

SCHOOL OF BIO SCIENCES AND TECHNOLOGY

M.Tech Biotechnology (MBT)

Curriculum and Syllabus

(2023-2024 admitted students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

- World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.
- **Cutting edge Research**: An innovation ecosystem to extend knowledge and solve criticalproblems.
- Impactful People: Happy, accountable, caring and effective workforce and students. Rewarding Co-creations: Active collaboration with national & international industries & universities for productivity and economic development.
- Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF BIO SCIENCES AND TECHNOLOGY

• To nurture high-quality bioengineers and science graduates with the potential to innovate, invent and disseminate knowledge for the benefit of society and environment

MISSION STATEMENTOF THE SCHOOL OF BIO SCIENCES AND TECHNOLOGY

- To offer academic programs to impart knowledge skills to cater to the dynamic needs of the bio sciences and the food industry
- To foster the spirit of innovation and creativity in the young minds in solving the real-time problems arising in society and industry
- To instill confidence, ethics, values, and employability skills in the future citizens to focus on the sustainable growth of the economy

Mission of M.Tech., Biotechnology

- Acquire students with skills of biotechnology and provide solutions through industry-academia interface
- Empower the students to be effective entrepreneurs and excellent researchers to invent unique products for societal need with proper ethical statutes

M.TECH BIOTECHNOLOGY

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs).

1. Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry

2. Graduates will function in their profession with social awareness and responsibility

3. Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country

- 4. Graduates will be successful in pursuing higher studies in engineering or management
- 5. Graduates will pursue career paths in teaching or research

M.TECH BIOTECHNOLOGY

Programme Outcomes

POs	Statements
PO_01	Having an ability to apply mathematics and science in engineering applications
PO_02	Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment
PO_03	Having an ability to design and conduct experiments, as well as to analyse and interpret data, and synthesis of information
PO_04	Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice
PO_05	Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems
PO_06	Having adaptive thinking and adaptability in relation to environmental context and sustainable development
PO_07	Having a clear understanding of professional and ethical responsibility
PO_08	Having a good cognitive load management skills related to project management and finance

M.TECH BIOTECHNOLOGY

PROGRAMME SPECIFIC OUTCOMES (PSOs)

- 1 Acquire students with skills of biotechnology and provide solutions through industryacademia interface
- 2 Empower the students to be effective entrepreneurs and excellent researchers to invent unique products for societal need with proper ethical statutes
- 3 Ability to independently carry out research and development work to solve the practical problems

CREDIT INFO								
S.no	Catagory	Credit						
1	Discipline Core	24						
2	Discipline Elective	12						
3	Projects and Internship	26						
4	Open Elective	3						
5	Skill Enhancement	5						
	Total Credits	70						

Discipline Core											
sl.no	Course Code	Course Type	Ver sio n	L	Т	Р	J	Credit			
1	MBIT501L	Advanced Biochemistry	Theory Only	1.0	3	0	0	0	3.0		
2	MBIT501P	Advanced Biochemistry Lab	Lab Only	1.0	0	0	2	0	1.0		
3	MBIT502L	Analytical Techniques in Biotechnology	Theory Only	1.0	3	0	0	0	3.0		
4	MBIT503L	Bioprocess Technology	Theory Only	1.0	3	0	0	0	3.0		
5	MBIT503P	Bioprocess Technology Lab	Lab Only	1.0	0	0	4	0	2.0		
6	MBIT504L	Computational Biology	Theory Only	1.0	3	0	0	0	3.0		
7	MBIT504P	Computational Biology Lab	Lab Only	1.0	0	0	2	0	1.0		
8	MBIT505L	Genetic Engineering	Theory Only	1.0	3	0	0	0	3.0		
9	MBIT505P	Genetic Engineering Lab	Lab Only	1.0	0	0	4	0	2.0		
10	MBIT506L	Immunotechnology	Theory Only	1.0	3	0	0	0	3.0		

	Discipline Elective											
sl.no	Course Code	Course Type	Ver	L	Т	Р	J	Credit				
				sio								
				n								
1	MBIT601L	Industrial Biotechnology	Theory Only	1.0	3	0	0	0	3.0			
2	MBIT602L	Nanobiotechnology	Theory Only	1.0	3	0	0	0	3.0			
3	MBIT603L	Protein Engineering and Technology	Theory Only	1.0	3	0	0	0	3.0			
4	MBIT604L	Programming for Biologists	Theory Only	1.0	3	0	0	0	3.0			
5	MBIT605L	Food Process Technology	Theory Only	1.0	3	0	0	0	3.0			

6	MBIT606L	Natural Product Technology	Theory Only	1.0	3	0	0	0	3.0
7	MBIT607L	Plant Biotechnology	Theory Only	1.0	3	0	0	0	3.0
8	MBIT608L	Animal Biotechnology	Theory Only	1.0	3	0	0	0	3.0
9	MBIT609L	Pharmaceutical Biotechnology	Theory Only	1.0	3	0	0	0	3.0
10	MBIT610L	Environmental Biotechnology	Theory Only	1.0	3	0	0	0	3.0
11	MBIT611L	Aquatic Biotechnology	Theory Only	1.0	3	0	0	0	3.0
12	MBIT612L	Proteomics	Theory Only	1.0	3	0	0	0	3.0
13	MBIT613L	Cancer Biology	Theory Only	1.0	3	0	0	0	3.0
14	MBIT614L	Medical Biotechnology	Theory Only	1.0	3	0	0	0	3.0
15	MBIT615L	Microbial Biotechnology	Theory Only	1.0	3	0	0	0	3.0

Projects and Internship											
sl.no	Course Code	Course Title	Course Type	Ver	L	Т	Р	J	Credit		
				sio							
				n							
1	MBIT696J	Study Oriented Project	Project	1.0	0	0	0	0	2.0		
2	MBIT697J	Design Project	Project	1.0	0	0	0	0	2.0		
3	MBIT698J	Internship I/ Dissertation I	Project	1.0	0	0	0	0	10.0		
4	MBIT699J	Internship II/ Dissertation II	Project	1.0	0	0	0	0	12.0		

Open Elective										
sl.no	Course Code	Course Title	Course Type	Ver	L	Т	Р	J	Credit	
				sio						
				n						
1	MFRE501L	Francais Fonctionnel	Theory Only	1.0	3	0	0	0	3.0	
2	MGER501L	Deutsch fuer Anfaenger	Theory Only	1.0	3	0	0	0	3.0	

Skill Enhancement											
sl.no	Course Code	Course Title	Course Type	Ver	L	Т	Р	J	Credit		
				sio							
				n							
1	MENG501P	Technical Report Writing	Lab Only	1.0	0	0	4	0	2.0		
2	MSTS501P	Qualitative Skills Practice	Soft Skill	1.0	0	0	3	0	1.5		
3	MSTS502P	Quantitative Skills Practice	Soft Skill	1.0	0	0	3	0	1.5		

		Course Title		L	Т	Р	С		
Course Code		A drom and Dirich ansistery		2	•	0	2		
MBII501L		Advanced Biochemistry	<u> </u>	<u> </u>	U	0	3		
Pre-requisite			├───	Sy	1 0	s ver	SIOII		
Course Obje	etives				1.0				
1 To en	sure stude	nts having a strong knowledge in structure composition and function	ns of v	arious	hiom	olecu	iles		
 To in pathw To un biotect 	troduce th vays nderstand chnology.	the significance of these biomolecules and to apply these fundam	olved in entals	n var in fi	ious i	metat	oolic dern		
Course Outco	ome								
the end of the 1. Devel 2. Demo 3. Make 4. Under 5. Expla 6. Expla	e course the lop knowle onstrate the use of kno rstand the in the ther ain the stru	the student will be able to bedge on structure of macromolecules such as carbohydrates, proteins e organization and biological functions of macromolecules owledge on carbohydrate metabolism structure activity relationship of proteins and mechanism of enzyme modynamics of high energy compounds and energy metabolism actural organization of membranes and ion channels.	and li action	ipids					
Module:1	Solubil	ity of Macromolecules				5 h	ours		
Effect of sol numerical pro	vent and blems on l	additive, Mechanism of solvation, Buffers for biochemical reagents ouffer preparation, pH and the Henderson- Hasselbalch equation.	, buffe	ering	capac	ity, a	and		
Module:2	Carbol	nvdrates				5 h	ours		
Classification heteropolysac lectins and m	, cyclic s charides, edical app	structure of monosaccharides, stereoisomerism, sugar derivatives, glycosaminoglycan (GAGs), proteoglycans, bacterial cell wall polys lications of oligosaccharides	disacch acchari	naride des,	s, ho glycoj	mo prote	and ins,		
Module:3	Carbol	ovdrate metabolism				4 h	ours		
Carbohydrate	metabolis	m and regulation in microbes plants and animals				- 11	Juis		
Curconjunat	111010000110								
Module:4	Proteir	IS				7 h	ours		
Structural org	anisation	of Proteins. Structure activity relationship of proteins- haemoglobin, m	voglob	in, co	llager	n, ker	atin.		
Insulin, Enzyi	ne coenzy	mes and cofactors. Mechanism of enzyme action, with particular referen	ice to se	erine	protea	ses			
Module:5	Bioene	rgetics				7 h	ours		
Recap of redo energy metabo	ox reaction olism. Sub	s, redox potential and Nernst equation. Thermodynamics. High energy constrate level phosphorylation, Oxidativephosphorylation and photophosphorylation	ompou horylati	nds. F ion	Role of	f ATI	? in		
Module:6	Linide	and membranes				7 h			
Membrane lin	ids & prot	eins: structure & properties of membrane lipids: fluid mosaic model fund	ction (c	arrier	s. rece	eptor	S.		
enzymes, anchors, cell-cell recognition); osmosis & diffusion, tonicity; TAG catabolism, anabolism (animal metabolism)									
	C!					0.1			
Module:7	Signall	ing and Transport				8 h	ours		
Signaling typ active); ion c	es, recept channels, t	tor types (intra vs surface); transport: bulk (endocytosis, exocytos ransporters; signal transduction cascades: GPCRs,cytokine, TK; apopt	is), sel losis.	lective	e (fac	cilitat	ed,		

Mod	lule:8	Contemporary Issues			2 hours					
			Total Lecture I	nours:	45 hours					
Text Book(s)										
1.	1. David L Nelson, Michael M Cox, Albert L Lehninger (2013) Lehninger Principles of Biochemistry - 6 th edition,									
	New Yor	k : W.H. Freeman.								
Refe	erence Boo	ks								
1	Jeremy M MacMilla	1 Berg, John L Tymoczko, Greg n.	gory J Gatto, Lubert	Stryer (2015) Biochemistry - 8 th Edition, Palgrave					
2.	Donald V	oet, Judith G Voet (2010) Biocher	nistry - 4 th Edition, Wi	ley India Pvt	Ltd.					
Mod	Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final assessment test									
Reco	Recommended by Board of Studies 27-05-2022									
App	roved by A	cademic Council	No. 67	Date	08-08-2022					

Course code		Course Title	e			L	Т	P	С
MBIT501P	Adv	vanced Biochemi	stry Lab			0	0	2	1
Pre-requisite	Nil					Syl	llabu	s ver	sion
							1.0		
Course Objectives									
1. To infer prope	erties of biomolecules based or	n quantitative anal	ysis.						
2 . To impart kno	wledge of methods and techni	ques for biomolec	cules separat	ion and purific	ation				
Course Outcome	a a								
I. Analyse biom	olecules quantitatively.								
2. Demonstrate t	he separation and estimation c	of biomolecules							
Indicative Experiment	nts								
1 Determinatio	n of the organic acids and t	their buffering ra	nge in vari	ousjuices					
2 Identification	of sugars by DNSA method a	nd TLC							
3 Detection of	isoelectric point of casein								
4 Specificity of	amylase for starch in different	t flours, monitorii	ng with DNS	SA					
5 Quantitative	determination of vitamin C in	different vegetable	es, fruits						
6 Proteins in b	iological fluid – determinatio	on by Bradford an	d separation	n bygel electro	phoresis	s			
7 Extraction of	f lipid/oil from the plant mater	ial and determina	tion of itssa	ponification and	d iodine	e num	ber.		
	· · ·								
			Total La	aboratory Hou	ırs 30	hou	rs		
Mode of assessment: (Continuous assessment / FAT	/ Oral examination	n and others						
Recommended by Boa	ard of Studies	27-07-2022							
Approved by Academi	ic Council	No. 67	Date	08-08-2022					

Course Code		Course Title		T.	Т	Р	C
MRIT502L		Analytical Techniques in Riotechn	ology	3	1	1	3
Pre-requisite		NIL NIL		Sv	v Ilahu	v s ver	sion
The requisite				05	<u>1.0</u>		SION
Course Object	ives		I		110		
1. Develo	ping the	skills to understand the theory and practice of analytica	l techniques				
2. Enhanc	ing the u	nderstanding in analytical techniques in detail to interp	ret results				
3. Improving th	ne learnin	g ability on how to analyze and separate biomolecules	based on their p	roperti	ies.		
Course Outcor	ne						
e student will be	able to						
I. Demon	strate ins	truments related to bio techniques					
2. Build K	nowledg	e on choice of appropriate techniques for their samples					
J. Make S A Design	and ever	or instrumental analysis					
5 Analyz	e the sam	inde the experiments					
6. Explain	the limi	ts of instrumental techniques.					
I		I I I I I I I I I I I I I I I I I I I					
Module:1	Absorp	tion spectroscopy				5 h	ours
Working princi	ple, instr	umentation, sample preparation, and its applications –U	JV-Vis, AAS, NMR, ES	SR / E	PR, II	R, Ra	man
for small molec	ules.						
Module:2						5 h	ours
Wiodule.2	Emiss	ion spectroscopy and other spectrometric technique	es		L	5 11	Juis
Working princ	ciple,inst	rumentation, sample preparation, and its applica	tions- AES,Fluorescen-	ce, Ph	osphc	oresce	nce,
	mescene	c, MS, ARD for small molecules.					
	~						
Module:3	Separa	tion techniques	×	1.		4 h	ours
Theory of chron	matograp	hy and types (TLC, PC, HPTLC, GC, HPLC, and 2D	- their principles and $-$	applic	ations	5.	
Modulo:4	Floatro	nhonoris				2 h	
Drinciples inst	rumentat	ion sample preparation and applications of 2D R	otonhora Onticaldansi	tomet	rx 7	5 110	Jurs
Timerpies, inst	iumentat	ion, sample preparation, and applications of $2D - K$	otophore, opticaldelisi	tomen	y.		
Module:5	Micros	copic techniques				3 h	ours
Basics of light	microsco	ppy, Instrumentation - confocal and fluorescence micr	oscopy, sample prepara	tion fo	or flu	oresc	ence
microscopy, su	per resolu	tion microscopy.					
Module:6	Electro	n Microscopy				3 h	ours
Basics of SEM	and TEM	I, Specimen preparation for SEM and TEM.					
Module:7	Flow cy	tometry and other recent techniques			L	5 h	ours
Cell sorters an	d their a	pplications. Hyphenated techniques, tracer techniques	ues – solid, liquid scint	illatio	n, Al	terna	tive
to radioactive	tecnniqu	es.					
Modules	Contor	marary Issues				2 h	01125
110uult.0	Conten	101 at y 155005				<i>4</i> 110	Jul 3
			Total Lecture be	ure.		30 h	01115
			i otar Decture III	ui 5.		50 10	5415

Text	Text Book(s)									
1.	Keith Wilson, John Walker (2015) Principle	es and Techniques of I	Biochemistry	and MolecularBiology, 7 th Edition.						
Refe	rence Books									
1	Skoog, Holler, Crouch (2015) Principles	of Instrumental Ar	alysis 6 th e	dition Cengage Learning. Fifield FW						
	(2015) Principles and Practice of Analytical Chemistry, Blackwell, Scientific									
2.	Publishers Avinash Upadhyay, Kakoli Upadhyay, Nirmalendu Nath (2015) Biophysical Chemistry: (Principles and Techniques), Himalaya Pub, House Mumbai									
3.	Nag A (2016) Analytical Techniques In Hall India, New Delhi.	Agriculture Biotech	nology And	Environmental Engineering, Prentice						
Mod	e of Evaluation: Continuous assessment test,	written assignment, Q	uiz and Final	assessment test						
Reco	Recommended by Board of Studies 27-07-2022									
Appi	Approved by Academic Council No. 67 Date 08-08-2022									

Course Code		Course Title	L	Т	Р	С			
MBIT503L		Bioprocess Technology	3	0	0	3			
Pre-requisite	NIL		S	yllabu	is ver	sion			
				1.0					
Course Object	ives								
1. To un	derstand the me	edia design and statistical media optimization for maximum productio	n of met	abolit	es				
2. To ac	juaint students	with the basics of sterilization and mass transfer coefficients		a a a 1		h an d			
5. 10 und	erstand the var	nous growin kinetics, production kinetics, various reactors	avoived	, scale	e up a	ina			
scale down pro	less in bioreacti	015							
Course Outcou	ne								
The student wil	l be able to								
1. Form	late medium us	sing statistical tool for the maximum production of metabolites and I	viocataly	st for	· vario	ous			
comm	ercial use								
2. Demo	nstrate various	mass transfer coefficient required to increase yield							
3. Desig	n bioreactor cor	nfigurations and operation modes based upon the nature of bio produc	ts						
4. Mode	4. Model the kinetics of living cells and to develop a strategy to solve the issues emerging during fermentation								
proces	sses	nonvined for the microhiel growth and can decign own batch thermal	tomilizati	~ m					
5. Evalu 6. Devel	op a resea	required for the incrobial growth and can design own batch thermal s	stry	with	stro	nσ			
found	ation in bioreac	tor design and scale-up or to become entrepreneur	suy	vv ItII	suc	'ng			
Madule:1 Media Design 6 hours									
Design of medi	a for commercia	al and industrial applications.			U II	Juis			
		II							
Module:2	Statistical me	dium optimization			6 h	ours			
Plackett Burma	n design, Respo	onse surface methodology – Central composite design.							
Module:3	Sterilization f	or Fermentation processes			7 h	ours			
Kinetics of the	mal death of co	ells & spores, Design of batch and Continuous thermal sterilization,	Couplir	ng of .	Arrhe	nius			
equation and ce	ll death kinetics	s, Sterilization of air and filter design, Radiation and chemical steriliz	tion.						
Module:4	Mass Transfe	er			6 h	ours			
Principles of m	olecular diffusio	on, Fick's law of diffusion, diffusion of gases and liquids, theories of	mass tra	nsfer,	conc	ept			
of mass transfer	coefficients. N	lass transfer and power requirement in stirred tank reactors.				•			
Module:5	Kinetics of M	ficrabial Crowth and Product Formation (Unstructured			6 h	ours			
	Model)	icrobial Growth and Froduct Formation (Clistructured							
Kinetics of cell	growth and pro	duct formation: Simple unstructured kinetic models for microbial gro	wth: Gr	owth :	associ	ated			
and non-growth	associated pro	duct formation kinetics; Monod and Leudeking-Piret models.	, 01						
Module:6	Vin	Kenshiel Count and Due duet Former direction (stars three diverses)			6 h	ours			
Introduction to	KINEUCS OF M	licropial Growth and Product Formation (structured Model)	7						
I INTRODUCTION TO	Su uctured MOd	icis ior growin and broduct iormation using Penicinin v as a casestud	/.						

Mod	ule:7	Reactors, Scale – up of reactors	5		6 hours					
Desi	gn for hom	ogeneous systems, Batch, Contin	uous and Fed-batch sy	vstems. F	Reactors in series -Non-Ideality in reactors.					
Scale	e up criteria	a -procedure and scale-down.								
Mod	ule:8	Contemporary Issues			2 hours					
			Total Lecture h	ours:	45 hours					
Text Book(s)										
1.	. Michael L. Shuler, Fikret Kargi, Matthew DeLisa 2017. Bioprocess Engineering, 3rd Edition, Prentice Hall									
	Internatio	nal Series.								
2	Peter Star	bury, Principles of Fermentation t	echnology 2015, third	edition,	Butterworth- Heinemann.					
Refe	rence Boo	ks								
1	Shigeo K	atoh and Fumitake Yoshida, 201	0, Biochemical Engin	eering -	A Textbook for Engineers, Chemists and					
	Biologists	s, WILEY-VCH Verlag GmbH & O	Co. KGaA, Weinheim.							
Mod	e of Evalua	tion: Continuous assessment test,	written assignment, Q	uiz and F	Final assessment test					
Reco	Recommended by Board of Studies 27-07-2022									
Appr	oved by A	cademic Council	No. 67	Date	08-08-2022					

Cours	e code	Co	urse Title				L	Т	Р	С
MBIT	503P	Bioprocess	Technology	Lab			0	0	4	2
Pre-re	quisite	Nil					Sy	llabu	is ver	sion
	-						·	1.0		
Cours	e Objectives									
1.	To provide har	ds on training to design and conduct	experiments a	and to ar	alyze and interplate	pret dat	ta.			
2.	To understand	the operations of bioreactor and to ap	ply the know	ledge of	mass transfer a	nd kine	etics	in bio	proce	ess.
C	. 0									
Cours	<u>e Outcome</u>	a offect of different process personate	ma on anowith	ofmion						
1.	Scroop process	veriables by using single dimensions	ers on growin	01 IIIICI	organisins	DCM				
2.	Assess enzyme	activity on immobilized and free enz	u searcii, Fiac	Kett Dui	man design and	I KOWI				
4.	Successfully ca	arry out aseptic fermentations using a	bioreactor							
Indica	Indicative Experiments									
1.	Growth kinetics in Batch culture									
2.	Product kinetic	s in Batch culture								
3.	Classical metho	od of media optimization								
4.	Statistical meth	od of media optimization(Plackett B	urman)							
5.	Statistical meth	od of media optimization (Response	Surface Meth	odology	1					
6.	Thermal death	kinetics of microorganisms								
7.	KLa determina	tion by dynamic degassing method								
8.	Flow reactors – Air-lift Packed –bed and Fluidized bed reactors									
	Total Laboratory Hours 30									
Mode	Mode of assessment: Continuous assessment, FAT, Oral examination									
Recom	mended by Boar	rd of Studies	27-07-2022							
Appro	Approved by Academic Council No. 67 Date 08-08-2022									

Course Code		Course Title		L	Т	P	C			
MBIT504L		Computational Biology		3	0	0	3			
Pre-requisite		NIL		Sy	llabu	is ve	rsion			
					1.0					
Course Objec	ctives									
1. Study	about the	e open access biological databases and sequence alignment algorithms								
2. Learn	about the	e heuristic algorithms, phylogenetic analysis and structure prediction								
3. Gain I	knowledg	ge on the latest trends in new drug discovery.								
Course Outco	ome									
The students v	will be ab	le to								
1. Demo	onstrate d	eposition and retrieval of sequences from nucleotide and protein databas	es							
2. Detern	mine seq	uence alignments and interpret the salient features								
3 . Explai	in the dif	ferent methods employed for multiple sequence alignment and identify								
streng	gths of ea	ch method								
4. Comp	bare and c	lerive meaningful information using heuristic algorithms								
5. Relate	e the mol	ecular evolutionary relationships among sequences and organisms								
6. Model	l the stru	cture of proteins from sequence information and employ in-silico proced	lures fo	r drug	g disc	over	y.			
Module:1	Biologi	cal databases and sequence alignment				2 ł	iours			
File formats (Genbank,	, uniport, PDB) - Biological Sequence comparison - Dot plot.								
			-							
Module:2	Dynam	ic Programming				3 ł	ours			
Smith and Waterman and Needleman and Wunsch algorithms - sequence formats and tools										
Module:3	Multipl	e sequence alignment		1.5		3 ł	iours			
Methods – alg	gorithms	– tools - applications - Profiles and Hidden Markov Models, Protein M	otifsan	d Dor	naın					
Prediction.										
Madular	Similar	ity Saarahag on Saguanga Datahagag				5 1				
Houristic algo	Simiar	DI AST and its types EASTA Algorithms Sonsitivity specificit	v oppli	ontion	20	51	lours			
Theuristic algo	oriumis -	BLAST and its types, PASTA – Algorithms - Sensitivity, specificit	y,appn	catioi	15.					
Module:5	Molecu	lar Phylogeny				5 ł	ours			
Phylogram	constru	at invogeny	vimum	narci	mons	J me	thod			
Maximum like	elihood- l	Phylogenetic Tree Evaluation – Jackknifing and Bootstrapping – applica	tions	parsi	mony	inc	uiou,			
Triumin mit	c iiiioo u	infogenene free Dianaanen vaenanning and Doossaapping appnea	cions.							
Module:6	Structu	ral Bioinformatics				5 ł	ours			
Conceptual m	nodel of	protein structure, protein structure prediction and modelling – Home	ologyM	[odeli	ng, T	hrea	ding.			
Ab initio- Prot	tein Struc	ture Visualization, Comparison and Classification.								
Module:7	D					5 ł	ours			
	Bioinfo	ormatics in the Pharmaceutical Industry								
Structure-Base	ed Ration	al Drug Design and discovery – Chemoinformatics								
Module:8	Module:8 Contemporary Issues 2 hours									
<u> </u>		* *								
		Total Lasting house				201	00080			
		Total Lecture nours:	1			30 I	IOULS			

Text Book(s)

Text Book(s)									
1.	 Teresa K. Attwood, David J. Parry-Smith (2015) Introduction to bioinformatics, PearsonEducation. Hodgman Andrew, David R Westhead (2014) Bioinformatics, Taylor And Francis. 								
Reference Books									
1	Baxevanis AD, Francis Ouellellette BF (2014) Bioinformatics - a Practical Guide to the Analysis of Genes and Proteins Wiley India Pvt Ltd.								
2.	Mount D (2014) Bioinformatics: Sequence	and Genome Analysis	, Cold Spring	g HarborLaboratory Press, New York.					
Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final assessment test.									
Ree	Recommended by Board of Studies 27-07-2022								
Ap	proved by Academic Council	No. 67	Date	08-08-2022					

~	-		~			-	1 T	-	-
Cour	rse code	Course Title						P	C
MBI	T504P	<u> </u>	Computational Biolog	y Lab		0	0	2	1
Pre-r	equisite	NIL			Syllabu	s vers	sion		
						1.0)		
Cours	se Objectives:								
	1. Analyze, interpre	ete and predict macromol	ecular structures and s	sequences					
Expec	cted Course Outco	ome:							
	1. Perform in silico	analysis of nucleic acids	and compare various	sequence ali	gnment algorith	ım.			
	2. Analyze protein	sequence and prediction a	and analysis of proteir	n structures u	using bioinformat	ics to	ols		
	Indicative	Experiments							
1.	Nucleotide seque	ence from nucleic acid col	llaboratory resources						
2.	Protein sequence from Universal protein consortium								
3.	Protein structure from research collaboratory for structural bioinformatics								
4.	Access of second	lary biological data							
5.	Pairwise alignme	ent using dot plot algorith	m						
6.	Pairwise alignme	ent using dynamic program	mming						
7.	Heuristic Sequen	ce Alignment							
8.	Multiple sequence	e alignment							
9.	Construction of p	hylogentic tree							
10.	Gene prediction a	analysis							
11.	Prediction of seco	ondary structure of protei	in						
12.	Protein structure	analysis							
				Tatal I	aboratory Hours			30	hours
Mode	of assessment. Co	ntinuous assessment FA ^r	Γ and Oral examinatio	n					
Refer	ence Book: Prepare	d protocols and reference	e materials collections						
Recor	nmended by Board	of Studies	27.07.2022						
Appro	Approved by Academic Council No. 67 Date 08-08-2022								

					-				
Course	e code		Course Title	L	Т	P	С		
MBIT	505L		Genetic Engineering	3	0	0	3		
Pre-re	quisite		Nil		Sylla	bus v	rersion		
					1.	1			
Course	e Objec	tives:							
1.	The st	udents w	ill understand the components required for gene manipulation						
2.	The st	udents w	ill understand transformation of a genetic material at molecular and cellul	ar levels, a	and				
3.	The st	udents w	ill understand the methods of change of a genetic material and construction	on of trans	gene	orgar	iisms		
	with th	ne given	properties.						
		-							
Expect	ted Cou	rse Out	come:						
The stu	ident wi	II be able	e to						
1.	Constr	uct the r	ecombinant vector and develop genetically modified organisms.						
2.	Outlin	e the pro	s and cons of GMOs,						
3.	Make	use of g	ene cloning principles,						
4.	Utilize	tool enz	cymes for commercialization,						
5.	Demos	e mappin	g genome or pDNA,						
0.	Demo	DNIA	e methods to transfer foreign genes						
Dolum			nounying Enzymes	kara hom	onali	<u> </u>	toiling		
rovorse	transes, I	intases, e	hosphatase, polynucleotide kinase, RecA, zinc finger nucleoses	kers, nom	opory	mer	tannig,		
leverse		ipiase, pi	nospitatase, porynucleotide kinase, RecA, Zine finger nucleases.						
Modul	la.?	Vootor				5	hours		
Plasmi	$\frac{10.2}{d}$	vector	s fors VAC BAC M13 vector Plant animal and veast cloning vectors, vec	tors for c	hloro	J nlacto	nouis		
1 1451111	u anu pi	lage veel	ors, TAC, DAC, WITS vector, Trant, annuar and yeast cloning vectors, vec		moro	plasts			
Modul	e•3	Expres	ssion vectors and systems	Ī		5	hours		
His-tac	r GST-	tag. MB	P-tag: Intein-based vectors Expression of foreign proteins in E coli B	L Bacillus Y	'east	Inse	ct cells		
and Ma	ammalia	in cells.	t ug, mem bused vectors. Expression of foreign proteins in E. com, E	actitus, 1	cust,	mbev	et cents		
und Ivit	ammane								
Modul	le:4	Labelli	ing of DNA and detection techniques			6	hours		
Nick	translati	on. Rai	ndom priming. Radioactive and non-radioactive probes. Southern	hvbridiz	zation	$\overline{\mathbf{N}}$	orthern		
hybrid	ization,	Western	blotting. cDNA and genomic DNA library construction and screening	. Sequenc	ing (NGS	, RNA		
Seq).	,			1	0		·		
1/									
Modul	le:5	Report	ter genes and PCR			6	hours		
D.1.			f CEP. CAT lociformer 1.0 selected days DCP. Disciple and a		(1.4		
Role a	nd mec	nanism (of GFP, CAT, luciferases and p-galaciosidases. PCR – Principle and ap I detection formation any irranmental and industrial anniactions). Different	prications	s (gei	$\frac{10}{2}$ Ba	nation,		
DCD (S	i diagno	stics and	detection, forensics, environmental and industrial applications). Difference	it types of	PCF	t. Rea	ai-time		
PCK (2	SIDKC	freen ass	ay, Taqinan Probes, Molecular beacons).						
Modul	0.6	Conol	Fronsformation	1		Q	hours		
Modul		Gene		<u> </u>		0	iours		
Metho Gene s	dologies silencing	s in plan r techni a	ts, animals and microbes. Advanced cloning methods: multi-gene cloues: Principle and application of gene silencing siRNA technology. Mic	oning, ass ro RNA· (sembl Gene	y clo knoc	ning. kouts		
and Ge	ene Thei	apy.		,					
L									
Modu	le:7	Applic	ation of Genetic Engineering:			8	hours		
In agri	culture,	human	medicine, environment, industrial production of recombinant proteins,	food and	d pha	ırmac	eutical		
industr	industry. Biosafety guidelines for GMOs.								

Mod	lule:8	Contemporary issues:				2 hours			
		T	otal Lecture h	nours:	45 hours				
Text	t Book(s)								
1.	Primrose, S.B. and Twyman, R.M., 2012. Principles of Gene Manipulation and Genomics. 8th Edition, Blackwell								
	Publishing Co. UK								
2.	T. A. Bro	own, 2016 Gene Cloning and DNA analys	is: An introduc	ction. 7	th Edition, John V	Viley and Sons Ltd. UK			
Refe	erence Boo	oks							
1.	Dominic	W.S. and Wong, 2015. The ABCs of Gen	e Cloning, 2 nd	Editior	n, Springer Intern	ational, The Netherlands.			
2.	Christopl	ner Howe, 2015. Gene Cloning And Mani	pulation, 2nd l	Edition,	, Cambridge Univ	versity Press, UK			
3.	Frank Ke	mpken and Christian Jung, 2010. Genetic	Modification	of Plan	ts, Springer Inter	national, The Netherlands.			
Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final assessment test									
Reco	ommended	by Board of Studies	27-07-2022						
App	roved by A	cademic Council	No. 67	Date	08-08-202	2			

Cours	e code	C	Course Title				L	Т	Р	С
MBIT	505P	Genetic	Engineering	z Lab			0	0	4	2
Pre-re	quisite	Nil	0 0	,			Syl	labu	s ver	sion
	•							1.0		
Cours	e Objectives				·					
1.	Develop skills	pertaining to gene identification, ma	anipulation, a	nd enginee	ering techniques.					
Expec	ted Course Out	comes								
1.	Demonstrate is	olation the recombinant vector and	develop gene	tically mo	dified organisms					
2.	Utilize molecu	lar extraction and manipulation tech	nniques.							
Indica	Indicative Experiments									
1.	Isolation of a gene from different source, cloning, screening, expression of the recombinant protein									
2.	RNA extraction	n / DNA extraction								
3.	cDNA synthesi	s and preparation of vector								
4.	PCR amplificat	tion of the gene of interest								
5.	Cloning and pr	eparation of competent cell								
6.	Transformation	of the cloned product								
7.	Screening to it	lentify recombinant clones - PCR								
8.	Isolation of the	plasmid DNA from the recombinant	nt clone							
9.	Confirmation of	f positive clones by restriction dige	stion							
10.	Recombinant P	rotein expression								
11.	Real time PCR									
	Total Laboratory Hours 60									
Mode of assessment: Continuous assessment, FAT, Oral examination										
Recom	mended by Boar	rd of Studies	27.07.2022							
Approv	Approved by Academic Council No. 67 Date 08-08-2022									

Course Code	Course Title		L	Т	Р	С		
MBIT506L	Immunotechnology		3	0	0	3		
Pre-requisite	Nil	Sylla	bus v	ersio	n			
				1.0				
Course Objectives								
1. To acquire kn	owledge in immunology and immunotechnology							
2. To understand	a concepts of immunology							
	e concepts in better tragnosis of tiseases and then probable treatment							
Course Outcome								
The student will be ab	le to							
1. Demonstrate t	he structure and functions of immune systems							
2. Formulate and	execute projects in immunology							
3. Make use of c	ellular activity in defining immune system							
4. Translate the 1	mmune mechanisms in determining infection and immunological disorder	S						
5. Develop diffe	rent therapeutic techniques and applications							
	tent incrapeute techniques and appreations							
Module:1 Imm	ine system overview				6 ł	ours		
Innate and adaptive i	mmunity, Haematopoiesis, haematopoietic growth factors and regulation	n. Cell	ls and	l org	ans c	of the		
immune system. Stem	cells and its clinical uses.			-				
Module:2 Antig	Module:2Antigens and MHC6 hours							
Antigens, structure of	antigen and its different types. Antibody structure and types. Antigen p	processi	ng ar	nd pr	esent	ation,		
mechanism of antigen	recognition, MHC organization – Class I, II and III and MHC restriction.							
Module:3 Biolo	ay of T and B lymphocytes				61	ours		
T and B lymphocyte	s. T helper cells . Cytotoxic T cells. Importance of co-stimulatory	moleci	iles ir	n B a	and T	cell		
activation.						•••		
Module:4 Con	plement and Immunological disorders				7 ł	iours		
Complement system,	pathways. Cytokines, Autoimmunity and autoimmune disorders,	hypers	ensiti	vity	reac	tions,		
transplantation and t	umor Immunology, immunotherapy for tumors and auto-immune di	sorders	, imi	nuno	defic	iency		
diseases.								
Module:5 Prove	entive Immunology				61	Inne		
Vaccines – active and	passive immunication DNA and plant based vaccines AIDS vaccine reco	mbinar	nt ant	igen :	as vac	cine		
				8				
Module:6 Imm	ino-Diagnosis				<u>6</u> ł	iours		
ELISA, Immunoelectrop	horesis, Immunoblotting, immunohistochemistry, and munofluorescence.							
Module:7 Imm	ino-technology	1.1.		1.	<u>6 ł</u>	ours		
Stem cell transplantati	on technology, Gene knock out animal models, Monoclonal antibodies an	d their	use 11	n diag	gnosis	.		
Module:8 Cont	amporary issues) 1	Ourc		
	Inpot at y 155005				<u> 4</u> I	10015		

]	Fotal Lectur	e hours:	45 hours				
Textbook(s)									
1.	Janis Kuby (2016), Immunology, 7 th edition. By Owen, Punt and Stranford Textbook. W.Hfreeman and company.								
Reference Books									
1.	Tizard (2015), Immunology, 2 nd edition. Saur	ders College publ	ishing compa	any.					
2.	Sites(2016), Medical immunology, 10th editio	n , McGraw Hill, i	nternational	Ltd.					
Mode	of Evaluation: Continuous Assessment Test, D	igital Assignment	, Quiz and Fi	nal Asses	sment Test				
Recon	Recommended by Board of Studies 27-07-2022								
Appro	Approved by Academic CouncilNo. 67Date08-08-2022								

MBIT601L Industrial Biotechnology 3 0 0 Pre-requisite Nil Syllabus version I.0 Course Objectives 1. To apprehend the methods of screening significant microbes from the natural environment for comme application	3						
Pre-requisite Nil Syllabus version Course Objectives 1.0 1. To apprehend the methods of screening significant microbes from the natural environment for comme application							
Course Objectives 1.0 1. To apprehend the methods of screening significant microbes from the natural environment for comme application	· 1						
Course Objectives 1. To apprehend the methods of screening significant microbes from the natural environment for comme application	• 1						
1. To apprehend the methods of screening significant microbes from the natural environment for comme application	• 1						
application	rcial						
2. To learn the different methods of strain improvement for the overproduction of bioproducts	لمسم						
5. To comprehend the industrial method of fermentation for various primary and secondary metabolities	and						
biocatarysts							
Course Outcome							
The student will be able to							
1. Demonstrate knowledge and critical awareness of current issues arising in the practice of indus	strial						
biotechnology and the role of industrial biotechnology in the global bio- economy							
2. Select industrially important microbes from environment							
3. Explain the overall upstream and downstream process involved in the industries for the production of metabo	lites						
4. Analyze potential business opportunities in fermentation-based biotechnology							
5. Utilize methods to improve the production of bioproducts							
6. Elaborate the biological and technological principles which govern actual and potential bio-business							
Module:1 Overview and milestone 5 h	ours						
Fermentation process and its development, case study of Penicillin as a milestone inbioprocess development, Case-s	tudy						
involving an engineered organism.	5						
Module:2Production Strain for Industrial Fermentations6 h	ours						
Techniques for isolation and screening of modeling, microorganisms for industrial scaleproduction; strain improvement	and						
selection.							
Madular2 Drimony Matchalitag 7 h							
Production of commercially important primary metabolites like organic acids, amino acids and lookal	Jurs						
Troduction of commercially important primary metabolites like organic acids, animo acids andaconor.							
Module:4 Secondary Metabolites 7 h	ours						
Production of commercially important secondary metabolites like vitamin B12, steroids and antibiotics.							
Module:5Mass production of enzymes6 h	ours						
Important enzymes and their bulk production relevant to leather, textile, baking, brewing, detergent and food industry.							
Module:6Biospeciality products6 hours							
	Production of biopolymers, biopesticides, biofertilizers andbiopreservatives.						
Production of biopolymers, biopesticides, biofertilizers andbiopreservatives.							
Production of biopolymers, biopesticides, biofertilizers andbiopreservatives.							
Production of biopolymers, biopesticides, biofertilizers andbiopreservatives. Module:7 Immobilization 6 here	ours						

Modul	e:8	Contemporary issues				2 hours		
			1	Fotal Lectur	e hours: 4	45 hours		
Textbook(s)								
1.	Stanbur	y, P.F., Whitaker, A. and Hall, S.J., 20	13. Principles of f	ermentation	echnology.Elsevier.			
2.	Prescott	, S.C. and Dunn, C.G., 1949. Industria	l microbiology					
3.	Crueger	, A., Crueger. A. and Brock. T., 2005.	Biotechnology: A	textbook of	Industrialmicrobiology, Sinauer	r		
	Associa	tes Inc						
Refere	ence Boo	ks						
1.	Shuler,	M.L. and Kargi, F., 2002. Bioprocess	Engineering: Basic	c Concepts. F	rentice HallInternational Series	5.		
2.	Ratledg	e, C. and Kristiansen, B. eds., 2006. B	asic biotechnolog	y. Cambridge	UniversityPress.			
Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final assessment test								
Recom	Recommended by Board of Studies 27-07-2022							
Approv	ved by A	cademic Council	No. 67	Date	08-08-2022			

Course Code	Course Title		T	Т	р	С		
MBIT602L	Nanohiotechnology		3	0	0	3		
Pre-requisite	Nil	Sylla	hus v	ersio	n	J		
Tre requisite		- Oymu		1.0				
Course Object	íves			200				
1. Basic theoretical and practical knowledge related to modern materials chemistry, materials physics, energy								
physics	and nanotechnology					0.		
2. To intro	duce students to inter- and multi-disciplinary science and engineering							
3. Get exp	osed to potential applications of nanobiotechnology in sensing and biomed	dical app	plicati	ons				
Course Outcon	ne							
The student wil	be able to							
1. Discov	er basic concepts and theories of the subject		• . •					
2. Relate	ind explain the importance of reduction in materials dimensionality, and its rela	tionship	with	mate	rials			
2 Domon	es	20						
5. Demon	strate applications of analytical techniques in examining hanostructures/ partici-	28						
4. Demon	e journal papers on paposcience/papotechnology	5115						
6 Formul	ate strategies for risk assessment of nanostructures/ narticles in various applicat	ions						
0. 1011101	te strategies for fisk assessment of nanostractares/ particles in various apprear	10115						
Module:1	Properties of the "Nano" world				6 h	ours		
Origin and con	cepts, interfacial phenomenon, Surface & quantum effects, chemical and bio	ogical p	rincir	les in	nvolv	ed in		
nanomaterial pe	rformance.	0 1	1					
•								
Module:2	Nanoscale fabrication engineering				6 h	ours		
Approaches, na	nolithography, self assembly, physical, chemical and biological methods,	heiradv	antag	es and	1			
drawbacks, bio	nimetic synthesis technologies based on Bacterial complex-S layer protein, Mic	robial a	lginat	es, ba	acteri	al		
spores, Magnet	osomes.							
Module:3	Nanomaterial properties:				6 h	ours		
Structure prop	rty relationships with respect to mechanical, electrical, optical, electrocl	nemical,	chem	ical	sensi	ng &		
magnetic, rheol	ogical and thermodynamic properties.							
Madulard	Nonometrale and meninulation				<u>(</u>]			
Relevance of P	reha microscopics STM AEM SEM TEM Spectroscopic and X ray diffrag	tionanal	voie		0 1	ours		
Relevance of F	tobe microscopies, STM, AFM, SEM, TEM. Specifoscopic and X ray diffrac	uonanai	y 515					
Module:5	Biologically important nanomaterials: Structures properties and				6 h	ours		
Wiodule.5	biological applications of				01	Jours		
2D and 3D ma	terials including CNT. Fullerenes, pure metal and core shell nanoparticles of	uantum	dots.	lipos	somes	and		
dendrimers.	ionais meraamg erri, ranerenes, pare mear and core shen nanoparteres, q	uuntum	uo <i>u</i> 5,	npo	,01110	, and		
Module:6	Nanotoxicology				6 h	ours		
Routes of expo	sure and limits of nanomaterials, Nanopathology project and its relevance, the	rinterac	tions	at cel	lular	level		
and cell response	es, HARN.							
Module:7	Nanobiotechnology in health care, medicine				7 h	ours		
	and recent advances							
Devices, instru	ments and materials used in doctor patient interface, medical research	labs, ho	ospita	env	ironm	ents,		

pharmaceutical industry. The present state of art and future potential, business contexts and regulatory constraints. Nanobots, nanosensors and nanomedicine.									
Module:8Contemporary issues2 hours									
	Total Lecture hours: 45 hours								
Textb	ook(s)								
1.	Ramsde	n J, 2011, Essentials of Nanotechnolog	gy, Ramsden and	Ventus Publi	shing ApS.				
Refere	ence Boo	ks							
1.	Ramsde	n J, 2011, Nanotechnology: An introd	uction, William A	andrew publis	sher. Niemey	yer CM			
2.	Mirkin	CA 2005 Nanobiotechnology I: Conce	epts, applications	andperspectiv	ves, eds., Wi	ley-VCH Verlag	GmbH &		
	Co., Kg	aA, Weiheim.							
3.	Niemey	er CM, Mirkin CA 2007 Nanobio	technology II: N	More concep	ts, applicati	ions and perspec	ctives, eds.		
	Wiley-V	/CH Verlag GmbH & Co., KgaA, Wei	iheim.	-					
Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final assessment test									
Recommended by Board of Studies 27-07-2022									
Appro	Approved by Academic Council No. 67 Date 08-08-2022								
. .	ž								

<u> </u>					-	~
Course Code	Course Title		L	T	P	C
MBIT603L	Protein Engineering and Technology		3	0	0	3
Pre-requisite	Nil	Sylla	bus v	ersio	n	
		<u> </u>		1.0		
Course Objectives						
1. To explain	advanced methods and strategies used in proteins and					
2. The studen	t will be equipped to engineer proteins based on nanotechnology principles					
3. The studen	t will be equipped to engineer the proteins by various methods.					
Course Outcome						
The student will be	able to					
1. Understand	and explain differences between rational design and directed evolution					
2. Apply prote	ein engineering knowledge for industrial applications					
3. Make use of	f various beneficial proteins that are industrially and clinically important.					
4. Understand	l various economically important proteins					
5. Understand	various industrially important enzymes					
6. Modify pro	teins by various methods					
Module:1 Fa	ctors affecting stability of proteins				6 h	ours
Intrinsic and extri	nsic factors contributing to stability; effect of chaotropes, kosmotropes	and co	ompat	tible	solut	es in
stabilising proteins	; role of water in stabilising proteins; analytical methods to determine th	e struc	cture a	and s	tabili	ty of
proteins.						
Module:2 Pr	otein Flding				6 h	ours
In vivo and in vit	ro folding: chaperones in folding: co-expression of proteins for proper f	olding:	: prote	in ag	grega	ation:
folding related dise	ases.		, r	2	00-	,
Module:3 M	itagenesis Types				5 h	ours
Rational vs irration	al: amino acid scanning and multi-codon scanning mutagenesis.					
Module:4 Ev	olution of Enzymes				6 h	ours
In vitro evolution:	expanding the codon size: residue specific incorporation of non-natural ami	noacid	s.		01	
Module:5 Im	mobilisation:				6 h	ours
Production of amir	o acids antibiotics biosensor biofuel cell design and wired enzymes enzymes	nes in 1	revers	se mi	croar	rav
1 roddetion of unin	o uclus, unitototics, otosensor, otoruer een design und whed enzymes,enzyr	nes mi		, ini	croui	iuj.
Nodule:6 Pr	otein design- Case study	1		<u> </u>	<u>6 h</u>	ours
Insulin structure;	need for insulin engineering; prolonged acting insulin; fast acting insuli	n;gluc	ose se	ensiti	ve ins	sulin;
insulin mimetics; E	ngineering growth factors for regenerative medicine applications.					
Madala 7 Na					01	
Niodule: / Na	no(bio)technology based on Engineering proteins	· . ,		1	<u>8 n</u>	
Spider silk; antifre	eze proteins; adnesive proteins; viral ion channels, Use of protein engine	ering to	o mee	et the	indu	strial
demands: detergent	industry, 100d industry, leather industry, pharmaceuticalindustry.					
Madulato						
wiouule:8 Co	intemporary issues				<i>2</i> n	ours

			Total Lectu	ire hours:	45 hours				
Textb	Textbook(s)								
1.	1. Paulo Almeida, Proteins: Concepts in Biochemistry (2016) First Edition, Garland SciencePublishers, USA.								
Refer	ence Books								
1.	David Whitford, 2013, Proteins – Structure a	nd Function, John	Wiley and	Sons Ltd.,P	ravin Kaumaya, 2012, Protein				
	Engineering, InTech Publishers.								
Mode	of Evaluation : Continuous assessment test, we	ritten assignment,	Quiz and Fi	inal assessn	nent test				
Recommended by Board of Studies 27-07-2022									
Appro	Approved by Academic Council No. 67 Date 08-08-2022								

Correct Code				T	т	п	<u> </u>	
Course Code		Course Inte Des gramming For Dislogists		L 2	1	P 0		
MBI1604L		Programming For Biologists	C-llab	3	U	<u> </u>	3	
Pre-requisite			Synab	us v	<u>ersio</u>	<u>n</u>		
Course Object	ivos				1.0			
1 Learn a	about th	e computer architecture, operating systems and shell scripts						
2 Unders	tand the	scope of PFRL and Python programming for biological tasks						
3 Acquir	e knowl	edge on digital technologies for medical and biological applications						
Course Outcou	me							
The student wil	ll be abl	e to						
1. Compil	le the ha	ardware's for digital and analog computers						
2. Utilize	Linux f	for biological data acquisition, submission and analysis						
3. Develo	p shell	scripts for biological sequence alignment and comparison						
4. Design	program	ms based on PERL for biological string manipulation						
5. Utilize	PERL f	for complex biological data analysis						
6. Work of	on Pyth	on environment using biological data and design digital tools for in-	dustrial	use				
	~							
Module:1	Comp	outer Architecture and Elements:	<u> </u>		6.6	<u>6 h</u>	ours	
Evolution of C	Compute	er Technology, Types of Computers, Digital and Analog computers,	Generati	ons	of C	Compi	iters,	
Computer Lang	guages a	ind operating systems.						
Modulo:2	Univ					61	ours	
Learning the ex	CIIIX.	the Universities the terminal University commands print the working direct	ory char		liroct	orias	man	
command mak	e a new	, the only free, the terminal, only commands- print the working the d	ory,citat	ige t	meet	JHCS,	man	
		directory. The die editor – die hand editor.						
Module:3	Shell	Scripting:				6 h	ours	
The power of s	shell sc	ripts - sticking to the script, hello.sh, \$PATH, permission - chmod, G	rep – pir	be, 1	neads	and	tails,	
counting with g	grep.		1 11	,				
Module:4	Perl b	asics:				6 h	iours	
Programming e	environi	nent, Scalar variables, Operator Precedence, Conditional statements, Str	ingcom	paris	on op	perato	ors in	
Perl, Matching	Operate	Drs.						
Module:5	Progr	amming in Perl:			1	<u>6 h</u>	ours	
Arrays - comm	non arra	ay functions array indexes, loops - for loop, foreach loop, while loop, o	do loop,	Has	hes -	keys	s and	
values.								
	1							
Module:6 Python basics: 7						7 h	ours	
Introduction an	d envir	onment, Running Python programs, Storing strings in variables, Toolsfor	manipul	ating	g strii	ıgs –		
Concatenation,	string l	ength and changing case.						
Ivioaule: /	Fytho	n programming:	nto DNI 4	C	m=1-	<u>0 h</u>	inge	
strand of DNA	Comm	at sequence analysis: Counting DNA nucleotides, Transcribing DNA 1 uting GC content and calculating protein mass	morina	, CC	mpie	ment	ing a	
sually of DINA,	, compt	anng OC content and calculating protein mass.						
Modulo.9	Conto	morary issues				<u></u>	ours	
Moune.o	Conte	11por ar y 1550C5				4 I	10013	

	Total Lecture hours:45 hours										
Textbook(s)											
1.	Campbell, Gries, Montojo, and Wilson. 2010	"Practical Progra	mming: An	Introducti	on toComputer Science Using						
	Python" Published by Pragmatic Bookshelf.	-	-								
Refer	ence Books										
1.	Bal, Harshawardhan P. 2013, PERL progra	mming for Bioin	formatics. T	ata McGr	aw-HillEducation.						
2.	Blum, Richard, 2010. Linux command line an	nd shell scripting b	bible. Vol. 48	31. John V	Viley &Sons.						
Mode	of Evaluation : Continuous assessment test, wr	itten assignment, (Quiz and Fina	al assessm	ient test						
Recon	Recommended by Board of Studies 27-07-2022										
Appro	ved by Academic Council	No. 67	Date	08-08-20	022						

a a l			m		0
Course Code	<u>Course litle</u>			P	<u>C</u>
MBIT605L	Food Process Technology	3	0	0	3
Pre-requisite		Syllabus	versi	n	
<u> </u>			1.0		
Course Objectiv	res				
1. To under	stand the conventional and non-conventional methods of food processing.				
2. To under	stand the basics in food packaging.				
3. To comp	rehend the various steps involved in food product development.				
~ ~ ~					
Course Outcom	e				
The student will	be able to				
1. Make use	of the knowledge on Biotechnology to the science of food.				
2. Demonst	rate the scope of food processing				
3. Explain t	he principles involved in food processing				
4. Make use	of the knowledge for understanding preservation of food				
5. Create or	design a food product with innovative technologies				
6. Apply for	c employment in food processing industries				
	Г				
Module:1	introduction			<u>5 k</u>	ours
Potentiality, scop	e and relevance of Food process industry; Principles and salient features of foc	odprocessin	g meth	ods.	
Module:2	Thermal Processing			7 ł	nours
Blanching, paste	surization, sterilization (canning and bottling), evaporation, extrusion, de	hydration a	nd spi	ay dı	ying,
dielectric and inf	rared heating.				
Module:3	Non- thermal processing			6 ł	nours
Chilling or refrig	eration, freezing, freeze drying, minimal processing of foods; vacuum cooling	g offoods; a	nd ferr	nenta	ion.
Module:4	Emerging technologies in food processing			7 ł	nours
High pressure pr	ocessing of foods, enzyme assisted food processing, PEF technology, foodi	rradiation-	orincip	le, pro	ocess.
Module:5	Packaging for processed food products			6 ł	ours
Scope of packag	ing industry; traditional packaging; modern packaging materials- Case stud	1y –Nano p	ackagi	ng.	
Module:6	Food Product Development			51	nours
Overview of for	od product development- concept, design, sensory testing; shelf life assess	sment for f	ood pr	oduct	s and
Commercialization	on of food products.		1		
Module:7	Food Quality and Safety Assurance			7 ł	nours
Key concepts in	quality control; National (FSSAI) and International quality programs (HAC	CCP,ISO22	000); (Case S	tudy-
Safety aspects of	food nano-materials.	,	,, -	-	2
Module:8	Contemporary issues			2 ł	ours

Total Lecture hours: 45 hours										
Textbook(s)										
1.	P.J. Fellows. 2016. Food Processing Technology	ogy. 4th Edition. W	oodhead Pub	olishing. P.1152.						
Refer	ence Books									
1.	Theodoros Varzakas, Constantina Tzia(Eds.)	2015. Handbook	of Food Proc	essing: Food Pr	reservation.p.706.CRC					
	Press.									
2.	Contantinos A. Georgiou (Editor), Georgios I	P. Danezis (Editor). 2017. Foo	d Authentication:	Management, Analysis					
	and Regulation. Wiley-Blackwell. 568 pages.									
Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final assessment test										
Recommended by Board of Studies 27-07-2022										
Appro	Approved by Academic Council No. 67 Date 08-08-2022									

Course Code		Course Title		Т	т	р	С
MBIT606I		Natural Product Technology		3	0	1	3
Pre-requisite		Nil	Sylla	hus v	ersio	n	5
			Jina	~ 40 1	1.0	**	
Course Obiec	tives		L				
1. Expla	in the in	portance of natural products					
2. Learn	the che	mical and biological synthesis of metabolites					
3. Demo	onstrate of	drug discovery and development					
		- · · ·					
Course Outco	me						
The student wi	ill be abl	e to					
1. Demo	nstrate l	key concepts related to classification, collection and processing of national	ural pro	oduct	s fror	n dif	erent
organi	sms						
2. Devel	op the de	etailed knowledge about chemistry of medicinal compounds of natural					
origin							
3. Relate	the proc	cessing, extraction and purification of different kinds of natural products					
4. Make	use of the	e recent developments in the subject					
5. Elabor	the sust	scale up process singhly usage of his resources and its natural products for the welfare of r	nonkin	4			
0. Kelale	the sust	aniable usage of bio resources and its natural products for the wenare of r	панкні	u			
Module 1	Natur	al product and their Importance				61	ours
Classification	of natu	ral products Collection and processing methods of extraction – Purif	ication	and	conc	entrat	ion -
Identification	or natu	an products. Concetton and processing methods of extraction – I unit	ication	anu	cone	cinia	- 11011 -
Identification.							
Module:2	Secon	dary Metabolites I				61	ours
Chemistry, bi	ological	synthesis and types of Terpenoids. Sterols, glucosides, phenolics	s and	Alka	oids.	vita	mins.
Biosynthetic p	athway	and fatty acid metabolism, shikimic acid pathway			,		
	2						
Module:3	Secon	dary Metabolites II				6 ł	ours
Essential oils,	volatile	oil, Poisonous plants sources and toxic manifestations of poisonous plants	5.				
Module:4	Pigme	ents and Natural Dyes				6 ł	ours
History, impo	rtance,	chemistry and types, dye extraction and fabric dye process, Applica	ation o	f Tec	hnolo	ogy fo	or the
production of	natural c	lyes and colourants.					
Module:5	Herba	al Products				<u>61</u>	ours
Medicinal plan	nt and h	herbal practice in India – Introduction – History - Herbal Practice - S	tudy o	f diffe	erent	tradi	ional
medicine – Co	nservatı	on sustainable utilization.					
Module:6	Marii	ne Natural Products				5 ł	ours
Introduction, s	ources,	examples, antibiotics, bioactivity. Isolation methods, processing methods	– Appli	icatio	ns.		
Module:7	Micro	bial Natural Products				8 ł	ours
Sources, extra	ction, bi	ological activity and mass cultivation - bioreactor, applications - food, a	gricult	ure, p	harm	aceut	icals,
cosmetics ind	ustry. R	ecent trends and research in natural products technology: Biotechnology	ogical	meth	ods t	o imj	prove
production, ca	se studie	8.					
Module:8	Conte	emporary issues				2 ł	<u>ours</u>

Γ

]	Total Lecture	e hours:	45 hours				
Textb	Textbook(s)								
1.	Talapatra S K and Talapatra B. (2015) Chemi	stry of Natural Pro	ducts. Spring	ger Public	ations.				
2.	Kinghorn A D, Falk Hains (ed.) (2016) Progr	ess in the chemisti	y of organic	natural pr	oducts, Springer Publications.				
3.	Paul M Dewick (2011) Medicinal Natural products: A biosynthetic approach, 3nd Edition, John wiley and sons								
	Ltd.								
Refer	ence Books								
1.	Atta Ur Rahman 2017. Studies in Natural Pro	ducts Chemistry V	ol.25 Elsevie	er Publica	tions.				
2.	Herwig O Gutzeit, Jutta Ludwig-Müller (2	2014) Plant Natu	ral Products	: Synthes	sis, Biological Functions and				
	Practical applications, Wiley publishers				-				
3.	Ilkay Ergogan orhan, (2012) Biotechnologica	l production of pla	nt secondary	metaboli	tes.Bentham e books				
Mode	Mode of Evaluation: Continuous assessment test, written assignment, Quiz and Final assessment test								
Recon	nmended by Board of Studies	27-07-2022							
Appro	wed by Academic Council	No. 67	Approved by Academic Council No. 67 Date 08-08-2022						

Come Code	C T:41-	т	T	п	C				
Course Code	Course little		1	P					
MBI160/L	Plant Biotechnology		<u> </u>	U	3				
Pre-requisite		Syllabus	versio	n					
			1.0						
Course Objectives			1.	1					
I. To provide an	1. To provide an understanding of plant physiology, cell to cell communication and plant genomerelated aspects								
2. To provide knowledge about plant tissue culture techniques and crop improvement									
3. To impart kn	owledge on different bio technological techniques to alter the plants su	inted tom	odern	agricu	lture				
and industrial	application								
Course Outcome									
The student will be ab	le to								
I. Demonstrate	blant tissue culture techniques for the enhancement of secondary metaboli	itesprodu	ction.						
2. Explain the va	rious components involved in developing transgenic plants								
3. Illustrate prod	uction of new bio-molecules in plant using transgenic technology								
4. Compare and	apply molecular marker technology in plant breeding								
5. Demonstrate t	he importance of biosafety in developing transgenic plant								
6. Improve crop	plants through gene transfer methods								
	-								
Module:1 Tissu	e culture			6 h	ours				
Totipotency, equipote	ncy, pluripotency and plasticity. Explants. Cultures - single cell, callus, ce	ell- susper	ision,	protop	plast,				
leaf, root, shoot tip an	d meristems, embryo, anther, microspore and ovary culture. Somatic embr	ryogenesi	s, orga	anoge	nesis				
and hardening. Indust	rial applications of tissue culture.								
Module:2 Desig	ning of a plant based expression cassette			6 h	ours				
Features of a plant tra	nsformation vector. Constitutive, inducible and tissue specific promoters, t	terminato	s and	regula	atory				
elements; Selectable	markers and reporter genes; Modification of an heterologous gene (anim	mals, mic	robes) for	plant				
transformation.									
Module:3 Plant	transformation techniques			<u>6 h</u>	ours				
Nuclear and plastid t	ransformation; Agrobacterium mediated and direct gene transfer method	ls.Binary	vectors	s, Gate	eway				
vectors and RNAi vec	tors.								
Module:4 Case	studies for transgenics			6 h	ours				
Herbicide tolerance [Round Up Ready], Bt crops, Golden Rice, Transgenic crops designed	fortoleran	ce to a	abiotic	c and				
biotic stress.									
Module:5 Mole	cular pharming			6 h	ours				
Transgeni systems to	derive carbohydrates, plantibodies edible vaccines enzymes, biopharmaceut	ticals, bio	plastic	es, bic	ofuel,				
silk and elastin. Ger	e to functional protein processing steps in plants; Elicited cell cultures	s for max	imizin	g yie	ld of				
metabolites									
Module:6 Mark	er assisted breeding			6 h	ours				
Phenotypic, enzyme	and molecular markers, co-dominant and dominant markers, Basics-li	inkage an	alysis	and	QTL				
mapping									
Module:7 IPR i	ssues			7 h	ours				
Global status and bio	-safety concerns for production and release of transgenic plants. Plant b	reeder's 1	ights,	copyr	right,				

trade ma	ark and	patents.						
Module	e:8	Contemporary issues				2 hours		
					·			
			r	Fotal Lectur	e hours: 4	15 hours		
Textboo	ok(s)				· · · · ·			
1. A	Adrian S	Slater, N. W. Scott and M. Fowler. 20	014. Plant Biotech	nnology: The	Genetic Manipulation of Plants,	, Second		
E	Edition,	Oxford University Press, UK.						
Referen	Reference Books							
1. F	Roberta	H. Smith. 2013. Plant Tissue Culture	Techniques and E	Experiments,	3rd Edition, Elsevier Inc., UK.			
2. E	Bahadu	, B., M.V. Rajam, L. Sahijram and	K.V. Krishnamur	thy. 2015. Pl	ant Biology andBiotechnology,	, Vol. 2,		
S	Springer	r, New Delhi.						
3. F	Richroc	h, A. S. Chopra and S. Fleischer. 2014	4. Plant Biotechno	logy, Springe	er InternationalPublishing, Switz	zerland.		
4. A	Alverz	and M. Alejandra. 2014. Plant Bio	otechnology for	Health: From	n Secondary Metabolitesto M	Iolecular		
F	Farming	s. Springer International Publishing, S	witzerland.					
5. F	Fett-Net	o, A.G. 2016. Biotechnology of Pl	ant Secondary M	letabolism. S	SpringerScience+Business Med	ia, New		
Y	York.							
Mode of	f Evalua	ation: Continuous assessment test, wri	tten assignment, (Quiz and Fina	al assessment test			
Recomm	nended	by Board of Studies	27-07-2022					
Approve	ed by A	cademic Council	No. 67	Date	08-08-2022			

Course CodeLTP								
MBIT608L	Animal Biotechnology		3 () 0	3			
Pre-requisite	Nil	Sylla	bus ver	sion				
			1	.0				
Course Objectiv	es							
1. To percer	ve the utility of in vitro modification of animal cells							
2. To apprai	se the modern advancement of animal reproductive technology							
5. 10 impro	ve the principle of conservation of farm animals and related ethics.							
Course Outcom								
The student will h	pe able to							
1 Explain t	he utility of animal cell culture techniques							
2. Apply an	imal cell culture techniques for research works							
3. Make use	of advanced animal reproductive technology							
4. Utilize ar	ad apply transgenic techniques in farm animal productions.							
5. Develop	interests in conservations of animal resources.							
6. Demonst	rate interests in reclaiming impaired animals resources and management.							
Module:1			6	hours				
r	nethods							
Eukaryotic, embryonal, and stem cell culturing techniques; Methods to introduce trans gene into cell, regulation of gene								
expression, Cell I	ine characterization, Industrial applications of animal cellculture.							
					,			
Module:2	Anipulations and applications of animal cell			0	hours			
Cell synchroniza	unure	ondarvcell	culture	MEE				
isolation Protoco	lon, cen minobilization techniques, Cryopreservation. Finnary and sec	onuarycen	culture,	IVIL:1.2				
130141011. 1 101000								
Module:3	Advanced Reproductive methods			7	hours			
Physiology of re	production, Artificial Insemination, Estrous synchronization; superovulati	ion; embryo	o transfe	er, preg	nancy			
and parturition	control; Immunological methods of control reproduction, monitoring	g reproduc	tive sta	itus, ir	n-vitro			
fertilization, sper	m and embryo sexing; pre-implantation; genetic diagnosis.							
Module:4	Jerm-line modification Procedures and Engineering the	e		6	hours			
I	progeny							
Direct manipulati	on of fertilized egg, Manipulation of early embryonic tissue in place; the	use ofemb	ryonic s	tem cel	lls and			
tissue engineering	g. Methods and applications of animal cloning.							
Madalas 7	Conserve have a low and Conserve that Madalities				1			
Animal and hum	renome based knowledge and conservation Modalities	mornhia DN	IA mort	0	nours			
man: integrating	an Genome projects, NGS and its applications, genetic initiage maps; poryl	morphic Dr	NA mari	lers; Pl	iysicai			
map, megramig	zenene mikage and physical map, DIVA sequencing.							
Module:6 (Conservation Methods and othical treatment of Animals				hours			
Animal Disease	and Extinction Molecular techniques in genetic conservation of Farm	Animale In	troducti	on to 4	animal			
ethics: Animal ri	ghts and use of animals in the advancement of medical technology. Intra	oduction to	laws a	nd regi	ilation			
regarding use of a	inimitials in research. Ethical. Legal and Social Implications.		14115 U	10 1050	<i></i>			
regarding use of animals in research. Ethical, Legal and Social Implications.								

Г

Modu	le:7	Animal models and their applie	cations in Health	n Care Syste	ms 6 hours			
Anima	al models	used in biomedical research such as	Cancer, Diabetes,	Immunology	y, cosmetics andtoxicology, Updates on			
gene t	gene targeting technology and Gene editing.							
Modu	le:8	Contemporary issues			2 hours			
			ſ	Fotal Lectur	e hours: 45 hours			
Textbook(s)								
1.	Primros	e SB, Twyman RM (2015): Princip	oles of gene man	ipulation and	d genomics, (8 th edn). Wiley-Blackwell			
	publishi	ng, Oxford UK.	C C	•	·			
Refer	ence Boo	ks						
1.	Alberts	B, Johnson A, Lewis J, Raff M, Robe	rts K, Walter P (20	014): Molecu	lar biology of the cell, Garland Science,			
	6 th edn,	New York, USA.						
2.	Bernard	R Glick, Jack J Pasternak (2010) Mo	lecular biotechnolo	ogy: principle	es and			
	applicat	ions of recombinant DNA, ASM press	s, 4 th edn, Washing	gton, DC, US	А.			
Mode	of Evaluation	ation: Continuous assessment test, wri	tten assignment, Q	Quiz and Fina	ll assessment test			
Recon	Recommended by Board of Studies 27-07-2022							
Appro	ved by A	cademic Council	No. 67	Date	08-08-2022			

Course Code			т	T	р	C
Course Code				1	P	
	Pharmaceutical Biotechnology	C-11-	3	<u> </u>	U	3
Pre-requisite		Syna	bus v	<u>ersio</u>	'n	
				1.0		
Course Objectives						
I. Outline the	basic theories of biopharmaceutics and pharmacokinetics					
2. Discuss, d	ssect, interpret and build an awareness on pharmacology and biotechnology	based p	bharm	naceu	tical	
products						
3. Evaluate a	nd apply the fundamental knowledge in biotechnology-based applications	in the p	harm	aceu	tical a	and
sectors rel	ated to drug development and use					
Course Outcome						
The student will be	able to					
I. Recall an	d relate the mechanism of action and illustrate the importance of understan	ding al	ooutA	DMI	<u>-</u> .	
2. Develop	various formulations based on biopharmaceutical analysis			1 • 11		.1
3. Demonst	rate the concepts and outline the importance of nano based drug delivery	syster	ns an	dıllu	strate	the
nuances o	Good Manufacturing Practices	a1a				
4. Explain t	ne chailenges in new drug development (including biologics) and chinical tri	ais				
5. Elaborat	e upon and assess the regulatory approval criteria for burk drugs and biologic	us bovo	0 001	idfor	mdati	ion to
0. Explain	valuate the cutting edge issues in Pharmaceutical Biotechnology	s nave	a soi	luiot	muati	.on to
citically t	valuate the cutting edge issues in Filaimaceutical Biotechnology					
Module-1 Co	aral Pharmacalagy				61	ours
Sources of drugs di	fferent dosage forms and routes of drug administration mechanism of action	n of dr	105 (omh	ined	effect
of drugs factors m	difying drug action tolerance and dependence Pharmacogenetics kinetics	- Absi	orntic	n D	istrih	ution
Metabolism and Ex	retion of drugs	1105	orput	, D	istiio	ution,
Module:2 Bio	-pharmaceutics				6 ł	iours
Rate of drug absor	otion after administration, drug concentration in blood, biological factors	in dru	g ab	sorpt	ion,	
Iodell-chem	ical factors, dosage form consideration for gastrointestinalabsor	ption, c	lrug d	listrib	oution	, site
seeking and drug eli	mination, protein - drug interactions.		C			
Module:3 For	mulative Pharmacy				6 ł	iours
Manufacturing, qua	lity control, stability testing and storage of tablets, capsules, parenter	rals, so	lutio	ns, ae	rosol	s and
ointments.						
Module:4 Go	od manufacturing practices				7 ł	iours
Organisation and p	ersonnel, responsibilities, training, hygiene. Premises: Location, design,	, plant	layou	it, co	nstru	ction,
maintenance and s	initation, environmental control, utilities and services like gas, water, m	aintena	ance	of ste	erile a	areas,
control of contamin	ation. Controls on animal house.					
Module:5 Na	nocarriers	.		-	<u>6 l</u>	iours
Nanomedicine, F	undamentals and rationale sustained/controlled/targeted drug delive	ry. Lip	osom	es, D	endri	mers,
Polymeric micelles,	Nanoparticles (Polymeric and Lipid based), Nanoemulsions.					
Module:6 Bio	logics				6 ł	iours

rDNA drugs - insulin, subunit Vaccines, Therapeutic proteins, Hormones, Immunobiologicals - Monoclonal antibodies, Interferons, Biosimilars.

Module:7 New drug development

6 hours

Concepts, pre-clinical trials, design of clinical trials, phases of clinical trials and testing of drugs in human. ICH, FDA, EMEA and Indian drug regulations **Regulatory Affairs:** Globalization of drug industry, present status and scope of pharmaceutical industry in India. WHO and NABL certification. Regulatory aspects of pharmaceutical and bulk drug manufacture, regulatory drug analysis.

Modu	le:8	Contemporary issues				2 hours		
			1	Sotal Lecture	e hours:	45 hours		
Textb	ook(s)							
1.	Loyd V	Allen, Howard C, Ansel, (2013) An	sel's Pharmaceuti	cal Dosage F	Forms and	DrugDelivery Systems,		
	Wolters Kluwer Health.							
	Satoska	r RS, Bhandarkar SD, Nirmala N Re	ge, Satoskar RR	(2008)				
2.	Pharmacology and Pharmacotherapeutics, 20 th Edition Popular Prakashan (P) Ltd.							
	Leon S	Sharge, Andrew Yu, Susanna Wu-Po	ong (2012) Applie	d				
3.	3. Biopharmaceutics & Pharmacokinetics, 6 th Edition, McGraw-Hill Education / Medical.							
Refer	ence Boo	ks						
1.	Laurenc	e Brunton, Bruce A Chabner, Bjo	rn Knollman (20	11) Goodma	an and G	ilman's the Pharmacological		
	Basis of	Therapeutics, 12 th Edition, and McGr	aw Hill Education	•				
2.	Roop K	K Khar, Vyas SP (2013) Lachman/	Liebermans: The	Theory and	l Practice	of Industrial Pharmacy, 4 th		
	Edition,	CBS.						
3.	Gregg N	N Milligan, Alan DT Barrett (2015)	Vaccinology: An	Essential G	uide, 1 st 1	Edition, Wiley-Blackwell.		
4.	Judy O	wen, Jenni Punt, Sharon Stranford	(2013) Kuby Imn	nunology, 7 th	Edition,	W. H. Freeman.		
5.	Melgard	lt M de Villiers, Pornanong Arai	mwit, Glen S	(2009) Nan	otechnolo	gy in Drug Delivery: 10		
	(Biotech	nnology:Pharmaceutical Aspects),Kwo	on Publisher:Sprin	ger				
Mode	of Evaluation	ation: Continuous assessment test, wri	tten assignment, Q	uiz and Fina	l assessme	ent test		
Recon	nmended	by Board of Studies	27-07-2022					
Appro	ved by A	cademic Council	No. 67	Date	08-08-20	22		

		Contraction in the Children in the Children is on Odd. Act, 1976)	<u> </u>	.		.	~	
Course Code		Course Title			T	P	<u>C</u>	
MBI1010L		Environmental Biotechnology	0 11 1	3	0	U	3	
Pre-requisite		NII	Syllab	ous v	ersio	n		
Course Objectiv					1.0			
1 Analyse	ves	onmental pollution and to develop suitable technologies to solve the problem	ame					
2 Underst	and the	bases for microbial metabolism of environmental contaminants	ems					
3 Apply so	cientif	ic concepts to environmental problems and their correlation with	hnolog	ricalo	once	nts		
<u> </u>	cicitui	e concepts to environmental problems and then conclution with the	20002	sicure		P ¹³		
Course Outcom	ne							
The star lend and 111	11.1							
I ne student will	be abl	e to						
1. Examine 2. Demonst	2. Demonstrate the applications of various fields including chamistry, high-pristry molecular high-gray and/or							
2. Demons	ology	in understanding and addressing the above issues as well as exploringen	vironm	iai i ienta	l resc	gy all	u/or	
new tech	nnolog	in understanding and addressing the above issues, as wen as exploringen	vironin	icina	i iese	urcee	101	
3. Outline t	the bio	logical treatment processes and development of suitable technologies						
4. Explain	the mi	crobial processes and growth requirements undelaying the activated slud	ge pro	ocess	s, niti	ificat	ion,	
denitrific	cation,	enhanced phosphorus removal, and anaerobic digestion	0 1		, ,		,	
5. Evaluate	e altern	ative process schemes for combined biological nutrient removal						
6. Demons	6. Demonstrate the role of microorganisms in processes such as biofilm formation and mineral leaching and to							
examine	the po	otential of micro and macro-organism in biodegradation						
Module:1Sources and Treatments of various pollutants3 hours								
Pollutants – natu	ure, so	urces & classification. Comparison of biotechnological treatment with ot	hermet	hods	. Fun	ction	s of	
microbial groups	s - met	abolic pathways of biodegradation						
Modulo:2	Dooo	nt Malaaular Taals involved in				5 h	ours	
Wibuuic.2	Reme	diation				51	louis	
Biotechnological	1 tools	in Environment – Living organisms as indicators of pollution. Molecu	ılaranal	lvsis	of m	icrob	ial	
community - se	equenc	e- a nd function-based screening of metagenomic libraries - Communi	ty Tran	scrip	otomi	cs &		
metaproteomics.	Catal	ytic evolutionary engineering						
Module:3	Conve	entional methods used in Waste Water Management				5 h	ours	
Air pollution -	Meth	ods of odour and VOC Control. Types, structure design and ope	ration	of b	iorea	ctors,	bio-	
scrubbers, bio-fi	lters. (Case studies for odour removal from municipal waste waters and sulphuro	us emis	ssion	s.			
Module:4	Biofi	Im based Remediation Technologies I				4 h	ours	
Aerobic and and	$0 \times 10^{\circ}$ SU	spended growth biotechnologies: conventional/high rate activated sludge	e syster	n, Po	owde	r actr	vated	
& Carrier activat	ted slu	dge process – Nitrification/ phostrip process. vertical & Attached growth t	technol	ogies	5.			
Modulo:5	Biofil	n based Permediction Technologies II				2 h	ours	
Trickling/denitr	ificatio	on RBC/FBR/PBR and hybrid systems				4 1	louis	
	mean							
Module:	ר יים	Desistant hand degree defier				<i>E</i> 1.	01120	
Solid state biers	B10-	xeactors based degradation	5110md -	0.000	onti-	5 D	noral	
and metal extract	tion bi	- aerateu/mixeu/anaeroorc - types, operation and optimization. Landr	mana (comp	ostin	g. 1 vi 1	neral	
		occimology.						

Modu	le:7	Remediation by micro and macro-org	4 hours						
Natura	l Enviro	onmental biotechnology – aquaculture	treatment: wate	er hyacinth	& wetlar	nd system, evapotranspiration			
system	n. Land ti	reatment - rapid/slow/overland flow syste	ems, subsurface	infiltration -	- algal & v	vegetative filter system.			
Modu	le:8	Contemporary issues				2 hours			
			Т	otal Lectur	e hours:	30 hours			
Textbo	ook(s)								
1.	Scragg,	A.H., 2005. Environmental biotechnolog	gy. New York: (OXFORD un	iversity pr	ess. Wang, L.K., Ivanov,			
	V., Tay, J.H. and Hung, Y.T. eds., 2010.								
2.	Environmentalbiotechnology (Vol. 10). Springer Science & Business Media.								
	Singh, A	A., 2004.							
3.	Biodeg	radation and bioremediation (Vol. 2). Spri	inger Science &	Business M	edia.				
Refere	ence Boo	ks							
1.	Rittmar	n, B.E. and McCarty, P.L., 2012. E	Environmental	biotechnolog	gy: princ	iples and applications. Tata			
	McGrav	w-Hill Education.							
2.	Evans,	G.M. and Furlong, J.C., 2003. Environm	nental biotechno	ology: theory	y and ap	plication IK International Pvt			
	Ltd.								
3.	3. Vallero, D.A., 2015. Environmental biotechnology: a biosystems approach. Academic press.								
Mode	of Evalu	ation: Assignments, Quiz, Continuous ass	sessment tests a	and Final ass	essment to	est			
Recom	nmended	by Board of Studies 27	7-07-2022						
Approv	ved by A	cademic Council No	0.67	Date	08-08-20	22			
1-1910				2	00 00 20				

			——	.			C
Course Code		Course Title			T	P	C
MBIT611L		Aquatic Biotechnology		3	0	0	3
Pre-requisite			3	ynar	$\frac{1}{10}$	ersio	n
					1.0		
Course Object	tives						
1. Extensi	ive und	erstanding the aquatic ecosystems and their bio-resource potentials					
$\begin{array}{c} 2. \text{To exp} \\ 3 \text{A pply } \end{array}$	lore and	d utilize of organisms from marine and fresh waters extensively					
5. Apply I	the gene	enc principles to aquatic species used in mariculture, aquaculture					
Comme Orates							
The student wi	<u>me</u> 11 ha ah	1. 4.					
1 Impro	II be ab	ie io vields of farmed fish and shellfish through biotechnological approaches					
2 Elabo	rate and	t ensure sustainability in mariculture and acuaculture					
3. Devel	op inter	rests in Blue biotechnology.					
4. Utilize	e of aqu	atic organisms for biofuels, therapuetics productions.					
5. Suppo	ort inter	ests in reclaiming impaired water resources.					
6. Elabor	rate cha	aracterization and management of aquatic genetic resources					
Module:1	Scop	e and Challenges in marine and aquatic biotechnology				7 h	ours
Global and Ind bioeconomy; N various states;	Global and Indian scenario; Demand for marine bioproducts; market value; marine bioproduct based industries; marine bioeconomy; Marine socio-economics; Entrepreneurship; International and Indian policies; Marine biotechnology parks in various states; R&D institutions, centres and consultation services.						
Module:2	Mar	ine and Aquatic Ecology				6 h	ours
Aquatic Ecosy Biological divi sea/oceanic zoi	stems;] isions c ne.	Benthic and Pelagic Zone; Photic, dysphotic and aphotic zones - import of the sea- estuaries and backwaters, lagoons, mangroves, coastal wate	ance an ers, insl	id the	eir sig offs	gnific hore,	ance. deep
Module:3	Biolo	ogical Resources and taxonomy				6 h	ours
Sampling, cult Extremophilic	tivation microo	and taxonomy of organisms. Metagenomics. Flora, Fauna, Bacteria, rganisms; Fisheries and other aquatic potential.	fungi,	alga	e an	d arc	haea.
	Mar	ing Riogeochemical cycles				<u>6 h</u>	ours
Module:4	11141					<u> </u>	
Role of aquatic	and ma	arine organisms in carbon, nitrogen, phosphorous and sulphur cycles.					
	Mar	ine microbiel nethogens				<u>6 h</u>	ourc
Module:5	Iviai	me merobiai patnogens				0 11	0015
Microbial path harmful algal b	ogens in blooms,	n marine environment – diversity, sources and detection of pathogens in r microbial pathogens of seafood.	ecreatio	onal v	vater	, imp	act of
	N /I	in a Dhawwaaalagy				<u> </u>	01122
Module:6	wiar	пе в пагтасоюду				o n	ours
Marine derived of action. Scre antimicrobial a	l drugs ening (ssay; D	in preclinical and clinical trials- FDA and EMEA approved marine derive of drugs High-throughput Screening Assays (HTS) Bioassays- Enzyme NA laddering assay; Apoptosis assays.	d drugs assays	s, the , cyt	ir use otoxi	and and city a	mode issay;
1	Mam	ing Rightsongening					ourc
Module:7	wiar	me bropi ospecinig					ours

Marine org cosmetics- algae as fis	Marine organisms for Biofuels and bioenergy, Bioremediation, Biofouling, Biosurfactants. Marine natural products as cosmetics-cosmeceuticals, algotherapy; Thalassotherapy; Enzymes; food, supplement, nutrition and energy drinks. Marine algae as fish feed, manure and fertilizers.								
Module:8	Contemporary issues				2 hours				
Total Lecture hours: 45 hours									
Textbook(s)									
1. Dic Put	1. Didier Montet and, Ramesh C. Ray (Eds.) 2011, Aquaculture Microbiology and Biotechnology, Vol 2. Science Publishers; 1 edition.								
Reference	Books								
1. Geo 4th	orge Karleskint, Richard Turner, and Jam edition.	es Small (Eds.) Bi	ooks Cole, 2	2013, Intro	duction to Marine Biology.;				
2. Dev	wan S. Bhakum and, D.S. Rawat (Eds.)), 2	2010, Bioactive M	arine Natural	Products.	Springer.				
3. Mu	nn and Munn, 2011, Marine Microbiolog	y: Ecology and Ap	plications. B	IOS, Scier	ntific Publisher.				
Mode of E	valuation: Assignments, Quiz, Continuous	s assessment tests	and Final ass	essment te	est				
Recommer	nded by Board of Studies	27-07-2022							
Approved by Academic Council No. 67 Date 08-08-2022									

Course Code Course Title L T P										
MBIT612L	Proteomics	3 0			0	3				
Pre-requisite	Nil	Syllabus version								
				1.0						
Course Objectives										
1. To exempli	fy the application of proteomics analysis in various fields									
2. To impart b	asic concepts, interpreting skills in proteomics									
3.										
4. To identify	as many individual proteins as possible in a given biological sample to the	ne deve	lopm	ent of	high-					
throughput,	parallel and quantitative technologies									
Course Outcome										
Course Outcome The student will be able to										
1 Interpret th	autrition analysis and discuss the advantages and limitations of different	nt avna	rima	ntal an	nroad	phas				
2 Identify pro	teins by pentide mass fingerprinting using MAI DI TOF	пі слре	ime	nai ap	proac	incs.				
3. Discuss ho	w biological systems information relating to genes, proteins and cellular	• structu	iresca	an be i	ised t	0				
model livin	g cells, and even to create new synthetic cells					-				
4. Identify an	discuss the techniques used in functional genomics and proteomics net	xt gene	ratio	n sequ	encin	g				
technology	and Interpret data obtained through high throughput expression studies.	C		•		C				
5. Illustrate the different types of genome variation and their relationship to human diseases.										
6. Survey the databases that store various data about genes, proteins, genomes and proteomes										
Module:1Proteome analysis:6 hours										
Proteomics wor	k flow, Proteome analysis by single dimension electroph	oresis,	tw.	o-dim	ensio	nal				
electrophoresis: so	lublisation of proteins, protein enrichment strategies, IEF, image analysis, c	omput	ationa	al tool	s used	1 in				
2D gel electropho	esis, multi-dimensional proteomics.									
Module:2	Mass spactrometry.				1 ho	ure				
Principles sample	preparation interpretation of mass spectrometry data pentide sequer	nce ma	atchir	o. nen	tide 1	mass				
fingerprinting	preparation, interpretation of mass spectrometry data, peptide sequer		ucini	ig, pep	liue i	nass				
inigerprinting.										
Module:3	Proteomics approaches				7 ho	urs				
Proteomics to stud	y post translational modifications, protein-protein interactions using yeast 2	hybrid	syste	ems, s	tructu	ıral				
proteomics, functi	onal proteomics, comparative proteomics, quantitative proteomics, and or	ganelle	prot	eomic	s: go	lgi,				
mitochondria and	chloroplast.	0	•		U	0				
Module:4	Proteomics and NGS				7 ho	urs				
Top down and b	ottom-up proteomics, Proteogenomics and re-annotation of genomes, e	xample	es of	prote	egeon	nics				
approaches, Intera	ctome analysis. Chemical proteomics, Reconciling proteomics with next gen	eration	i sequ	lencin	g.					
Module:5	Advanced proteome analytical approaches:	· ·	1	•	<u>6 ho</u>	urs				
Get free proteomics	: ICA1, 11 KAQ, ICPL, 1 M1, SILAC, OII gel electrophoresis, single cell pro	leomic:	s,ecol	ogica	L					
proteomics, position	iai proteonnes, giovai and targeted proteonnes, signature peptides, secretom	e analy	515.							
Module:6	Human proteome				6 ho	urs				

HPP, proteome biomarkers - discovery and validation, proteome biomarkers in cancer, diabetes, cardiovascular, lung disease and infectious diseases, proteomics in toxicology, serum proteomics, pan-proteomics.

Module:7 Proteome databases and tools

7 hours

Protein and proteome databases, softwares and computational tools used in proteomics, Trans-proteomic pipeline, protein de novo sequencing, Sequest, Mascot, Statistical validation of peptide identification, shotgun protein identification, PeptideProphet, Target decoy strategy, protein interaction network mapping.

Modu	ıle:8	Contemporary issues:				2 hours			
			1	Sotal Lectur	e hours:	45 hours			
Textbo	Textbook(s)								
1.	Richard	M Twyman (2013) Principles of pr	oteomics, 2 nd Edit	ion, Garland	Science P	Publications. Nawin C			
	Mishra (2010) Introduction to proteomics: H	Principles and appl	ications, Wil	ley Blackv	vell.			
Referen	Reference Books								
1.	Simon J Hubbard, Andrew R Jones (2010) Proteome bioinformatics, Humana Press.								
2.	Tsz-Kwong Man, Ricardo J Flores (2011) Proteomics – Human diseases and protein functions, InTechPublishers.								
3.	Oliviero	Carugo, Frank Eisenhaber (2010)) Data mining fo	r genomics	and prote	eomics, 1 st Edition, Humanna			
	Press.								
4.	Xiangdor	g Wang (2013) Bioinformatics for	human proteomics	s. Springer.					
5.	Gyorgy N	Iarko-Varga (2014) Genomics and	proteomics for cli	nical discove	ery and de	velopment.Springer.			
6.	Rune Ma	tthiesen (2013) Mass spectrometry	data analysis in pr	oteomics, 2 nd	¹ Edition, 1	Humana Press.			
Mode o	of Evaluati	on: Assignments, Quiz, Continuous	s assessment tests	and Final as	sessmentt	est			
Recom	mended by	Board of Studies	29-07-2022						
Approv	ved by Aca	demic Council	No. 67	Date	08-08-20	022			

Course Code	Course Tide	<u> </u>	т	т	п	C
Course Code	Course Title		L 2	1	P A	
MDITOISL Pro roquisito	Cancer Biology	Syllobus version				
11e-requisite		Synau	Jus v	1 0	1	
Course Objective		L		1.0		
1. Demonstr	ate understanding of the cellular and molecular mechanisms that are dysregu	lated in	canc	erous	cells.	
2. Apply the	genomic technologies and develop critical thinking skills in cancer research.				•••	
3. Analyze a	nd prioritize the traditional chemotherapy and novel targeted therapeutic appr	roaches	in ca	ncer		
Course Outcome						
The student will be	able to					
1. Demonstra	ate understanding of the subject related concepts and of contemporary issues					
2. Identify, d	esign and conduct experiments, as well as to analyze and interpret data					
3. Apply crit	Ical thinking and innovative skills			1 /1 7		
4. Interpret	Sense-Making Skills of creating unique insights in what is being seen	or obs	serve	d (Hig	gher I	evel
5 Maka usa	(iiis which cannot be coullied) of techniques, skills and modern engineering tools necessary for clinical pract	tico				
5. Make use	benatics and science in engineering applications	lice				
	includes and selence in engineering applications					
Module:1 M	utagens. Carcinogens and mutations				6 h	ours
Molecular mechan	hisms of mutagens such as Chemical Carcinogen and radiation. Typ	bes of	carci	noger	and	their
mode of action with	th example			0		
Module 2 O	ncogene activation: Tumour suppressor inactivation and Cell				6 h	
	cle Dysregulation				υm	Juis
Function of Onco	gene, proto-oncogene, tumor suppressor proteins and oncoviruses. Their role	in can	cer			
Module:3 I	Lvading apoptosis in cancer				6 h	ours
Apoptotic mechar	ism, altered pathways in cancer cells that can evade apoptosis. Pathway	s regula	ating	tumo	r initi	ation
and/or its progress	ion					
Module:4 (Jenomic instability				6 h	ours
Types of genomic	instability: instability due to micro and mini satellite sequence, Loss of	DNA	repai	r me	chanis	sms,
Dysfunction of tel	omeres. Chromosomal aberrations that cause cancer. Single nucleotide polym	iorphisi	ms ar	id can	cer	
Modulo 5	angia ganagia and Matagtagia				5 h	
Tumor angiogona	Inglogenesis and Metastasis	cocond	tumo	r coll	5 no	jurs
Tumor angiogenes	is, Chincal significance in invasion, Three-step theory of invasion, Froteina	sesanu	tume		mvas	1011
		1.				
Module:6 (Cancer Diagnosis	stem	4	1 1	4	4
The stem cell the	cory of Cancer, tumor neterogeneity, Origin of cancer stem cells and c	ancerco	ontro	o by	targe	ting
Different forms of	therapy Chemotherapy RadiationTherapy Targeted therapy Monoclonal a	ntibodu	$\frac{11}{1}$ Cal	ace bl	letect	1011. c
	ucrapy, Chemoulerapy, Radiation merapy, raigeted therapy. Monociolial al	nnouy	, K III		ocker	3
Module:7 Ca	incer therapeutics and Diagnosis				6 h	ours
Animal models us	ed to study cancer, Nude mice, Transgenic and knock out mice. Cre mice.	patient	t deri	ved x	enog	afts
(PDXs). New gene	omic and proteomic approaches in cancer biology and therapeutics. COSMIC	and T	CGA	data	bases	and

their a	their applications.							
Modu	ıle:8	Contemporary issues			2 hour	ars		
]	Fotal Lectur	re hours: 45 hour	urs		
Textb	ook(s)							
1.	Robert	A Weinberg, 2013, The Biology of Ca	ncer, Garland Scie	ence, ISBN:	9780815342205			
Reference Books								
1.	. Textbook readings; primary literature; in-class discussion. The Molecular Biology of Cancer: A Bridge from Bench							
	to Bedside. Stella Pelengaris, Mike Khan -2 nd Edition – 2013							
2.	Molecular Biology of Cancer. Lauren Pecorina, 4 th edition. Oxford University Press – 2016.Introduction to cancer							
	biology, Robin Hesketh, Cambridge University Press – 2013.							
Mode of Evaluation: Written examinations, assignments, research article presentations andquizzes								
Recor	Recommended by Board of Studies 27-07-2022							
Appro	Approved by Academic CouncilNo. 67Date08-08-2022							

Course Code	Course Title		L	Т	Р	С	
MBIT614L	Medical Biotechnology		3	0	0	3	
Pre-requisite	Nil	Syllabus version					
	1.0						
Course Object	ives						
1. Illustra	e on microbes and non – microbial ailments and their treatment strategies						
2. Inter th	e principle and applications of various diagnostic and imaging techniques						
5. Demon	strate various therapeutics						
Course Outcou	ne						
The student wil	l be able to						
1. Recall	numan anatomy and physiology						
2. Infer th	e pathology of various genetic disorders						
3. Outline	on various microbial infectious diseases and biochemical disorders						
4. Transla	te on prenatal and newborn screening techniques						
5. Summa	rize the influence of genome variation in diseases and diagnostics						
6. Demon	strate the applications of stem cell and organ culture and therapeutics						
Module:1	Anatomy and Physiology				6 h	ours	
Human Anator	ny and Physiology: Introduction to Human Anatomy and Physiology – Maio	or syste	ems.		0 11	Juis	
		j					
Module:2	Non-communicable diseases				6 h	ours	
Inherited Non-	communicable diseases -genetic disorders like downs syndrome, cystic fibrosis	s,autis	m et	c.	-		
Module:3	Overview of Non-infectious diseases:				6 h	ours	
Cancer, cardiov	ascular, diabetes and other chronic diseases.						
					(1		
Module:4	Overview of Infectious diseases:	a faul		ام مر م	6 h	ours	
– Bacteria Fun	gi Virus and Parasites – Mode of action of antibiotics	orcun	luring	g and	assay	/ing	
Dacteria, i un	gi, virus and rarashes - Mode of action of antibioties						
Module:5	Genomic and precision medicine:				6 h	ours	
Genetic screen	ng and diagnosis: prenatal carrier testing and new-born screening for Mende	lian di	sease	es, Tl	ne us	e of	
next-generation	sequencing for solving diagnostic dilemmas						
Modulo:6	Conomics in Modical Diagnostics				6 h	01116	
Methods used	in patient populations to uncover associations between genome variation	and	omn	on d	liseas	<u>Jui 5</u> es	
Predictive tests for common, complex diseases.							
Module:7	Stem Cell Culture				7 h	ours	
Transplantation and teratogenesis Embryo culture stem cell culture - organ culture - artificial blood. Diagnostic							
Clinical – biochemical and immunological – therapeutics .genetic counseling.							
Module:8	Contemporary issues				2 ł	iours	

		,	Total Lectu	re hours:	45 hours			
Textb	Textbook(s)							
1.	Judit Pongracz, Mary Keen (2009) Medical Biotechnology							
Refer	ence Books							
1.	Bernhard Palsson, Sangeeta N Bhatia (2004)	Tissue Engineeri	ing, 2 nd Edit	tion, Prentice	e Hall,2004.			
2.	Pamela Greenwell, Michelle McCulley (2008) Molecular Therapeutics: 21 st centurymedicine, 1 st Edition, Sringer.							
Mode of Evaluation: Written examinations, assignments, research article presentations andquizzes								
Recon	Recommended by Board of Studies 27-07-2022							
Appro	Approved by Academic CouncilNo. 67Date08-08-2022							

Course Code	Course Title	Ι	Т	P	С
MBIT615L	Microbial Technology		6 0	0	3
Pre-requisite	Nil	Syllabus	versio	n	
•	v	1.0			
Course Objectives					
1. The objective	of the subject is to impart the knowledge of industrial bioprocesses,	industria	produ	ction of	of
various metal	polites using living cells		-		
2. It also illustra	tes some of important bioproducts produced in industries as case studies				
Course Outcome					
The student will be ab	e to				
1. Relate the sub	ect related concepts and contemporary issues				
2. Demonstrate t	ne microbial secondary metabolites having industrial applications				
3. Solve the curre	ent problems related to antibiotics, vaccines and anticancer drugs			_	
4. Analyze the	echniques, skills and modern engineering tools necessary for large s	caleprodu	ction o	f enzy	ymes,
recombinant p	roducts, food additives and biofuels				
5. Elaborate a cle	ar understanding of professional and ethical and social responsibility				
6. Adapt to use the	the technology for the isolation and development of new microbial products	8			
Modulo.1 Juda	strieller immentent mienskiel zue duster			4 h	
Niodule:1 Indu	strially important microbial products:			4 n	ours
Biomass – reast, Lact	obacilius, Spirunna, Primary and secondary metadontes				
Madada Mad				5 1	
Module:2 Med	Ical products			5 h	ours
Antibiotics – Penici	llin, Cephalosporin, Tetracyclins. Vaccines - 11, DP1, BCG, A	nticancer	compo	unas	Irom
microbes					
Module:3 Enzy	700-05			4 h	ours
General aspects of enz	www.production_Industrial_scale_production_of_Protease_Linase_Cellulas	e Pectina	e Am	vlase	Juis
	yne production. Industrial scale production of Protease, Elpase, Centulas	,i eetiila	<i>, 1</i> III	yluse	
Module:4 Reco	mbinant products			4 h	ours
Production of Insulin	and Growth hormones Recombinant enzymes and vaccine production			• •	ours
Module:5 Food	ladditives			4 h	ours
Organic acid Product	on: Acetic acid, Gluconic acid, Lactic acid, Amino acid production: I	vsine an	l Glut	amic	acid.
Vitamin Production:	Pantothenic acid, Riboflavin, Vitamin B12, Ascorbic acid	5			
Module:6 Biof	uels			4 h	nours
Production of Bioethan	ol, Biobutanol, Biodisel, Biohydrogen, Methane production				
				• =	
Module:7 Othe	er Microbial products			4 h	ours
Biofertilizers, Bioinsee	cticides, Biofungicides, Biopolymers, Biosurfactants, Microbial pigments				

Module:8		Contemporary issues				2 hours			
	Total Lecture hours: 30 hours								
Textb	Textbook(s)								
1.	Textbook of Industrial Microbiology, by W. Crueger and A. Crueger. Publisher: Sinauer Associates								
2.	Trivedi,	PC (2009) Microbes – Applications a	nd effects, 1 st Edit	ion, Aavishk	ar Publish	ers.			
3.	Antonic	Mendez Vilas (2009) Current to	pics in applied	microbiolo	gy and	microbial biotechnology, 1 st			
	Edition,	World Scientific Publishers.							
Refer	ence Boo	ks							
1.	Ralph M	Mitchell, Ji-Dong Gu (2010) Enviro	onmental Microbi	ology, 2 nd	Edition,	Wiley Blackwell Science.			
2.	Heriber	t Insam Microbes at work – From was	te to resources, 1 st	Edition, Spri	nger.				
3.	Alexand	ler N Glazer, Hioshi Nikaido (2007) M	licrobial Biotechne	ology, 2 nd Ed	lition, Car	nbridge University Press.			
4.	Alexand	ler N Glazer, Hioshi Nikaido (2007) M	licrobial Biotechne	ology, 2nd E	dition, Ca	mbridge University Press.			
5.	Industria	al microbiology by G. Reed, Publisher	rs: CBS						
6.	. Biology of Industrial microorganisms By A. L. Demain								
7.	7. Industrial microbiology by A.H Patel								
8.	New Products and New Areas of Bioprocess Engineering (Advances in Biochemical								
Engineering/Biotechnology, 68) by T. Scheper. Publisher : Springer Verlag									
Mode of Evaluation: Written examinations, assignments, research article presentations and quizzes									
Recon	nmended	by Board of Studies	27-07-2022						
Appro	Approved by Academic CouncilNo. 67Date08-08-2022								