Working principle, instrumentation, sample preparation, and its applications -UV-Vis, AAS, NMR, ESR / EPR, IR, Raman for small molecules.		

Module:2	Emission spectroscopy and other spectrometric techniques	$\mathbf{5}$ hours

Working principle,instrumentation, sample preparation, and its applications- AES,Fluorescence, Phosphorescence, Chemi / Bioluminescence, MS, XRD for small molecules.

Module:3	Separation techniques		4 hours
Theory of chromatography and types (TLC, PC, HPTLC, GC, HPLC, and 2D) - their principlesand applications.			
Module: 4	Electrophoresis		3 hours
Principles, instrumentation, sample preparation, and applications of 2D - Rotophore, Opticaldensitometry.			
Module:5	Microscopic techniques		3 hours
Basics of light microscopy, Instrumentation - confocal and fluorescence microscopy, sample preparation for fluorescence microscopy, super resolution microscopy.			
Module: 6	Electron Microscopy		3 hours
Basics of SEM and TEM, Specimen preparation for SEM and TEM.			
Module: 7	Flow cytometry and other recent techniques		5 hours
Cell sorters and their applications. Hyphenated techniques, tracer techniques - solid, liquid scintillation, Alternative to radioactive techniques.			
Module:8	Contemporary Issues		2 hours
		Total Lecture hours:	30 hours

VIT
Vellore Institute of Technology

Course Code	Course Title	L	T	P	C
MBIT503L	NIL Bioprocess Technology	3	0	0	3
Pre-requisite		Syllabus version			
		1.0			
Course Objectives					

1. To understand the media design and statistical media optimization for maximum production of metabolites
2. To acquaint students with the basics of sterilization and mass transfer coefficients
3. To understand the various growth kinetics, production kinetics, various reactors involved, scale up and scale down process in bioreactors

Course Outcome

The student will be able to

1. Formulate medium using statistical tool for the maximum production of metabolites and biocatalyst for various commercial use
2. Demonstrate various mass transfer coefficient required to increase yield
3. Design bioreactor configurations and operation modes based upon the nature of bio products
4. Model the kinetics of living cells and to develop a strategy to solve the issues emerging during fermentation processes
5. Evaluate own model required for the microbial growth and can design own batch thermal sterilization
6. Develop a research career or to get job in biotechnology industry with strong foundation in bioreactor design and scale-up or to become entrepreneur.

Module: $\mathbf{1}$	Media Design	
Design of media for commercial and industrial applications.		
6 hours		
Module:2	Statistical medium optimization	
Plackett Burman design, Response surface methodology - Central composite design.		
Module:3 hours		
Kinetics of thermal death of cells \& spores, Design of batch and Continuous thermal sterilization, Coupling of Arrhenius equation and cell death kinetics, Sterilization of air and filter design, Radiation and chemical sterilization.		

Module:4 \quad Mass Transfer
6 hours
Principles of molecular diffusion, Fick's law of diffusion, diffusion of gases and liquids, theories of mass transfer, concept of mass transfer coefficients. Mass transfer and power requirement in stirred tank reactors.

Module:5	Kinetics of Microbial Growth and Product Formation (Unstructured Model)	6 hours

Kinetics of cell growth and product formation; Simple unstructured kinetic models for microbial growth; Growth associated and non-growth associated product formation kinetics; Monod and Leudeking-Piret models.

Module:6	Kinetics of Microbial Growth and Product Formation (structured Model)	6 hours
Introduction to Structured Models for growth and product formation using Penicillin V as a casestudy.		

Module:7	Reactors, Scale - up of reactors				6 hours
Design for homogeneous systems, Batch, Continuous and Fed-batch systems. Reactors in series -Non-Ideality in reactors. Scale up criteria -procedure and scale-down.					
Module:8	Contemporary Issues			2 hours	
	Total Lecture hours:			45 hours	
Text Book(s)					
Michael L. Shuler, Fikret Kargi, Matthew DeLisa 2017. Bioprocess Engineering, 3rd Edition, Prentice Hall International Series.					
Peter Stanbury, Principles of Fermentation technology 2015, third edition, Butterworth- Heinemann.					
Reference Books					
Shigeo Katoh and Fumitake Yoshida, 2010, Biochemical Engineering - A Textbook for Engineers, Chemists and Biologists, WILEY-VCH Verlag GmbH \& Co. KGaA, Weinheim.					
Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final assessment test					
Recommended by Board of Studies		27-07-2			
Approved by Academic Council		No. 67	Date	08-08-2022	

VIT
Vellore Institute of Technology
Derwest to be theirenidy muder nection Solvoc Act. 1956)

VIT
Vellore Institute of Technology
(Depued ti be liminviry muler mection 3 of UGC Act 1956)

Course Code		Course Title	L	T	P	C
MBIT504L		Computational Biology	3	0	0	3
Pre-requisite	NIL		Syllabus version			
			1.0			
Course Objectives						
1. Study about the open access biological databases and sequence alignment algorithms 2. Learn about the heuristic algorithms, phylogenetic analysis and structure prediction 3. Gain knowledge on the latest trends in new drug discovery.						

Course Outcome

The students will be able to

1. Demonstrate deposition and retrieval of sequences from nucleotide and protein databases
2. Determine sequence alignments and interpret the salient features
3. Explain the different methods employed for multiple sequence alignment and identify strengths of each method
4. Compare and derive meaningful information using heuristic algorithms
5. Relate the molecular evolutionary relationships among sequences and organisms
6. Model the structure of proteins from sequence information and employ in-silico procedures for drug discovery.

Module: 4	Similarity Searches on Sequence Databases	5 hours

Heuristic algorithms - BLAST and its types, FASTA - Algorithms - Sensitivity, specificity,applications.
Module.5

Module:5	lecular Phylogeny	ho
Phylogram construction- Distance based method,Character-BasedMethods-Maximum parsimony method, Maximum likelihood- Phylogenetic Tree Evaluation - Jackknifing and Bootstrapping - applications.		
Modu	Structural Bioinformati	5 hou
Conceptual model of protein structure, protein structure prediction and modelling - Homology Modeling, Threading, Ab initio- Protein Structure Visualization, Comparison and Classification.		

Module:7	Bioinformatics in the Pharmaceutical Industry	5 hours		
Structure-Based Rational Drug Design and discovery - Chemoinformatics				
Module:8	Contemporary Issues	2 hours		
Total Lecture hours:				30 hours

VIT
Vellore Institute of Technology

Course code	Course Title	L	T	P	C	
MBIT504P	Computational Biology Lab	0	0	2	1	
Pre-requisite	NIL		Syllabus version			
		1.0				

Course Objectives:

1. Analyze, interprete and predict macromolecular structures and sequences

Expected Course Outcome:

1. Perform in silico analysis of nucleic acids and compare various sequence alignment algorithm.
2. Analyze protein sequence and prediction and analysis of protein structures using bioinformatics tools

Indicative Experiments

1.	Nucleotide sequence from nucleic acid collaboratory resources
2.	Protein sequence from Universal protein consortium
3.	Protein structure from research collaboratory for structural bioinformatics
4.	Access of secondary biological data
5.	Pairwise alignment using dot plot algorithm
6.	Pairwise alignment using dynamic programming
7.	Heuristic Sequence Alignment
8.	Multiple sequence alignment
9.	Construction of phylogentic tree
10.	Gene prediction analysis
11.	Prediction of secondary structure of protein
12.	Protein structure analysis

Mode of assessment: Continuous assessment, FAT and Oral examination
Reference Book: Prepared protocols and reference materials collections

Recommended by Board of Studies	27.07 .2022			
Approved by Academic Council	No. 67	Date	$08-08-2022$	

Vellore Institute of Technology

Course code	Course Title	L	T	P	C
MBIT505L	Genetic Engineering	3	0	0	3
Pre-requisite	Nil	Syllabus version			
		1.1			

Course Objectives:

1. The students will understand the components required for gene manipulation
2. The students will understand transformation of a genetic material at molecular and cellular levels, and
3. The students will understand the methods of change of a genetic material and construction of transgene organisms with the given properties.

Expected Course Outcome:

The student will be able to

1. Construct the recombinant vector and develop genetically modified organisms.
2. Outline the pros and cons of GMOs,
3. Make use of gene cloning principles,
4. Utilize tool enzymes for commercialization,
5. Utilize mapping genome or pDNA,
6. Demonstrate the methods to transfer foreign genes

Module:1	DNA modifying Enzymes	5 hours

Polymerases, ligases, endo and exo nucleases, restriction enzymes and its types, adapters and linkers, homopolymer tailing, reverse transcriptase, phosphatase, polynucleotide kinase, RecA, zinc finger nucleases.

Module:2	Vectors	5 hours

Plasmid and phage vectors, YAC, BAC, M13 vector, Plant, animal and yeast cloning vectors, vectors for chloroplasts.

Module:3	Expression vectors and systems	5 hours

His-tag; GST-tag; MBP-tag; Intein-based vectors. Expression of foreign proteins in E. coli, Bacillus, Yeast, Insect cells and Mammalian cells.

Module:4	Labelling of DNA and detection techniques	6 hours

Nick translation, Random priming, Radioactive and non-radioactive probes. Southern hybridization, Northern hybridization, Western blotting. cDNA and genomic DNA library construction and screening. Sequencing (NGS, RNA Seq).

Module:5	Reporter genes and PCR	6 hours

Role and mechanism of GFP, CAT, luciferases and β-galactosidases. PCR - Principle and applications (gene isolation, clinical diagnostics and detection, forensics, environmental and industrial applications). Different types of PCR. Real-time PCR (SYBR Green assay, Taqman Probes, Molecular beacons).

Module:6 \quad Gene Transformation
8 hours
Methodologies in plants, animals and microbes. Advanced cloning methods: multi-gene cloning, assembly cloning. Gene silencing techniques: Principle and application of gene silencing; siRNA technology; Micro RNA; Gene knockouts. and Gene Therapy.

Module:7 \quad Application of Genetic Engineering:
8 hours
In agriculture, human medicine, environment, industrial production of recombinant proteins, food and pharmaceutical industry. Biosafety guidelines for GMOs.

Module:8	Contemporary issues:	2 hours	
Total Lecture hours:			
45 hours			

VIT
Vellore Institute of Technology

VIT
Vellore Institute of Technology
(Depued ti be liminviry muler mection 3 of UGC Act 1956)

Course Code	Course Title		L	T	P	C		
MBIT506L	Immunotechnology		3	0	0	3		
Pre-requisite	Nil		Syllabus version					
			1.0					
Course Objectives								
1. To acquire knowledge in immunology and immunotechnology 2. To understand the concepts of immunology								
3. To translate the concepts in better diagnosis of diseases and their probable treatment								

Course Outcome

The student will be able to

1. Demonstrate the structure and functions of immune systems
2. Formulate and execute projects in immunology
3. Make use of cellular activity in defining immune system
4. Translate the immune mechanisms in determining infection and immunological disorders
5. Develop different diagnostic techniques and applications
6. Appraise different therapeutic techniques and applications

VIT
Vellore Institute of Technology
(Derned ti be liminviry miler nection 3 of UGC Act 1956)

Course Code	Course Title	\mathbf{L}	T	P	C
MBIT601L	Industrial Biotechnology	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3}$
Pre-requisite	Nil	Syllabus version			
		$\mathbf{1 4}$			

Course Objectives

1. To apprehend the methods of screening significant microbes from the natural environment for commercial application
2. To learn the different methods of strain improvement for the overproductionof bioproducts
3. To comprehend the industrial method of fermentation for various primary and secondary metabolites and biocatalysts

Course Outcome

The student will be able to

1. Demonstrate knowledge and critical awareness of current issues arising in the practice of industrial biotechnology and the role of industrial biotechnology in the global bio- economy
2. Select industrially important microbes from environment
3. Explain the overall upstream and downstream process involved in the industries for theproduction of metabolites
4. Analyze potential business opportunities in fermentation-based biotechnology
5. Utilize methods to improve the production of bioproducts
6. Elaborate the biological and technological principles which govern actual and potential bio-business

Module:1	Overview and milestone	5 hours

Fermentation process and its development, case study of Penicillin as a milestone inbioprocess development, Case-study involving an engineered organism.

Module:2 \quad Production Strain for Industrial Fermentations
6 hours
Techniques for isolation and screening of modeling, microorganisms for industrial scaleproduction; strain improvement and selection.

Module:3	Primary Metabolites	7 hours
Production of commercially important primary metabolites like organic acids, amino acids andalcohol.		
Module:4	Secondary Metabolites	7 hours
Production of commercially important secondary metabolites like vitamin B12, steroids andantibiotics.		
Module:5	Mass production of enzymes	6 hours
Important enzymes and their bulk production relevant to leather, textile, baking,brewing, detergent and food industry.		
Module:6	Biospeciality products	6 hours
Production of biopolymers, biopesticides, biofertilizers andbiopreservatives.		
Module:7	Immobilization	6 hours
Techniques of immobilization of enzymes and their applications in industry, Kinetics ofimmobilized enzymes.		

Module:8	Contemporary issues	2 hours	
Total Lecture hours:			

$\frac{\text { Vellore Institute of Technology }}{\text { (Derued be be tivenaty mider mection Sorvectac } 1956 \text {) }}$

Course Code	Course Title	L	T	P	C		
MBIT602L	Nanobiotechnology	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3}$		
Pre-requisite	Nil		Syllabus version				
		$\mathbf{1 . 0}$					

Course Objectives

1. Basic theoretical and practical knowledge related to modern materials chemistry, materials physics, energy physics and nanotechnology
2. To introduce students to inter- and multi-disciplinary science and engineering
3. Get exposed to potential applications of nanobiotechnology in sensing and biomedical applications

Course Outcome

The student will be able to

1. Discover basic concepts and theories of the subject
2. Relate and explain the importance of reduction in materials dimensionality, and its relationship with materials properties
3. Demonstrate applications of analytical techniques in examining nanostructures/ particles
4. Demonstrate the potential of nanobiotechnology in consumer and biomedical applications
5. Evaluate journal papers on nanoscience/nanotechnology
6. Formulate strategies for risk assessment of nanostructures/ particles in various applications

Module:1	Properties of the "Nano" world	6 hours

Origin and concepts, interfacial phenomenon, Surface \& quantum effects, chemical and biological principles involved in nanomaterial performance.
Module:2 \quad Nanoscale fabrication engineering \quad 6 hours

Approaches, nanolithography, self assembly, physical, chemical and biological methods, theiradvantages and drawbacks, biomimetic synthesis technologies based on Bacterial complex-S layer protein, Microbial alginates, bacterial spores, Magnetosomes.

Module:3	Nanomaterial properties:	6 hours

Structure property relationships with respect to mechanical, electrical, optical, electrochemical, chemical sensing \& magnetic, rheological and thermodynamic properties.

Module:4 \quad Nanometrology and manipulation -
Relevance of Probe microscopies, STM, AFM, SEM, TEM. Spectroscopic and X ray diffractionanalysis

Module:5	Biologically important nanomaterials:Structures, properties and biological applications of	6 hours

2D and 3D materials including CNT, Fullerenes, pure metal and core shell nanoparticles, quantum dots, liposomes and dendrimers.

Module:6	Nanotoxicology	6 hours

Routes of exposure and limits of nanomaterials, Nanopathology project and its relevance, theirinteractions at cellular level and cell responses, HARN.

Module:7	Nanobiotechnology in health care, medicine and recent advances	$\mathbf{7}$ hours

Devices, instruments and materials used in doctor patient interface, medical research labs, hospital environments,

VIT
Vellore Institute of Technology

Course Code	Course Title	L	T	P	C
MBIT603L	Protein Engineering and Technology	3	0	0	3
Pre-requisite	Nil	Syllabus version			
		1.0			

Course Objectives

1. To explain advanced methods and strategies used in proteins and
2. The student will be equipped to engineer proteins based on nanotechnology principles
3. The student will be equipped to engineer the proteins by various methods.

Course Outcome

The student will be able to

1. Understand and explain differences between rational design and directed evolution
2. Apply protein engineering knowledge for industrial applications
3. Make use of various beneficial proteins that are industrially and clinically important.
4. Understand various economically important proteins
5. Understand various industrially important enzymes
6. Modify proteins by various methods

Module:1	Factors affecting stability of proteins	6 hours
Intrinsic and extrinsic factors contributing to stability; effect of chaotropes, kosmotropes and compatible solutes in stabilising proteins; role of water in stabilising proteins; analytical methods to determine the structure and stability of proteins.		

Module:2 Protein Flding 6 hours
In vivo and in vitro folding; chaperones in folding; co-expression of proteins for proper folding; protein aggregation; folding related diseases.

Total Lecture hours:			
Textbook(s)	45 hours		
1.	Paulo Almeida, Proteins: Concepts in Biochemistry (2016) First Edition, Garland SciencePublishers, USA.		
Reference Books			
1.	David Whitford, 2013, Proteins - Structure and Function, John Wiley and Sons Ltd.,Pravin Kaumaya, 2012, Protein Engineering, InTech Publishers.		
Mode of Evaluation : Continuous assessment test, written assignment, Quiz and Final assessment test Recommended by Board of Studies Approved by Academic Council 27-07-2022			

Vellore Institute of Technology
(Derwed ta be Dimerviry mider mection 3alUSC Act 1956)

Total Lecture hours:				
	45 hours			
Textbook(s)				
1.	Campbell, Gries, Montojo, and Wilson. 2010 "Practical Programming: An Introduction toComputer Science Using Python" Published by Pragmatic Bookshelf.			
Reference Books				
1.	Bal, Harshawardhan P. 2013, PERL programming for Bioinformatics. Tata McGraw-HillEducation.			
2.	Blum, Richard, 2010. Linux command line and shell scripting bible. Vol. 481. John Wiley \&Sons.			
Mode of Evaluation : Continuous assessment test, written assignment, Quiz and Final assessment test				
Recommended by Board of Studies	27-07-2022			
Approved by Academic Council	No. 67	Date	$08-08-2022$	

Vellore Institute of Technology
(Derned ti be liminviry muler nection 3 of UGC Act 1956)

Course Code	Course Title		T	P	C
MBIT605L	Food Process Technology		0	0	3
Pre-requisite	Nil	Syllabus version			
		1.0			
Course Objectives					
1. To understand the conventional and non-conventional methods of food processing. 2. To understand the basics in food packaging. 3. To comprehend the various steps involved in food product development.					
Course Outcome					
The student will be able to 1. Make use of the knowledge on Biotechnology to the science of food. 2. Demonstrate the scope of food processing 3. Explain the principles involved in food processing 4. Make use of the knowledge for understanding preservation of food 5. Create or design a food product with innovative technologies 6. Apply for employment in food processing industries					

Module:1	Introduction	5hours
Potentiality, scope and relevance of Food process industry; Principles and salient features of foodprocessing methods.		

Module:2	Thermal Processing	$\mathbf{7}$ hours

Blanching, pasteurization, sterilization (canning and bottling), evaporation, extrusion, dehydration and spray drying, dielectric and infrared heating.

Module:3	Non- thermal processing	6 hours

Chilling or refrigeration, freezing, freeze drying, minimal processing of foods; vacuum cooling offoods; and fermentation.

Module:4	Emerging technologies in food processing	$\mathbf{7}$ hours

High pressure processing of foods, enzyme assisted food processing, PEF technology, foodirradiation-principle, process.

Module:5	Packaging for processed food products	6 hours

Scope of packaging industry; traditional packaging; modern packaging materials- Case study -Nano packaging.

Module:6	Food Product Development	5 hours

Overview of food product development- concept, design, sensory testing; shelf life assessment for food products and Commercialization of food products.

Module:7 \quad Food Quality and Safety Assurance
Key concepts in quality control; National (FSSAI) and International quality programs (HACCP,ISO22000); Case StudySafety aspects of food nano-materials.

Module:8 Contemporary issues

		Total Lecture hours:				45 hours
Textbook(s)						
1.	P.J. Fellows. 2016. Food Processing Technology. $4^{\text {th }}$ Edition. Woodhead Publishing. P.1152.					
Reference Books						
1.	Theodoros Varzakas, Constantina Tzia(Eds.) 2015. Handbook of Food Processing: Food Preservation.p.706.CRC Press.					
2.	Contantinos A. Georgiou (Editor), Georgios P. Danezis (Editor). 2017. Food Authentication:Management, Analysis and Regulation. Wiley-Blackwell. 568 pages.					
Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final assessment test						
Recommended by Board of Studies		27-07-2022				
Approved by Academic Council		No. 67	Date	08-08-2022		

VIT
Vellore Institute of Technology
(Derued tu be liminviry miler nection 3 ar UGC Act 1956)

Course Code	Course Title	L	T	P	C
MBIT606L	Natural Product Technology	3	0	0	3
Pre-requisite	Nil	Syllabus version			
		1.0			
Course Objectives					
1. Explain the importance of natural products					
2. Learn the chemical and biological synthesis of metabolites					
3. Demonstrate drug discovery and development					

Course Outcome

The student will be able to

1. Demonstrate key concepts related to classification, collection and processing of natural products from different organisms
2. Develop the detailed knowledge about chemistry of medicinal compounds of natural origin
3. Relate the processing, extraction and purification of different kinds of natural products
4. Make use of the recent developments in the subject
5. Elaborate the scale up process
6. Relate the sustainable usage of bio resources and its natural products for the welfare of mankind

Module:1	Natural product and their Importance	6 hours
Classification of natural products. Collection and processing methods of extraction - Purification and concentration Identification.		
Module:2	Secondary Metabolites I	6 hours
Chemistry, biological synthesis and types of Terpenoids, Sterols, glucosides, phenolics and Alkaloids, vitamins, Biosynthetic pathway and fatty acid metabolism, shikimic acid pathway		
Module:3	Secondary Metabolites II	6 hours
Essential oils, volatile oil, Poisonous plants sources and toxic manifestations of poisonous plants.		
Module:4	Pigments and Natural Dyes	6 hours
History, importance, chemistry and types, dye extraction and fabric dye process, Application of Technology for the production of natural dyes and colourants.		
Module:5	Herbal Products	6 hours
Medicinal plant and herbal practice in India - Introduction - History - Herbal Practice - Study of different traditional medicine - Conservation sustainable utilization.		

Module:6	Marine Natural Products	$\mathbf{5}$ hours

Introduction, sources, examples, antibiotics, bioactivity. Isolation methods, processing methods - Applications.

Module:7	Microbial Natural Products	8 hours

Sources, extraction, biological activity and mass cultivation - bioreactor, applications - food, agriculture, pharmaceuticals, cosmetics industry. Recent trends and research in natural products technology: Biotechnological methods to improve production, case studies.

Module:8	Contemporary issues	2 hours

VIT
Vellore Institute of Technology

Total Lecture hours:			
Textbook(s)	45 hours		
1.	Talapatra S K and Talapatra B. (2015) Chemistry of Natural Products. Springer Publications.		
2.	Kinghorn A D, Falk Hains (ed.) (2016) Progress in the chemistry of organic natural products,Springer Publications.		
3.	Paul M Dewick (2011) Medicinal Natural products: A biosynthetic approach, 3nd Edition,John wiley and sons Ltd.		
Reference Books			
1.	Atta Ur Rahman 2017. Studies in Natural Products Chemistry Vol.25 Elsevier Publications.		
2.	Herwig O Gutzeit, Jutta Ludwig-Müller (2014) Plant Natural Products: Synthesis, Biological Functions and Practical applications, Wiley publishers		
3.	Ilkay Ergogan orhan, (2012) Biotechnological production of plant secondary metabolites.Bentham e books		
Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final assessment test			
Recommended by Board of Studies	$27-07-2022$		
Approved by Academic Council	No. 67		

Course Code	Course Title		T	P	C
MBIT607L	Plant Biotechnology		0	0	3
Pre-requisite	Nil	Syllabus version			
		1.0			
Course Objectives					
1. To provide an understanding of plant physiology, cell to cell communication and plant genomerelated aspects 2. To provide knowledge about plant tissue culture techniques and crop improvement 3. To impart knowledge on different bio technological techniques to alter the plants suited tomodern agriculture and industrial application					

The student will be able to

1. Demonstrate plant tissue culture techniques for the enhancement of secondary metabolitesproduction.
2. Explain the various components involved in developing transgenic plants
3. Illustrate production of new bio-molecules in plant using transgenic technology
4. Compare and apply molecular marker technology in plant breeding
5. Demonstrate the importance of biosafety in developing transgenic plant
6. Improve crop plants through gene transfer methods

Module:1 \quad Tissue culture
 6 hours

Totipotency, equipotency, pluripotency and plasticity. Explants. Cultures - single cell, callus, cell- suspension, protoplast, leaf, root, shoot tip and meristems, embryo, anther, microspore and ovary culture. Somatic embryogenesis, organogenesis and hardening. Industrial applications of tissue culture.

Module:2	Designing of a plant based expression cassette	6 hours

Features of a plant transformation vector. Constitutive, inducible and tissue specific promoters, terminators and regulatory elements; Selectable markers and reporter genes; Modification of an heterologous gene (animals, microbes) for plant transformation.

| Module:3 Plant transformation techniques | 6 hours |
| :--- | :--- | :--- |

Nuclear and plastid transformation; Agrobacterium mediated and direct gene transfer methods.Binary vectors, Gateway vectors and RNAi vectors.

Module:4	Case studies for transgenics	6 hours

Herbicide tolerance [Round Up Ready], Bt crops, Golden Rice, Transgenic crops designed fortolerance to abiotic and biotic stress.

Module:5	Molecular pharming	6 hours

Transgeni systems to derive carbohydrates, plantibodies edible vaccines enzymes, biopharmaceuticals, bioplastics, biofuel, silk and elastin. Gene to functional protein processing steps in plants; Elicited cell cultures for maximizing yield of metabolites

Module:6	Marker assisted breeding	6 hours

Phenotypic, enzyme and molecular markers, co-dominant and dominant markers, Basics- linkage analysis and QTL mapping

Module:7 \quad IPR issues
7 hours
Global status and bio-safety concerns for production and release of transgenic plants. Plant breeder's rights, copyright,

VIT
Vellore Institute of Technology

trade mark and patents.					
Module:8	Contemporary issues				2 hours
Total Lecture hours:					45 hours
Textbook(s)					
1. Ad Ed	Adrian Slater, N. W. Scott and M. Fowler. 2014. Plant Biotechnology: The GeneticManipulation of Plants, Second Edition, Oxford University Press, UK.				
Reference Books					
1. $\mathrm{R}^{\text {R }}$ R	Roberta H. Smith. 2013. Plant Tissue Culture Techniques and Experiments, 3rd Edition,Elsevier Inc., UK.				
2. $\begin{array}{l}\text { Ba } \\ \text { Sp }\end{array}$	Bahadur, B., M.V. Rajam, L. Sahijram and K.V. Krishnamurthy. 2015. Plant Biology andBiotechnology, Vol. 2, Springer, New Delhi.				
3.18	Richroch, A. S. Chopra and S. Fleischer. 2014. Plant Biotechnology, Springer InternationalPublishing, Switzerland.				
4. $\begin{array}{l}\text { Al } \\ \text { Fa }\end{array}$	Alverz and M. Alejandra. 2014. Plant Biotechnology for Health: From Secondary Metabolitesto Molecular Farming. Springer International Publishing, Switzerland.				
5. Fe Y	Fett-Neto, A.G. 2016. Biotechnology of Plant Secondary Metabolism. SpringerScience+Business Media, New York.				
Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final assessment test					
Recommended by Board of Studies		27-07-2			
		No. 67	Date	08-08-2	

VIT
Vellore Institute of Technology
(Dermed tu be Lherrentry mifer uection 3 of USC Act 1956)

Course Code	Course Title		T	P	C
MBIT608L	Animal Biotechnology		0	0	3
Pre-requisite	Nil	Syllabus version			
		1.0			

Course Objectives

1. To perceive the utility of in vitro modification of animal cells
2. To appraise the modern advancement of animal reproductive technology
3. To improve the principle of conservation of farm animals and related ethics.

Course Outcome

The student will be able to

1. Explain the utility of animal cell culture techniques.
2. Apply animal cell culture techniques for research works
3. Make use of advanced animal reproductive technology
4. Utilize and apply transgenic techniques in farm animal productions.
5. Develop interests in conservations of animal resources.
6. Demonstrate interests in reclaiming impaired animals resources and management.

| Module:1 | Animal
 methods | cell culture and gentransfer | 6 hours |
| :--- | :--- | :--- | :--- | :--- |

Eukaryotic, embryonal, and stem cell culturing techniques; Methods to introduce trans gene into cell, regulation of gene expression, Cell line characterization, Industrial applications of animal cellculture.

Module:2	Manipulations and applications of animal cell culture	6 hours

Cell synchronization, cell immobilization techniques, Cryopreservation. Primary and secondarycell culture, MEFs isolation. Protocols for Immortalization of cells.

Module:3	Advanced Reproductive methods	7 hours

Physiology of reproduction, Artificial Insemination, Estrous synchronization; superovulation; embryo transfer, pregnancy and parturition control; Immunological methods of control reproduction, monitoring reproductive status, in-vitro fertilization, sperm and embryo sexing; pre-implantation; genetic diagnosis.

Direct manipulation of fertilized egg, Manipulation of early embryonic tissue in place; the use ofembryonic stem cells and tissue engineering. Methods and applications of animal cloning.

Module:5 \quad Genome based knowledge and Conservation Modalities $\quad 6$ hours
Animal and human Genome projects, NGS and its applications, genetic linkage maps; polymorphic DNA markers; Physical map; integrating genetic linkage and physical map; DNA sequencing.

Module:6 Conservation Methods and ethical treatment of Animals
6 hours
Animal Disease and Extinction, Molecular techniques in genetic conservation of Farm Animals, Introduction to animal ethics; Animal rights and use of animals in the advancement of medical technology; Introduction to laws and regulation regarding use of animals in research. Ethical, Legal and Social Implications.

VIT
Vellore Institute of Technology

Course Code	Course Title	L	T	P	C
MBIT609L	Pharmaceutical Biotechnology	3	0	0	3
Pre-requisite	Nil	Syllabus version			
		1.0			

1. Outline the basic theories of biopharmaceutics and pharmacokinetics
2. Discuss, dissect, interpret and build an awareness on pharmacology and biotechnologybased pharmaceutical products
3. Evaluate and apply the fundamental knowledge in biotechnology-based applications in thepharmaceutical and sectors related to drug development and use

Course Outcome

The student will be able to

1. Recall and relate the mechanism of action and illustrate the importance of understanding aboutADME.
2. Develop various formulations based on biopharmaceutical analysis
3. Demonstrate the concepts and outline the importance of nano based drug delivery systems andillustrate the nuances of Good Manufacturing Practices
4. Explain the challenges in new drug development (including biologics) and clinical trials
5. Elaborate upon and assess the regulatory approval criteria for bulk drugs and biologics
6. Explain pharmacology research as a career to develop newer products as well as have a solidfoundation to critically evaluate the cutting edge issues in Pharmaceutical Biotechnology

Module:1 \quad General Pharmacology

Sources of drugs, different dosage forms and routes of drug administration, mechanism of action of drugs. Combined effect of drugs, factors modifying drug action, tolerance and dependence, Pharmacogenetics, kinetics - Absorption, Distribution, Metabolism and Excretion of drugs.

Module:2	Bio-pharmaceutics	6hours

Rate of drug absorption after administration, drug concentration in blood, biological factors in drug absorption, Iodell-chemical factors, dosage form consideration for gastrointestinalabsorption, drug distribution, site seeking and drug elimination, protein - drug interactions.

Module:3	Formulative Pharmacy	6 hours

Manufacturing, quality control, stability testing and storage of tablets, capsules, parenterals, solutions, aerosols and ointments.

Module:4	Good manufacturing practices	7 hours

Organisation and personnel, responsibilities, training, hygiene. Premises: Location, design, plant layout, construction, maintenance and sanitation, environmental control, utilities and services like gas, water, maintenance of sterile areas, control of contamination. Controls on animal house.

| Module:5 | Nanocarriers | 6 hours |
| :--- | :--- | :--- | :--- |
| Nanomedicine,
 Polymeric micelles, Nanoparticles (Polymeric and Lipid based), Nanoemulsions. | | |

Module:6 \quad Biologics

VIT
Vellore Institute of Technology
(Derned tu be Dienerity miler mection Sol UGC Act 1956)
rDNA drugs - insulin, subunit Vaccines, Therapeutic proteins, Hormones, Immunobiologicals - Monoclonal antibodies, Interferons, Biosimilars.
Module:7 $\mathbf{7}$ New drug development \quad 6 hours

Concepts, pre-clinical trials, design of clinical trials, phases of clinical trials and testing of drugs in human. ICH, FDA, EMEA and Indian drug regulations Regulatory Affairs: Globalization of drug industry, present status and scope of pharmaceutical industry in India. WHO and NABL certification. Regulatory aspects of pharmaceutical and bulk drug manufacture, regulatory drug analysis.

VIT
Vellore Institute of Technology

Course Code	Course Title	L	T	P	C	
MBIT610L	Environmental Biotechnology	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3}$	
Pre-requisite	Nil	Syllabus version				
		$\mathbf{1 . 0}$				

Course Objectives

1 Analyse environmental pollution and to develop suitable technologies to solve the problems
2. Understand the bases for microbial metabolism of environmental contaminants
3. Apply scientific concepts to environmental problems and their correlation with technologicalconcepts

Course Outcome

The student will be able to

1. Examine the sources of environmental pollutants and their impacts
2. Demonstrate the applications of various fields including chemistry, biochemistry, molecular biology and/or microbiology, in understanding and addressing the above issues, as well as exploringenvironmental resources for new technologies.
3. Outline the biological treatment processes and development of suitable technologies
4. Explain the microbial processes and growth requirements undelaying the activated sludge process, nitrification, denitrification, enhanced phosphorus removal, and anaerobic digestion
5. Evaluate alternative process schemes for combined biological nutrient removal
6. Demonstrate the role of microorganisms in processes such as biofilm formation and mineral leaching and to examine the potential of micro and macro-organism in biodegradation

Module:1	Sources and Treatments of various pollutants	3 hours

Pollutants - nature, sources \& classification. Comparison of biotechnological treatment with othermethods. Functions of microbial groups - metabolic pathways of biodegradation

| Module:2 | Recent Molecular Tools involved in
 Remediation | 5 hours |
| :--- | :--- | :--- | :--- |
| Biotechnological tools in Environment - Living organisms as indicators of pollution. Molecularanalysis of microbial
 community -
 metaproteomics. Catalytic evolutionary engineering | | |

Module:3	Conventional methods used in Waste Water Management	$\mathbf{5}$ hours

Air pollution - Methods of odour and VOC Control. Types, structure design and operation of bioreactors, bioscrubbers, bio-filters. Case studies for odour removal from municipal waste waters and sulphurous emissions.

Module:4	Biofilm based Remediation Technologies I	4 hours

Aerobic and anoxic suspended growth biotechnologies: conventional/high rate activated sludge system, Powder activated \& Carrier activated sludge process - Nitrification/ phostrip process. vertical \& Attached growth technologies.

| Module:5 Biofilm based Remediation Technologies II | 2 hours |
| :--- | :--- | :--- |

Trickling/ denitrification RBC/ FBR/ PBR and hybrid systems.

| Module:6 Bio-Reactors based degradation | $\mathbf{5}$ hours |
| :--- | :--- | :--- |

Solid-state bioreactors - aerated/mixed/anaerobic - types, operation and optimization. Landfilland composting. Mineral and metal extraction biotechnology.

VIT
Vellore Institute of Technology

VIT
Vellore Institute of Technology

Module:1 \quad Scope and Challenges in marine and aquatic biotechnology $\quad 7$ hours

Global and Indian scenario; Demand for marine bioproducts; market value; marine bioproduct based industries; marine bioeconomy; Marine socio-economics; Entrepreneurship; International and Indian policies; Marine biotechnology parks in various states; R\&D institutions, centres and consultation services.

Module:2	Marine and Aquatic Ecology	6 hours
Aquatic Ecosystems; Benthic and Pelagic Zone; Photic, dysphotic and aphotic zones - importance and their significance. Biological divisions of the sea- estuaries and backwaters, lagoons, mangroves, coastal sea/oceanic zone.		
waters, inshore, offshore, deep		

Sampling, cultivation and taxonomy of organisms. Metagenomics. Flora, Fauna, Bacteria, fungi, algae and archaea. Extremophilic microorganisms; Fisheries and other aquatic potential.

Module:4	Marine Biogeochemical cycles	6 hours

Role of aquatic and marine organisms in carbon, nitrogen, phosphorous and sulphur cycles.

Module:5	Marine microbial pathogens	6 hours

Microbial pathogens in marine environment - diversity, sources and detection of pathogens in recreational water, impact of harmful algal blooms, microbial pathogens of seafood.
Module:6 \quad Marine Pharmacology \quad 6 hours

Marine derived drugs in preclinical and clinical trials- FDA and EMEA approved marine derived drugs, their use and mode of action. Screening of drugs High-throughput Screening Assays (HTS) Bioassays- Enzyme assays, cytotoxicity assay; antimicrobial assay; DNA laddering assay; Apoptosis assays.
Module:7 \quad Marine Bioprospecting \quad 6 hours

Vellore Institute of Technology

VIT
Vellore Institute of Technology

Course Code	Course Title	L	T	P	C		
MBIT612L	Proteomics	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3}$		
Pre-requisite	Nil		Syllabus version				

Course Objectives

1. To exemplify the application of proteomics analysis in various fields
2. To impart basic concepts, interpreting skills in proteomics
3.
4. To identify as many individual proteins as possible in a given biological sample to the development of highthroughput, parallel and quantitative technologies

Course Outcome

The student will be able to

1. Interpret the proteome analysis and discuss the advantages and limitations of different experimental approaches.
2. Identify proteins by peptide mass fingerprinting using MALDI TOF.
3. Discuss how biological systems information relating to genes, proteins and cellular structurescan be used to model living cells, and even to create new synthetic cells
4. Identify and discuss the techniques used in functional genomics and proteomics next generation sequencing technology and Interpret data obtained through high throughput expression studies.
5. Illustrate the different types of genome variation and their relationship to human diseases.
6. Survey the databases that store various data about genes, proteins, genomes and proteomes

| Module:1 | Proteome analysis: | 6 hours |
| :--- | :--- | :--- | Proteomics work flow, Proteome analysis by single dimension electrophoresis, two-dimensional electrophoresis: solublisation of proteins, protein enrichment strategies, IEF, image analysis, computational tools used in 2D gel electrophoresis, multi-dimensional proteomics.

Module:2 \quad Mass spectrometry:
4 hours
Principles, sample preparation, interpretation of mass spectrometry data, peptide sequence matching; peptide mass fingerprinting.

Module:3 \quad Proteomics approaches
7 hours
Proteomics to study post translational modifications, protein-protein interactions using yeast 2 hybrid systems, structural proteomics, functional proteomics, comparative proteomics, quantitative proteomics, and organelle proteomics: golgi, mitochondria and chloroplast.

Module:4 \quad Proteomics and NGS
7 hours
Top down and bottom-up proteomics, Proteogenomics and re-annotation of genomes, examples of protegeomics approaches, Interactome analysis. Chemical proteomics, Reconciling proteomics with next generation sequencing.

Module:5 \quad Advanced proteome analytical approaches:
6 hours
Gel free proteomics: ICAT, iTRAQ, ICPL, TMT, SILAC, off gel electrophoresis, single cell proteomics,ecological proteomics, positional proteomics, global and targeted proteomics, signature peptides, secretome analysis.

Module:6 \quad Human proteome

VIT
Vellore Institute of Technology
(Depued ti be liminviry muler mection 3 of UGC Act 1956)

Course Code	Course Title	L	T	P	C
MBIT613L	Cancer Biology	3	0	0	3
Pre-requisite	Nil	Syllabus version			
		1.0			

Course Objectives

1. Demonstrate understanding of the cellular and molecular mechanisms that are dysregulated incancerous cells.
2. Apply the genomic technologies and develop critical thinking skills in cancer research.
3. Analyze and prioritize the traditional chemotherapy and novel targeted therapeutic approachesin cancer

Course Outcome

The student will be able to

1. Demonstrate understanding of the subject related concepts and of contemporary issues
2. Identify, design and conduct experiments, as well as to analyze and interpret data
3. Apply critical thinking and innovative skills
4. Interpret Sense-Making Skills of creating unique insights in what is being seen or observed (Higher level thinking skills which cannot be codified)
5. Make use of techniques, skills and modern engineering tools necessary for clinical practice
6. Apply mathematics and science in engineering applications

Module:1	Mutagens, Carcinogens and mutations	6 hours
Molecular mechanisms of mutagens such as Chemical Carcinogen and radiation. Types of carcinogen and their mode of action with example		

| Module 2 | Oncogene activation;
 cycle Dysregulation |
| :--- | :--- | Tumour suppressor inactivation and Cell \quad 6 hours

Function of Oncogene, proto-oncogene, tumor suppressor proteins and oncoviruses. Their role in cancer

Module:3	Evading apoptosis in cancer	6 hours

Apoptotic mechanism, altered pathways in cancer cells that can evade apoptosis. Pathways regulating tumor initiation and/or its progression

Module:4	Genomic instability	6 hours

Types of genomic instability: instability due to micro and mini satellite sequence, Loss of DNA repair mechanisms, Dysfunction of telomeres. Chromosomal aberrations that cause cancer. Single nucleotide polymorphisms and cancer

Module:5	Angiogenesis and Metastasis	5 hours

Tumor angiogenesis, Clinical significance in invasion, Three-step theory of invasion, Proteinasesand tumor cell invasion

Module:6	Cancer Diagnosis	Stem

The stem cell theory of Cancer, tumor heterogeneity, Origin of cancer stem cells and cancercontrol by targeting cancer stem cells. Detection of Cancers, Prediction of aggressiveness of cancer, Advances in cancer detection. Different forms of therapy, Chemotherapy, RadiationTherapy, Targeted therapy: Monoclonal antibody, kinase blockers

Module: 7	Cancer therapeutics and Diagnosis

6 hours
Animal models used to study cancer, Nude mice, Transgenic and knock out mice, Cre mice, patient derived xenografts (PDXs). New genomic and proteomic approaches in cancer biology and therapeutics; COSMIC and TCGA databases and

their applications.					
Module:8	Contemporary issues				2 hours
Total Lecture hours:					45 hours
Textbook(s)					
1. ${ }^{\text {1. }}$ Rob	Robert A Weinberg, 2013, The Biology of Cancer, Garland Science, ISBN: 9780815342205				
Reference Books					
1. Tex to 2	Textbook readings; primary literature; in-class discussion. The Molecular Biology of Cancer:A Bridge from Bench to Bedside. Stella Pelengaris, Mike Khan - $2^{\text {nd }}$ Edition - 2013				
2. $\begin{aligned} & \text { Mol } \\ & \text { bio }\end{aligned}$	Molecular Biology of Cancer. Lauren Pecorina, $4^{\text {th }}$ edition. Oxford University Press - 2016.Introduction to cancer biology, Robin Hesketh, Cambridge University Press - 2013.				
Mode of Evaluation: Written examinations, assignments, research article presentations andquizzes					
Recommended by Board of Studies		27-07-2			
Approved by Academic Council		No. 67	Date	08-08-2	

VIT
Vellore Institute of Technology

Module:8	Contemporary issues	2 hours

VIT
Vellore Institute of Technology

Course Code	Course Title			T	P	C
MBIT615L		Microbial Technology	3	0	0	3
Pre-requisite	Nil		Syllabus version			
			1.0			
Course Objectives						
1. The objective of the subject is to impart the knowledge of industrial bioprocesses, various metabolites using living cells 2. It also illustrates some of important bioproducts produced in industries as case studies			industrialproduction of			

Course Outcome

The student will be able to

1. Relate the subject related concepts and contemporary issues
2. Demonstrate the microbial secondary metabolites having industrial applications
3. Solve the current problems related to antibiotics, vaccines and anticancer drugs
4. Analyze the techniques, skills and modern engineering tools necessary for large scaleproduction of enzymes, recombinant products, food additives and biofuels
5. Elaborate a clear understanding of professional and ethical and social responsibility
6. Adapt to use the technology for the isolation and development of new microbial products

Vellore Institute of Technology

