

School of Computer Science and Engineering

CURRICULUM AND SYLLABI

(2023-2024)

M.Tech. Computer Science and Engineering (Information Security)

School of Computer Science and Engineering

M.Tech. Computer Science and Engineering (Information Security)

CURRICULUM AND SYLLABUS

(2023-24 Admitted Students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

Rewarding Co-creations: Active collaboration with national & international industries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

To be a world-renowned centre of education, research and service in computing and allied domains.

MISSION STATEMENT OF THE SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

- To offer computing education programs with the goal that the students become technically competent and develop lifelong learning skill.
- To undertake path-breaking research that creates new computing technologies and solutions for industry and society at large.
- To foster vibrant outreach programs for industry, research organizations, academia and society.

School of Computer Science and Engineering

M.Tech (CSE) - Specialization in Information Security

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

1. Graduates will be engineering professionals who will engage in technology development and deployment with social awareness and responsibility.

2. Graduates will function as successful practising engineer / researcher / teacher / entrepreneur in the chosen domain of study.

3. Graduates will have holistic approach addressing technological, societal, economic and sustainability dimensions of problems and contribute to economic growth of the country.

M. Tech Computer Science and Engineering Specialization in Information Security

PROGRAMME OUTCOMES (POs)

PO_01: Having an ability to apply mathematics and science in engineering applications.

PO_03: Having an ability to design a component or a product applying all the relevant standards and with realistic constraints, including public health, safety, culture, society and environment

PO_04: Having an ability to design and conduct experiments, as well as toanalyze and interpret data, and synthesis of information

PO_05: Having an ability to use techniques, skills, resources and modern engineering and IT tools necessary for engineering practice

PO_06: Having problem solving ability- to assess social issues (societal, health, safety, legal and cultural) and engineering problems

PO_07: Having adaptive thinking and adaptability in relation to environmental context and sustainable development

PO_08: Having a clear understanding of professional and ethical responsibility

PO_11: Having a good cognitive load management skills related to project management and finance

School of Computer Science and Engineering M.Tech (CSE) - Specialization in Information Security

PROGRAMME SPECIFIC OUTCOMES (PSOs)

1. The ability to design and develop computer programs/computer-based systems in the advanced level of areas including algorithms design and analysis, networking, operating systems design etc.

2. The ability to investigate and analyze using appropriate methodologies as well as security principles and apply ethically acceptable security solutions to mitigate cyber security threats.

3. Ability to bring out the capabilities for research and development in contemporary issues and to exhibit the outcomes as technical report.

M. Tech Computer Science and Engineering Specialization in Information Security

CREDIT STRUCTURE

Category-wise Credit distribution

Discipline Core	24
Specialization Elective	12
Projects and Internship	26
Open Elective	3
Skill Enhancement	5
Total Credits	70

CURRICULUM

M.Tech.-CSE (Information Security) - (2023)

Discipline Core	Specialization Elective	Projects and Internship	Open Elective	Skill Enhancement	Total Credits
24	12	26	3	5	70

		Discipline Core	!						
S. No.	Course Code	Course Title	Course Type	Version	L	Т	Р	J	С
1	MCSE501L	Data Structures and Algorithms	Theory Only	1.0	3	0	0	0	3.0
2	MCSE501P	Data Structures and Algorithms Lab	Lab Only	1.0	0	0	2	0	1.0
3	MCSE502L	Design and Analysis of Algorithms	Theory Only	1.0	3	0	0	0	3.0
4	MCSE502P	Design and Analysis of Algorithms Lab	Lab Only	1.0	0	0	2	0	1.0
5	MCSE503L	Computer Architecture and Organisation	Theory Only	1.0	3	0	0	0	3.0
6	MCSE503P	Computer Architecture and Organisation Lab	Lab Only	1.0	0	0	2	0	1.0
7	MCSE504L	Operating Systems	Theory Only	1.0	3	0	0	0	3.0
8	MCSE504P	Operating Systems Lab	Lab Only	1.0	0	0	2	0	1.0
9	MCSE505L	Computer Networks	Theory Only	1.0	3	0	0	0	3.0
10	MCSE505P	Computer Networks Lab	Lab Only	1.0	0	0	2	0	1.0
11	MCSE506L	Database Systems	Theory Only	1.0	3	0	0	0	3.0
12	MCSE506P	Database Systems Lab	Lab Only	1.0	0	0	2	0	1.0
		Specialization Elec	tive						
S. No.	Course Code	Course Title	Course Type	Version	L	Т	Р	J	С
1	MCSE608L	Information Security and Risk Management	Theory Only	1.0	3	0	0	0	3.0
2	MCSE609L	Cryptosystems	Theory Only	1.0	2	0	0	0	2.0
3	MCSE609P	Cryptosystems Lab	Lab Only	1.0	0	0	2	0	1.0
4	MCSE610L	Penetration Testing and Vulnerability Assessment	Theory Only	1.0	2	0	0	0	2.0
5	MCSE610P	Penetration Testing and Vulnerability Assessment Lab	Lab Only	1.0	0	0	2	0	1.0
6	MCSE611L	Malware Analysis	Theory Only	1.0	2	0	0	0	2.0
7	MCSE611P	Malware Analysis Lab	Lab Only	1.0	0	0	2	0	1.0
8	MCSE612L	Cyber Security	Theory Only	1.0	3	0	0	0	3.0
9	MCSE613L	Digital Forensics	Theory Only	1.0	3	0	0	0	3.0
		Projects and Interns	hip						
S. No.	Course Code	Course Title	Course Type	Version	L	Т	Р	J	С
1	MCSE696J	Study Oriented Project	PROJECT	1.0	0	0	0	0	2.0
2	MCSE697J	Design Project	PROJECT	1.0	0	0	0	0	2.0
3	MCSE698J	Internship I/ Dissertation I	PROJECT	1.0	0	0	0	0	10.0
4	MCSE699J	Internship II/ Dissertation II	PROJECT	1.0	0	0	0	0	12.0
	-	Open Elective					-	_	-
S. No.	Course Code	Course Title	Course Type	Version	L	Т	Р	J	С
1	MFRE501L	Francais Fonctionnel	Theory Only	1.0	3	0	0	0	3.0
2	MGER501L	Deutsch fuer Anfaenger	Theory Only	1.0	3	0	0	0	3.0
3	MSTS601L	Advanced Competitive Coding	Soft Skill	1.0	3	0	0	0	3.0
		Skill Enhanceme	nt			I	I	<u> </u>	1
S. <u>No</u> .	Course Code	Course Title	Course Type	Version	L	Т	Р	J	C
1	MENG501P	Technical Report Writing	Lab Only	1.0	0	0	4	0	2.0
2	MSTS501P	Qualitative Skills Practice	Soft Skill	1.0	0	0	3	0	1.5
3	MSTS502P	Quantitative Skills Practice	Soft Skill	1.0	0	0	3	0	1.5

Discipline Core

Course code	Course title	L T P C						
MCSE501L	Data Structures and Algorith	nms	3	0	0	3		
Pre-requisite	NIL		Sylla	abus	vers	sion		
					v.	1.0		
Course Objectives								
1. To familiari	ze the concepts of data structures and algo	rithms focusing or	n spa	ce a	nd t	ime		
complexity.								
2. To provide a	deeper insight into the basic and advanced dat	a structures.						
3. To develop	3. To develop the knowledge for the application of advanced trees and graphs in real- world							
scenarios.								
Course Outcomes								
After completion of	this course, the student shall be able to:							
1. Understand a	and analyze the space and time complexity of the	he algorithms.						
2. Identification	n of suitable data structure for a given problem.							
3. Implementat	ion of graph algorithms in various real-life app	lications.						
4. Implementat	ion of heaps and trees for querying and searchi	ng.						
5. Use of basic	data structures in advanced data structure oper	ations.						
6. Use of search	ning and sorting in various real-life application	S.						
Madulas1 Cuarr	th of Francisco				2 6 0			
Module:1 Grow	th of Functions	: 41	D	• • •	3 n 0	urs		
Derformence enclusion	riance of algorithms and data structures- Algor	nd Thete notation, I	Recui	rsion	i, ina			
Style Pefinement of	f Coding Time Space Trade Off Testing Dat	nd Theta holation, F	rogra	111111	mg			
Style, Kernellient 0	T Couling - Time-Space Trade Off, Testing, Dat	a Abstraction.			6 ho	11100		
Array Steels Queue	Linked list and its types. Various Depresent	ations Operations	Pr 1 m	nlia	0 IIU			
Allay, Slack, Queue	e, Linked-fist and its types, various Represent	ations, Operations a	x Ap	prica	ation	\$ 01		
Module·3 Sortir	ag and Searching				7 ho	urs		
Insertion sort mero	e sort sorting in linear Time-Lower bounds	for sorting Radix	sort	Rito	$\frac{7}{\text{nic}}$	ort		
Cocktail sort Media	ans and Order Statistics-Minimum and maximu	im Selection in ext	sort, pecter	l line	ar ti	me		
Selection in worst-c	ase linear time, linear search. Interpolation sear	rch. Exponential sea	rch	1 1111	Jui ti	me,		
Module:4 Trees					6 ho	urs		
Binary trees- Proper	ties of Binary trees. B-tree, B-Tree definition-	Operations on B-Tre	ee: Se	earch	ing a	a B-		
tree, Creating, Splitt	ing, Inserting and Deleting, B+-tree.	1			0			
Module:5 Adva	nced Trees				8 ho	ours		
Threaded binary tre	es, Leftist trees, Tournament trees, 2-3 tree, Sp	lay tree, Red-black	trees,	Ran	ge tr	ees.		
Module:6 Grap	hs				7 ho	ours		
Representation of g	raphs, Topological sorting, Shortest path algo	orithms- Dijkstra's	algor	ithm	, Flo	oyd-		
Warshall algorithm,	Minimum spanning trees - Reverse delete algo	orithm, Boruvka's al	goritl	ım.		-		
Module:7 Heap	and Hashing				6 ho	ours		
Heaps as priority qu	eues, Binary heaps, binomial and Fibonacci he	aps, Heaps in Huffn	nan c	odin	g,			
Extendible hashing.		1						
Module:8 Cont	emporary Issues				2 ho	urs		
		I						
	Total Lecture hours:			4	l5 ho	urs		

Tex	Text Book(s)							
1.	Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to							
	algorithms. MIT press, 2022.							
Ref	Reference Books							
1.	Skiena, Steven S. "The Algorithm Design Manual (Texts in Computer Science)." 3rd edition, 2020,							
	Springer.							
2.	Brass, Peter. Advanced data structure	es. Vol. 193. Camb	ridge: Cam	bridge University Press, 2008.				
Mod	de of Evaluation: CAT / Written Assig	gnment / Quiz / FA	Г					
Rec	Recommended by Board of Studies 26-07-2022							
App	proved by Academic Council	No. 67	Date	08-08-2022				

Course codeCourse titleLTF					Р	С		
MCSE501P	Data St	ructures and Algo	orithms LA	B	0	0	2	1
Pre-requisite	NIL				Sylla	abus	vers	sion
							v.	1.0
Course Objectives								
1. To fami	liarize the concepts of	of data structures	and algorit	hm focusing of	on spa	ace a	and t	ime
complex	complexity.							
2. To provi	2. To provide a deeper insight on the basic and advanced data structures.							
3. To deve	3. To develop the knowledge for application of the advanced trees and graphs in real world							
scenario	S.							
Course Outcome								
After completion of	this course, the stude	ent shall be able to:	1	1 1.1				
1. Understa	and and analyze the sp	pace and time com	plexity of the	he algorithms.				
2. Identific	ation of suitable data	structure for a give	en problem.					
3. Impleme	intation of graph algo	rithms in various r	eal-life app	lications.				
4. Impleme	intation of heaps and	trees for querying	and search	ng.				
5. Use of b	asic data structures in	advanced data str	ucture oper	ations.				
6. Use of s	earching and sorting 1	n various real-life	application	S.				
Indicative Experim	nents							
1. Analyzing the	e complexity of iterati	ve and recursive a	lgorithms					
2. Implement Li	near data structures (Stacks, Oueues, Li	nked Lists)					
3. Linear time so	orting techniques							
4. Interpolation	search & Exponential	search						
5. Binary tree &	Tree traversals							
6. B-trees & B+	trees							
7. Advanced Tre	ees: 2-3 tree, splay tre	e, red black tree et	с.					
8. Advanced Tre	ees: Threaded Binary	trees, tournament	rees					
9. Graph travers	als (BFS, DFS, Topol	logical sorting)						
10. Determining	the Shortest path betw	veen pair of nodes	in the giver	ı graph				
11. Minimum Spa	anning trees- reverse	delete & Boruvka'	s algorithm					
12. Heaps & Has	hing							
			Total Lab	oratory Hours	301	nours	5	
Text Book(s)								
1. Cormen, Thom	nas H., Charles E. Leis	serson, Ronald L. I	Rivest, and	Clifford Stein	. Intro	duct	ion to	С
algorithms. MI	T press, 2022.							
Reference Books			. ~					
1. Skiena, Steven	S. "The Algorithm D	esign Manual (Tex	ts in Comp	uter Science).'	' 3rd e	ditic	on, 20)20,
Springer.	1 11.	11 1 100 0		1 * 1 ** *	•			
2. Brass, Peter. A	dvanced data structur	res. Vol. 193. Cam	bridge: Can	nbridge Unive	rsity ł	ress	, 200	8.
Mode of Evaluation	: CAT / Mid-Term La	ad/ FAT						
Recommended by H	Soard of Studies	26-07-2022	D	00.00.000				
Approved by Acade	emic Council	No. 67	Date	08-08-2022				

Course code	ę	Course title	L T P C					
MCSE502L	1	Design and Analysis of Algorithms	3	0	0	3		
Pre-requisit	te	NIL	Sylla	abus	vers	sion		
					v.	1.0		
Course Obj	ectives							
1. T 2. T 3. T	 To provide a mathematical framework for the design and analysis of algorithms. To disseminate knowledge on how to create strategies for dealing with real-world problems. To develop efficient algorithms for use in a variety of engineering design settings. 							
Course Out	comes							
On completi 1. Appl 2. Appl 3. Demo 4. Under 5. Appl 6. Expla	 On completion of this course, student should be able to: Apply knowledge of computing and mathematics to algorithm design. Apply various algorithm paradigms to solve scientific and real-life problems. Demonstrate the string matching and network flow algorithms relating to real-life problems. Understand and apply geometric algorithms. Apply linear optimization techniques to various real-world linear optimization problems. 							
1								
Module:1	Greed	y, Divide and Conquer Techniques Introduction			6 ha	ours		
Overview a problem, Id techniques: Karatsuba's	nd Impo entifyin Graph C fast mul	ortance of Algorithms - Stages of algorithm development: Descr g a suitable technique, Design of an algorithm, Illustration of Des Coloring Problem, Job Sequencing Problem with Deadlines- Di- tiplication method, the Strassen algorithm for matrix multiplicat	ibing t ign Sta ivide a ion	he Iges nd (- Gre Conq	edy uer:		
Module:2	Dynai	mic Programming, Backtracking and Branch & Bound			9 ho	ours		
	Techn	iques						
Dynamic pro Queens prob methods.	ogramm olem, S	ing: Matrix Chain Multiplication, Longest Common Subsequenc ubset Sum, Graph Coloring- Branch & Bound: A-Star, LIFO	e. Bacl -BB ar	ktrac nd F	king IFO	: N- BB		
Module:3	Amor	tized analysis and String Matching Algorithms			6 ha	ours		
Stack operat potential me Karp Algorit	ion and thod, an thm, Str	Incrementing Binary counter -The aggregate method, the account ad Dynamic tables. Naïve String matching Algorithms, KMP algorithms matching with Finite Automata.	nting m orithm	netho , Ra	od, tł bin-	ie		
Module:4	Netwo	ork Flow Algorithms			6 ha	ours		
Flow Netwo	rks, <mark>M</mark> a	ximum Flows: Ford-Fulkerson, Edmond-Karp, Push relabel Alg	orithm	, Th	e			
relabel-to-fro	ont algo	rithm, Minimum Cost flows – Cycle Cancelling Algorithm.						
Module:5	Comp	utational Geometry			5 ho	ours		
Line Segme	nts – pro	operties, intersection; Convex Hull finding algorithms- Graham'	s Scan	, Jar	vis's			
March Algo	rithm.							
Module:6	Linea	r Optimization and Randomized algorithms	•	11	5 ho	urs		
Finding the g	amming global N	g problem - Simplex Method-Big M Method, LP Duality- The hi Ainimum Cut.	ring pi	oble	em,			
Module:7	NP C	Completeness and Approximation Algorithms			6 ha	ours		
The Class P 3CNF, Indep salesman.	- The C bendent	lass NP - Reducibility and NP-completeness - Circuit Satisfiabi Set, Clique, Approximation Algorithm: Vertex Cover, Set Cove	lity pro	oblei Trave	n-SA elling	۸Т ç		
Module:8	Cont	emporary Issues			2 ho	urs		
		Total Lecture hours:		4	5 ho	ours		
					-			

Tex	Text Book(s)							
1.	Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to							
	algorithms. MIT press, 2022.							
Ref	Reference Books							
1.	. Rajeev Motwani, Prabhakar Raghavan; "Randomized Algorithms, Cambridge University							
	Press, 1995 (Online Print — 2013).							
2.	Ravindra K. Ahuja, Thomas L. Mag	nanti, and James B	. Orlin, Net	twork Flows: Theory,				
	Algorithms, and Applications, 1st Ed	dition, Pearson Edu	cation, 201	14.				
3.	Jon Kleinberg and EvaTardos, Algor	rithm Design, Pears	son Educat	ion, 1"Edition, 2014.				
Mo	de of Evaluation: CAT / Written Assi	gnment / Quiz / FA	Т					
Rec	Recommended by Board of Studies 26-07-2022							
Approved by Academic Council No. 67 Date 08-08-				08-08-2022				

Course code Course title L T P Q					С				
MCSE	502P	Design a	nd Analysis of Al	gorithms I	Lab	0	0	2	1
Pre-re	quisite	NIL		5		Syll	abus	s vers	sion
	•					v		v.	1.0
Course	e Objectives				L. L.				
1.	To provide a	a mathematical frame	work for the desig	n and analy	ysis of algorit	hms.			
2.	To dissemin	ate knowledge on ho	w to create strategi	ies for deal	ing with real-	world	proł	olems	s.
3.	To develop	efficient algorithms f	or use in a variety	of engineer	ring design se	ttings			
Course	e Outcome								
On co	mpletion of t	this course, student sl	nould be able to:	1 . 1					
1.	Apply know	ledge of computing a	and mathematics to	algorithm	design.				
2.	Apply vario	us algorithm paradigi	ms to solve scientil	fic and real	-life problem	S. -1 1:£-			
5.	problems	e the string matching	and network flow	argorithms	relating to re	ai-me			
Δ	Understand	and apply geometric	algorithms						
5	Apply linear	r optimization technic	ues to various rea	l-world line	ear optimizati	on			
5.	problems.		1405 00 7411045 104		our optimizuti	011			
6.	Explain the	hardness of real-worl	d problems with re	espect to al	gorithmic des	ign.			
	-		-	-	-	-			
Indica	tive Experin	nents							
1. C	Greedy Strate	gy : Graph Coloring	Problem, Job Sequ	encing Pro	blem with De	eadline	es		
2. E	Divide and Co	onquer : Karatsuba's	fast multiplication	method, the	he Strassen al	gorith	m fo	or ma	trix
n	nultiplication	1							
3. E	Dynamic Pro	gramming: Matrix	Chain Multiplicat	ion, Longe	est Common	Subse	eque	nce,	0-1
K	Knapsack								
4. E	Backtracking:	N-queens, Subset su	Im						
5. E	Branch and B	ound: Job selection	T7 41 1.1		•.•				
6. S	tring Matchi	ng Algorithms: Rabi	n Karp Algorithm,	KMP Algo	orithm	•.1			
/. N	Network Flow	vs : Ford -Fulkerson a	and Edmond – Kar	p, Cycle ca	ancelling algo	rithm			
8. N	Annimum Co	st flows – Cycle Can	celling Algorithm						
9. L	linear progra	mming: Simplex met	hod						
10. R	Randomized A	Algorithms: Las Veg	as and Monte carlo)					
11. P	olynomial ti	me algorithm for ver	itication of NPC pi	oblems					
12. <i>P</i>	Approximatic	on Algorithm: Vertex	cover, Set cover a	nd TSP		20			
Torrt D	$a a \mathbf{l} \mathbf{r}(a)$			Total Lab	oratory Hours	30	nour	S	
1 ext B	OOK(S)	and U. Charles E. La	icoreon Donald I	Divect on	d Clifford St	in In	tradi	latio	
1. Co	algorithms	MIT press 2022	iseison, Konalu L.	Kivest, all			noui	letioi	.1
Refere	nce Books	wiii piess, 2022.							
1 Ra	aieev Motwa	ni. Prabhakar Raghay	an: Randomized A	lgorithms.	Cambridge I	Iniver	sitv		
Pr	ess, 1995 (O	nline Print — 2013).		,					
2 Ra	avindra K. Al	huja, Thomas L. Mag	manti, and James I	B. Orlin, No	etwork Flows	: Theo	ory,		
Al	lgorithms, an	d Applications, 1^{st} E	dition, Pearson Edu	ication, 20	<u>14.</u>	•••	4		
3 Jo	n Kleinberg	and Eva Tardos, Algo	rithm Design, Pear	rson Educa	tion, l"Editic	n, 201	14.		
Mode o	Mode of Evaluation: CAT / Mid-Term Lab/ FAT								
Recom	mended by E	Board of Studies	26-07-2022	D	00.00.0000				
Approv	ved by Acade	emic Council	NO. 6/	Date	08-08-2022				

Course code Course title					Р	С
MCSE503L		Computer Architecture and Organization	3	0	0	3
Pre-requisit	e	NIL	Syl	labus	s vers	sion
			J		v.	1.0
Course Obj	ectives					
1. T fc 2. T 0 3. T 0 Course Out After comple	o provid o design o design o evalua ptimizat	de knowledge on the basics of computer architectures and organiz on to study high-performance architectures n and develop parallel programs using parallel computing platform, CUDA ate the performance using profiling tools and optimize parallel co- cion techniques this course, the student shall be able to:	aralle	that ch as sing	lays s vario	the ous
 Outline the developments in the evolution of computer architectures and parallel programming paradigms Comprehend the various programming languages and libraries for parallel computing platforms Use of profiling tools to analyze the performance of applications by interpreting the given data Evaluate efficiency trade-offs among alternative parallel computing architectures for an efficient parallel application design Develop parallel programs using OpenMP and CUDA and analyze performance parameters such as speed-up, and efficiency for parallel programs against serial programs 						n
	a				~ 1	
Module:1	Comp	uter Evolution And Performance			$\frac{5 \text{ ho}}{1}$	ours
architecture, Multi-thread	Harvard Harvard ing, Col nce Me	d Architecture CISC & RISC, Flynn's Classification of Computer mparisons of Single Core, Multi Processors, and Multi-Core arch asurement	nts, v ers, N nitect	on N Aoor ures,	eum e's L Met	ann aw, trics
Module:2	Memo	ory Hierarchy			8 ho	ours
Key Charac Performance	cteristic: , Cache	s of Memory systems, Memory Hierarchy, Cache Design Coherence, Snoopy Protocols, Cache coherence protocols, MSI,	pol MES	icies I, M	, Ca OES	iche I
Module:3	Paral	lel Computers			8 ho	ours
Instruction L Parallelism (level Pa TLP), T	rallelism(ILP), Compiler Techniques for ILP & Branch Predict hreading Concepts, Shared Memory, Message Passing, Vectoriz	ion, [ation	Threa	ad Le	evel
Module:4	Multi	threaded Programming using OpenMP			7 ho	ours
Introduction	to Ope	enMP, Parallel constructs, Runtime Library routines, Work-s	harin	g co	nstru	icts,
Scheduling c	lauses,	Data environment clauses, atomic, master Nowait Clause, Barrier	Con	struc	t	,
Module:5	Prog	amming for GPU			6 ho	ours
Introduction CUDA & Ex	to GPU ecution	J Computing, CUDA Concepts, CUDA Programming Model, Pro Methods for operations on Device Memory, Thread Organization	ogran on. Ex	n Stru amp	uctur les	e of
Module:6	Perfo	rmance Analyzers	,	-1	6 h	ours
Performance	Evalua	tion, performance bottlenecks, Profiling categories; Profiling to	ols: T	race	analy	yzer
and collector	r (ITAC PP)	C), VTune Amplifier XE, Energy Efficient Performance, Integr	ated	Perf	orma	ince
1 1111111VES (1						

Mo	dule:7	Energy Efficient Architectures	5 hours
Ove	erview of	f power issues, CMOS Device-level Power dissipation basics, S	sources of energy
Con	sumption	, Strategies to save power or Energy, Low power designs, Power manag	gement techniques
Mo	dule:8	Contemporary Issues	1 hours
		Total Lecture hours:	45 hours
Tex	t Book(s)	
1.	William	Stallings, Computer Organization and Architecture: Designing for Perf	formance,
	Pearson	, 2022, 11 th Edition, Pearson	
2	Gerassii	nos Barlas, Multicore and GPU Programming: An Integrated Approach	, 2022, 2 nd
	edition,	Morgan Kaufmann	
Ref	erence B	ooks	
1.	J.L. Her	inessy and D.A. Patterson. Computer Architecture: A Quantitative Appr	roach. 5th Edition,
	2012, M	organ Kauffmann Publishers.	
2.	Shamee	m Akhter, Jason Roberts, Multi-core Programming: Increasing Performation	ance Through
	Softwar	e Multi-threading, 2010, Intel Press, BPB Publications	-
Mo	de of Eva	luation: CAT / Written Assignment / Quiz / FAT	
Rec	ommende	ed by Board of Studies 26-07-2022	
App	proved by	Academic CouncilNo. 67Date08-08-2022	

Cour	se code	Course title	L	Т	Р	С	
MCS	E503P	Computer Architecture and Organization LAB	0	0	2	1	
Pre-r	requisite	NIL	Sylla	abus	vers	sion	
					v.	1.0	
Cour	se Objectives						
	1. To provi	de knowledge on basics of computer architectures and organiza	tion tha	t lay	'S		
	foundatio	on to study high performance architectures					
	2. To desig	n and develop parallel programs using parallel computing platf	orms su	ch as	5		
	OpenMP	P, CUDA					
	3. To evaluate the performance using profiling tools and optimize parallel codes using various						
~	optimiza	tion techniques					
Cour	se Outcome						
After	completion of	this course, the student shall be able to:					
1.	Outline the c	levelopments in the evolution of computer architectures and pa	rallel pr	ogra	mmı	ng	
2	paradigms	1.4		1			
2.	Comprehend	the various programming languages and libraries for parallel c	computii	ng pi		rms	
) 3. 4	Evaluate off	ing tools to analyze the performance of applications by interpre-	eturoa fo	giv	en da	ita	
4.	efficient par	allel Application design		n an			
5	Develop para	allel programs using OpenMP and CUDA and analyze perform	ance na	ame	eters		
	such as spee	d-up, efficiency for parallel programs against serial programs	unee pu	unne			
Indic	ative Experim	nents					
	•						
1.	Set-up an envi	ironment for OpenMP Programming:					
	Activities: cre	eate a Project using Visual Studio, Writing Sample OpenMp	Progran	ı, Se	etting	g up	
	properties, co	mpile & Execute OpenMP program, OpenMP manual study	, Creati	on o	of Lo	ogin	
	credential on]	Intel for Intel Parallel Studio					
2.	OpenMP prog	ram using following construct and describe scenario for the new	ed of co	nstru	ıct		
	Use of Paralle	el Construct, Determine the Number of processors in a paral	lel Regi	on,	Find	the	
-	thread ID of e	ach processor					
3.	Computation	of Execution Time					
4	Using OpenM	P clock, Using windows clock				•	
4.	OpenMP Pro	gram using various Environment Routines to access the	proces	sor	run-t	ime	
5	Information an	ha write interesting observations by comparing various routines	s monio fo	n tha		dof	
э.	construct	rain using tonowing worksharing Constructs and describe see	mario 10	i une	- nee	u oi	
	loon construct	sections construct single construct					
6	OpenMP prov	gram using following schedule clauses and describe scenario fo	r the ne	ed o	f clai	ise	
0.	Static Dynam	ic. Guided	i the ne		i ciu	150	
7.	Develop paral	lel programs for given serial programs and profile the program i	ising Vt	une	Anal	vsis	
	tool					J~-~	
	Matrix-Matrix	multiplication, Matrix-Vector multiplication					
8.	Develop paral	lel programs for given serial programs and profile the program u	using Vt	une	Anal	ysis	
	tool		2			-	
	Quicksort, M	inimum Spanning Tree					
9.	CUDA-platfor	rm setup on NVIDIA / Google Colab					
10.	Write a CUDA	A C/C++ program that add two array of elements and store the	result i	n thi	rd ar	ray	
11.	Write a CUDA	A C/C++ program that Reverses Single Block in an Array; CUI	DA C/C-	++			
12.	Write a CUDA	A C program for Matrix addition and Multiplication using Shar	ed mem	ory			
		Total Laboratory Hours	30 hou	rs			

Tex	Text Book(s)					
1.	Gerassimos Barlas, Multicore and GPU Programming: An Integrated Approach, 2022, 2 nd					
	edition, Morgan Kaufmann					
Ref	erence Books					
1.	Shameem Akhter, Jason Roberts,	Multi-core Progra	mming: I	ncreasing Performance Through		
	Software Multi-threading, 2010, Inte	el Press, BPB Publ	ications			
Mo	de of Evaluation: CAT / Mid-Term La	ab/ FAT				
Rec	Recommended by Board of Studies 26-07-2022					
Approved by Academic CouncilNo. 67Date08-08-2022				08-08-2022		

Course code	Course title	L	Т	Р	С	
MCSE504L	MCSE504L OPERATING SYSTEMS					
Pre-requisit	e	Nil	Svlla	ibus	vers	sion
	-				v.	1.0
Course Obj	ectives					
1. T	'o focus	the core functionalities required to develop and manage operating	; syst	ems.		
2. T	'o encon	npass process management, synchronization strategies, memory m	ianag	eme	nt, fi	ile
S	ystems,	device management, and virtualization.				
3. T	'o introd	luce the concepts and features of real-time operating systems as w	ell as			
V	irtualiza	ition.				
Course Out	comes					
After comple	etion of	this course, the student shall be able to:				
1. U	Indersta	nd the fundamental operating system abstractions, including proce	esses,	thre	eads,	
Se	emapho	res, and file systems.				
2. Ir	npleme	nt scheduling, devising and addressing synchronization issues.				
3. G	fain an i	inderstanding of memory management tasks.				
4. D	Develop	real-time working prototypes of different small-scale and medium	i-scal	e en	ibed	ded
S S	ystems.		<i>.</i>			
5. C	ompreh	end the basics of virtualization and differentiate types of virtualiz	ation	•		
Modulo.1	Introd	notion to Operating Systems	1		1 ha	
Computer O	rgonizo	tion and Arabitacture OS definition OS history OS Operat	iona	0	4 no 5 do	aign
issues Oper	rating s	usiant Architecture - OS definition – OS history – OS Operat	rnol (-0	o ach	Sigii
Building and	l bootin	g an OS		appr	Jacin	6 8 –
Modulo:2	Drogog	g and Schoduling	1		6 ha	11PC
Process state	rides s Stat	e transitions with suspend and resume Process control block C	ntov	tow	<u>itchi</u>	ng
Processes on	s – Stat	- Process scheduling - CPU scheduling: Non-preemptive preempt	five -	1-5w Mul	ti_ar	ng -
scheduling -	Multi_l	evel feedback queue scheduling	.1 v C -	wiu	u-qu	icuc
Module·3	Synch	pronization			9 hc	nirs
IPC · Shred n	nemorv	message passing - Race condition – Critical section problem - Pet	tersoi	n's so	<u>- luti</u>	n = 1
Bakery Algo	orithm -	Mutex locks - Semaphores – Classical synchronization proble	ensor	- M	onito	ors -
Thread synch	hronizat	ion – Multi-threading Models. Deadlocks – Resource allocation g	raphs	– D	eadle	ock:
prevention. a	voidan	ce. detection and recovery.	- up iiis	-		
Module:4	Memo	orv Management			5 ho	ours
Address bind	ling – F	ragmentation - Pinning Memory – Paging – Structure of the page	table	- S	wapt	oing
- Segmentati	on - De	mand Paging – Copy-on-write - Replacement – Thrashing – Work	ing s	et –	Men	nory
compression	– Alloc	cating kernel memory.	0			5
Module:5	Mana	ging Devices, Files, Security and Protection			9 ho	ours
I/O Manager	nent – I	OMA - Delayed write - Disk scheduling algorithms: Seek-time and	rotat	iona	l late	ency
based - File	control	block – Inode – Access method – Directory structure - Directory	imple	eme	ntatio	on –
File allocation	on meth	ods - Free space management – Program and network threats – C	Crypt	ogra	phy	as a
security tool – Domains of protection – Access matrix – Capability based systems						
Module:6	Real-	time Operating Systems			5 ho	ours
RTOS Intern	nals - F	Real-Time Scheduling - Task Specifications - Performance Me	etrics	of	RTC) S -
Schedulabili	ty Analy	ysis – RTOS Programming Tools.				
Module:7	Virtu	alization			5 ho	ours
Need for virt	ualizati	on - Virtual machines and architectures – Hypervisors - Virtualizat	ion T	echr	nolog	gies:
Para Virtua	lization,	Full Virtualization - Virtualization types: Server virtualization	tion,	Ap	plica	tion
virtualization	n, Storag	ge virtualization.				
Module:8	Cont	emporary Issues			2 ho	ours
ı			<u> </u>			
		Total Lecture hours:		4	15 ho	ours

Tex	Text Book(s)							
1.	Abraham Silberschatz, Peter B. Ga	lvin, Greg Gagne,	"Operatin	g System Concepts", 2018, 10 th				
	Edition, Wiley, United States.							
Ref	erence Books							
1.	Arpaci-Dusseau, R. H., & Arpaci-Dusseau, R. H.	usseau, A. C, "Ope	rating Syst	ems: Three easy pieces, 2018,				
	1 st Edition, Boston: Arpaci-Dusseau	Books LLC.						
2.	Kamal, R, Embedded Systems: Arcl	hitecture, Program	ming and I	Design, 2011, 1 st Edition, Tata				
	McGraw-Hill Education.							
3.	Portnoy, M, "Virtualization Essentia	lls", 2012, 2 nd Editi	ion, John W	Viley & Sons, New Jersey, USA.				
Mo	de of Evaluation: CAT / Written Assi	gnment / Quiz / FA	Т					
Rec	Recommended by Board of Studies 26-07-2022							
App	proved by Academic Council	No. 67	Date	08-08-2022				

Course code	Course title	L	Τ	P	С
MCSE504P	OPERATING SYSTEMS LAB	0	0	2	1
Pre-requisite	Nil	Sylla	abus	vers	sion
				v.	1.0
Course Objectives					
1. To encomp	ass process management, synchronization strategies, memory man	nagen	nent,	file	
systems, de	vice management, and virtualization.				
2. To introduc	the concepts and features of real-time operating systems as well	l as vi	rtual	izati	on.
Course Outcome					
After completion of	f this course, the student shall be able to:				
I. Implement	scheduling, devising and addressing synchronization issues.				
2. Gain an un	derstanding of memory management tasks.	1			
3. Develop re	al-time working prototypes of different small-scale and medium-s	cale e	mbe	dded	
systems.	d the basics of virtualization and differentiate types of virtualization	.			
4. Comprehen	in the basics of virtualization and unterentiate types of virtualization	011.			
Indicativa Evnarin	nonts				
1 Investigate th	e fundamental Unix/Linux commands				
2 Obtaining the	OS system data file and its associated information				
3 Shell Program	nming				
4 Create utility	programs that use I/Ω system calls to simulate operations such a	ns ls	cn o	ren	and
others	programs that use 1/0 system cans to simulate operations such a	15 15,	cp, g	siep,	ana
5. Create child.	Orphan and Zombie processes using suitable system calls such	as fo	ork()	. exe	ec().
wait(), kill(),	sleep() and exit() system calls.			,	- () /
6. Create a pro	gram that mimics the CPU Scheduling algorithms including	multi	-leve	el qu	leue
scheduling al	gorithm. Ex: Assume that all processes in the system are divided in	nto tw	o ca	tegor	ries:
system proce	sses and user processes. System processes are to be given higher	prioi	ity t	han ı	ıser
processes. Us	e FCFS scheduling for the processes in each queue.				
7. Implement th	e deadlock-free solution to Dining Philosophers problem using Se	emaph	ore.		
8. Simulation of	f Bankers algorithm to check whether the given system is in safe	state	or r	not. A	Also
check whethe	r addition resource requested can be granted immediately.				
9. Parallel Thre	ad management using Pthreads library. Implement a data parall	elism	usin	ıg mı	ılti-
threading. Ex	x: An application should have a thread created with synchron	zatio	n an	d thr	ead
termination. Every thread in the sub-program must return the value and must be synchronized w				v1th	
the main func	tion. Final consolidation should be done by the main (main function)	on).			
10. Dynamic mer	nory allocation algorithms – First-fit, Best-fit, Worst-fit algorithm	is.			
11. Page Replace	File looking machanism				
12. Implement a	December Monitoring and Controlling System Monitoring Co	llasti	na d	oto f	
15. KIUS Based	ratameter Monitoring and Controlling System – Monitoring: Conterface display devices/actuators using a microcontroller. Control	mecti olling	ng a	ata fi	
alert when the	nerrae uspray usyles/actuators using a microcontroller. Contra- e received data reaches a certain threshold value	June	5. г	ovide	2 all
14 Virtualization	Setup: Type-1 Type-2 Hypervisor (Detailed Study Report)				
	Total Laboratory Hours	301	hour	s	

Tex	Text Book(s)						
1.	Vijay Mukhi, "The C Odyssey: UNIX: v. 3", 2004, 3 rd Edition, BPB Publications, New Delhi,						
	India.						
Ref	erence Books						
1.	Stevens, W. R., & Rago, S. A. (2013). Advanced Progra	amming in	the UNIX Environment: Advanc			
	Progra UNIX Envir_p3. Addison-W	esley.					
2.	Love, Robert, "Linux System Progra	amming: talking dir	ectly to the	e kernel and C library", 2013, 2 nd			
	Edition, O'Reilly Media, Inc, United	l States.		-			
Mod	Mode of Evaluation: CAT / Mid-Term Lab/ FAT						
Rec	Recommended by Board of Studies 26-07-2022						
App	proved by Academic Council	No. 67	Date	08-08-2022			

Course code	Course title	L	Т	Р	C			
MCSE505L	E505L Computer Networks 3 0 (
Pre-requisite	uisite NIL Syllabus versi							
	v. 1.							
Course Object	ves							
1. To learn	various network models, layers and their protocols.							
2. To gain	a fundamental understanding of routing algorithms.							
3. To comp	rehend the basics of wireless as well as mobile networks and their of	charact	eristi	ICS.				
Course Outcon								
After completio	n of this course, the student shall be able to:							
1. Explore	the basics of Computer Networks and various performance metrics.							
2. Interpret	the application layer services and their protocols.	1						
3. Evaluate	the requirements for reliable services and implications of congestion.	on at th	e tra	nspo	rt			
layer ser	vices.	11						
4. Analyse	various functionalities required in the control and data plane at networks and their see	vork la	yer s	ervic	es.			
5. Inter the	characteristics of wireless as well as mobile networks and their sec	urity st	anda	iras.				
Modulo 1 C	mnutar Natworks and the Internet	<u> </u>		7 .				
Internet: A Nut	and Polts Description Network Protocols. The Network Edge: A		Notu	/ II(ond			
Dhysical Modia	-and-Bolts Description - Network Flotocols - The Network Edge. A	work c	f Nc	two	anu .ko			
Physical Meula	Throughput in Decket Switched Networks Drotocol Levers and T	work u hair Sa	ruiou		KS -			
Modulo:2	nilication Layer		IVICE	5 h				
Dringinlag of N	phication Layer	icos '	Tho '	5 III	and			
HTTD Electro	nic Mail in the Internet DNS. The Internet's Directory Service	D_{00}	r to r	Door	Filo			
Distribution S	nic Main in the internet - DNS—The internet's Directory Service		1-10-1	r eei	rne			
Module-3	ensport I aver	<u> </u>		7 h	nire			
Relationship Be	tween Transport and Network I avers - Overview of the Transport	Laveri	n the	Inte	rnet			
- Multiplexing a	nd Demultiplexing - Connectionless Transport: UDP - Reliable Data	Transt	fer (-R	ack-			
N (GRN) and	Selective Repeat (SR) - Connection-Oriented Transport: TCP	Flow	Cor	trol	and			
Congestion Con	trol	11000	Con	11101	una			
Module:4 N	etwork Laver: Data Plane			5 hc	mrs			
Network Laver	- Router - The Internet Protocol (IP): IPv4 Addressing and	IPv6 -	Ge	neral	ized			
Forwarding and	SDN	11 10	00	lioiui	1200			
Module:5 N	etwork Laver: Control Plane			5 ha	ours			
Control Plane:	Per-router control and logically centralized control - Routing Algo	orithms	- L	ink-S	state			
(LS) Routing A	lgorithm, Distance-Vector (DV) Routing Algorithm, Intra-AS Rou	iting in	the	Inter	met:			
OSPF and Rou	ing Among the ISPs: BGP - SDN Control Plane	0						
Module:6 Li	nk Layer and LANs	<u> </u>		8 ha	ours			
Overview of L	ink Laver Services - Error-Detection and -Correction Technique	ues: Pa	arity	Che	cks.			
Checksum and	CRC - Multiple Access Links and Protocols: Channel Partitio	ning F	roto	cols	and			
Random-Access	Random-Access Protocols - Switched Local Area Networks: Link-Laver Addressing and ARP - Virtual							
Local Area Networks								
Module:7Wireless and Mobile Networks-Security6 hours								
Elements of a w	vireless network - Wireless Links and Network Characteristics - Wi	iFi: 802	2.11	Wire	eless			
LANs - Mobilit	y Management: Principles - Wireless and Mobility: Impact on Hig	her-La	yer J	Proto	col-			
Security in Cor	nputer Network- Message Integrity and Digital Signatures - Network	ork-La	yer (Secu	rity:			
IPsec and Virtua	l Private Networks							
Module:8	Contemporary Issues			2 ho	ours			
	Total Lecture hou	irs:	4	45 ha	ours			

Tex	Text Book(s)							
1.	James F. Kurose, Keith W. Ross, "	Computer Network	omputer Networking: A Top-Down Approach", 2022, 8 th					
	Edition (Paperback), Pearson, United	d Kingdom.						
Ref	erence Books							
1.	Larry Peterson and Bruce Davie, "C	Computer Network	s: A Syster	ns Approach", 2019, 6 th Edition,				
	Morgan Kaufmann, United States of	America.						
2.	Andrew S. Tanenbaum, "Computer	Networks", 2013,	6 th Edition,	Pearson, Singapore.				
Mo	de of Evaluation: CAT / Written Assig	gnment / Quiz / FA	Т					
Rec	Recommended by Board of Studies 26-07-2022							
Approved by Academic Council No. 67 Date 08-08-2022				08-08-2022				

Course o	code		Course title			L	Т	Р	С
MCSE5	05P	C	Computer Networl	ks Lab		0	0	2	1
Pre-requ	uisite	NIL	•			Sylla	abus	vers	sion
•								v.	1.0
Course	Objectives	I							
1	. To introc	luce the computer net	twork concepts and	l provide sl	kills required to	trou	ble s	hoot	the
	network	devices.							
2	. To descr	ibe the basic knowled	lge of VLAN.						
3	. To devel	op the knowledge for	application of soft	ware defin	ed networks.				
Course	Outcome								
After con	npletion of	this course, the stude	ent shall be able to:						
1	. Understa	and the types of netwo	ork cables and prac	tical imple	mentation of cr	oss-v	virec	l and	
	straight t	hrough cable.							
2	. Design a	nd implementation of	f VLAN.						
3	. Analyze	and apply network ac	ldress translation u	sing packe	t tracer and net	work	sim	ulato	rs.
4	. Design a	nd develop software	defined networks.						
Indicativ	ve Experin	nents							
1.	Hardware	e Demo(Demo session	n of all networking	hardware a	and Functionali	ities)			
	OS Com	nands(Network confi	guration command	s)					
2.	Error dete	ection and correction	mechanisms						
	Flow con	trol mechanisms							
3.	IP address	sing Classless address	sing						
4.	Network	Packet Analysis using	g Wireshark						
	i. P	acket Capture Using	Wire shark						
	ii. S	tarting Wire shark							
	iii. V	viewing Captured Tra	ffic						
	iv. A	nalysis and Statistics	& Filters.						
5.	Socket pr	ogramming(TCP and	UDP) Multi client	chatting					
6.	Networki	ng Simulation Tool –	Wired and Wireles	S					
7.	SDN App	olications and Use Ca	ses						
8.	Security i	n Network- Use case	8						
9	Performan	ce evaluation of routi	ng protocols using	simulation	tools.				
Referen	ce Books								
1. Jam	es F. Kuro	ss, Keith W. Ross, "	Computer Networ	king, A To	op-Down Appr	oach'	", 8 ^{tl}	¹ Edi	tion
(Pap	perback), Pe	earson Education, 202	22.						
Mode of	Evaluation	: CAT / Mid-Term La	ab/ FAT						
Recomm	ended by B	Board of Studies	26-07-2022	·	1				
Approve	d by Acade	mic Council	No. 67	Date	08-08-2022				

Course code	ourse code Course title				Р	С		
MCSE506L	6L DATABASE SYSTEMS				0	3		
Pre-requisite	NIL	2	Sylla	bus	vers	ion		
					v.	1.0		
Course Obje	ctives							
1. To	o understand the underlying principles of Relational Database Manag	gemei	nt Sy	stem	is			
2. To	focus on the modeling and design of secured databases and usage of	of adv	ance	d da	ta			
m	odels							
3. To	implement and maintain the structured, semi-structured, and unstru	icture	d dat	a in	an			
eft	Ficient database system using emerging trends							
Course Outc	omes							
On completio	n of this course, students must be able to							
1. De	esign and implement a database depending on the business requ	ireme	ents,	con	sider	ring		
va	rious design issues							
2. Ui	nderstand the concepts of Indexing, Query optimization, tran	sactio	on n	iana	gem	ent,		
со	ncurrency control, and recovery mechanisms							
3. Le	arn to apply parallel and distributed databases in Real-time scenario	S						
4. Ca	tegorize and design the structured, semi-structured, and unstructured	d data	abase	s				
5. Cł	haracterize the database threats and their countermeasures							
					<u></u>			
Module:1	Design and Implementation of Relational Model		1	1	<u>6 ho</u>			
Database Sys	tem Concepts and Architecture, Entity-Relationship (ER) Modellin	ng, R	elati	onal	Mo	del-		
Keys, and Int	egrity Constraints, Mapping ER model to Relational Schema, Norm	alizat	10n,	воу	ce Co	odd		
Normal Form	, Multi-valued dependency and Fourth Normal form				(]			
Storega and I	Query Processing and Transaction Management	Tron	anti	~ **	0 110	urs		
Storage and F	Concurrency Control Bosovery	Tran	sactio	on				
Modulo:3	Parallal Databases and Distributed Databases				8 ho	iirc		
Parallel Data	architecture Data partitioning strategy Inter-Ouery and Intra-	Quer	v Dar	أماله	<u>ism</u>	uis		
Distributed D	atabase Features Distributed Database Architecture Fragmentation	Ren	y 1 ai licati	on	13111,			
Distributed D	uery Processing Distributed Transactions Processing	, nep	iicati	on,				
	Snatial and Multimedia Databases				6 ho	urs		
Spatial databa	ase concepts. Spatial data types, and models. Spatial operators and	aueri	es.	Inde	exing	$\frac{1}{2}$ in		
spatial databa	ses, Multimedia database concepts. Automatic Analysis of Images.	Obie	ct Re	COgi	nitio	n in		
Images, Sema	intic Tagging of Images			- 01				
Module:5	Semi-Structured Databases				6 ho	urs		
Semi Structur	ed databases- XML Schema-DTD- XPath- XQuery, Semantic Web,	RDF	, RD	FS				
Module:6	Cloud and NoSQL Databases			(5 hoi	urs		
Cloud databas	ses- Data Storage Systems on the Cloud, Data Representation, Partit	ionin	g and	l Re	triev	ing		
Data, Challen	ges with Cloud-Based Databases- NoSQL Data model: Aggregate N	Aodel	s, Do	ocun	nent	•		
Data Model,	Data Model, Key-Value Data Model, Columnar Data Model, Graph-Based Data Model							
Module:7	Database Security				5 ho	urs		
Database Sec	urity Issues, Security Models, Different threats to databases, Chal	lenge	s to	mai	ntain	ing		
database secu	rity							
Module:8	Contemporary Issues				2 ho	urs		
	Total Lecture hou	irs:		4	5 ho	urs		

Tex	xt Book(s)					
1	Abraham Silberschatz, Henry F. Korth, and S. Sudharsan, "Database System Concepts", 7 ^h					
	Edition, McGraw Hill, 2019.					
2	R. Elmasri and S. Navathe,	Fundamentals	of Databa	ase Systems, 7 th Edition, Addison-Wesley,		
	2016					
Ref	ference Books					
1	Fawcett, Joe, Danny Ayers,	and Liam RE	Quin. "Bo	eginning XML", Wiley India Private Ltd., 5 th		
	Edition, 2012					
2	Rigaux, Ph, Michel Scholl,	and Agnes V	oisard."	Spatial databases: with application to GIS".		
	Morgan Kaufmann, 2002.					
3	Dunckley L. Multimedia da	tabases: An o	bject rela	ational approach. Addison-Wesley Longman		
	Publishing Co., Inc.; 2003 Jan	n 1.				
Mo	ode of Evaluation: CAT / Writte	en Assignment	t / Quiz /]	FAT		
Rec	commended by Board of	26-07-2022				
Stu	idies					
Approved by Academic		No. 67	Date	08-08-2022		
Cou	uncil					

Course code		Course title	L	Т	Р	С
MCS	SE506P	DATABASE SYSTEMS LAB	0	0	2	1
Pre-	requisite	NIL	Sylla	bus	ver	sion
					v.	1.0
Cou	rse Objectives					
	1. To under	stand the underlying principles of Relational Database Managem	ent Sy	vster	n.	
	2. To focus	on the modeling and design of secure databases and usage of ad-	vancec	l dat	a	
	models.					
	3. To imple	ment and maintain the structured, semi structured and unstructur	ed data	a.		
Cou	rse Outcome					
After	completion of	this course, the student shall be able to:				
	1. Construc	t database queries using Structured Query Language (SQL)				
	2. Design a	nd implement applications that make use of distributed fault-tole	rant da	itaba	ases.	
	3. Apply Sp	patial and Multimedia Database concepts to solve real-world prob	olems.			
	4. Impleme	nt applications that work with structured, semi-structured, and ur	struct	ured		
	databases	S				
	5. Create ap	oplications that use cloud storage technologies and relevant distri	buted	file	syste	ms
Indic	cative Experim	ients				
1.	Study of Basic	c SQL Commands.				
2	Model any giv	en scenario into ER/EER Model	•	1	1	
2.	Table creation	with constraints, alter schema, insert values, aggregate functions	s, simp	ole a	nd	
2	complex quer	les with joins, views, Subqueries.				
3.	PL/SQL-Proce	edures, Cursors, Functions, Triggers		1	6.41	
4.	Partition a giv	en database based on the type of query and compares the executi	on spe	ed o	of the	;
5	Query with/wi	thout parallelism.	datab	000		
5.	Ouery the dist	ributed database scenario, insert values, magnetit and replicate the	ualad	ase		
6	Consider a sch	notice database				
0.	Consider a ser	tend that contains the following table with the key undermied.				
	Employee (En	o, Ename, Desg, Dno). Assume that we horizontally fragment th	e table	as f	follo	ws:
	I - J (
	Employee1(E	no; Ename; Desg; Dno), where 1<= Dno <=10				
	Employee2(E	no; Ename; Desg; Dno), where 11 <= Dno <=20				
	Employee3(E	no; Ename; Desg; Dno), where 21 <= Dno <=30				
	In addition, as	sume we have 4 sites that contain the following fragments:				
	• Site	e1 has Employee1				
	• Site	e2 has Employee2				
	• Site	e3 has Employee2 and Employee3				
	• Site	e4 has Employee1				
	Implement at	least 5 suitable queries on Employee fragments. Add relations to	the da	taba	se as	\$
	per your requi	rements.				
7.	Plot points, lir	nes, and polygons using Spatial Databases such as Oracle Spatial	, Postg	reS	QL,	
	Microsoft SQ	L Server etc				
8.	• Use Sp	batial Databases to store data using Latitude and Longitude, find	the dis	tanc	e	
	betwee	en two spatial objects, find the area of a polygon				
	• Store a	and retrieve images from a multimedia database				
9.	Create an XM	L document and validate it against an XML Schema/DTD.				
	Use XQuery t	o query and view the contents of the database				
10.	Execute XPA	TH expressions on a database.				

11.	. Perform the following using a MongoDB Database					
	• Create an Employee Collection and insert a few documents (sample document given below for reference)					
	{ "name" : "Satish", "salary" : 30000, "address" : "Vellore", "school" : "SCOPE" }					
	 Display all employees whose address is vellore and salary is greater than 30000 Undate the salary for an employee by name 'Pam' as 40000 					
	 Opticate the satisfy for all employee by hame. Kall as 40000 Display only name and salary for all employees in the collection. 					
	 Display only name and safary for an employees in the conection Display all employees who are not from 'SCOPE' school 					
	 Display an employees who are not from Secore school Display only documents that contains the address property. 					
12	Create an application that interacts with a cloud database					
12.	Total Laboratory Hours 30 hours					
Tex	t Book(s)					
1.	D Abraham Silberschatz, Henry F. Korth, S. Sudarshan "Database System Concepts" 7th Edition					
	McGraw Hill, 2021					
Ref	erence Books					
1.	Elmasri and Navathe "Fundamentals of Database Systems", 7th Edition Addison Wesley, 2014					
2.	Thomas Connolly, Carolyn Begg "Database Systems: A Practical Approach to Design,					
	Implementation and Management" 6 th Edition, Pearson India, 2015					
3.	Mishra, Sanjay, and Alan Beaulieu. Mastering Oracle SQL: Putting Oracle SQL to Work. O'Reilly					
N/	Media, Inc., 2004.					
NIO	le of Evaluation: CA1 / Mid-Term Lab/ FAT					
Ann	reved by Academic Council No. 67 Data 08.08.2022					
Арр	Toved by Academic Council No. 07 Date 08-08-2022					

Discipline Elective

MANAGEMENT 3 0 0 3 Pre-requisite Nil Syllabus version v.1.0 Course Objectives v.1.0 Syllabus version v.1.0 Course Objectives 1. To learn about security policies and their impacts. .	Course code		INFORMATION SECURITY AN	ND RISK		L	Т	P	C
MCSUGOL Syllabus version Pre-requisite Nil Syllabus version Course Objectives v.1.0 Course Objectives v.1.0 Course Outcome v.1.0 Upon completion of this course, the student will be able to: v.1.0 I. To larn about security risk calculations and mitigating them by using various policies. v.1.0 Course Outcome Upon completion of this course, the student will be able to: v.1.0 I. Understand the principles and policies of information security. A nalyze and explore the information security controls. A nalyze and explore the information security controls. 3. Assess and evaluate the risk management practices of information security. 4. Identify the disasters and recovering from them with appropriate decisions. Module:1 Information Security Principles 6 hours Information Security Framework 7 hours 7 hours Organization and Responsibilities: Organizational Policy, Standards and Procedures - Information Security Rescurity Standards and Procedures. Module:3 Security Life Cycle and Controls Module:3 Security Management Models and Performance 8 hours Information Security Life Cycle and Controls Systems Development and Support - General Controls - People Security - User Access Controls. 8 hou	MCSECOOL		MANAGEMENT			2	0	0	2
Interception Synabols velocities 0. Course Objectives v.1.0 1. To learn about security policies and their impacts. v.1.0 2. To assess the framework, lifecycle and controls of security under a variety of scenarios. 3. To analyze the security risk calculations and mitigating them by using various policies. Course Outcome Upon completion of this course, the student will be able to: 1. Understand the principles and policies of information security. 2. Analyze and explore the information security controls. 3. Assess and evaluate the risk management practices of information security. 4. Identify the disasters and recovering from them with appropriate decisions. Information Security Principles 6 hours Information Security Framework 7 hours Organization and Responsibilities: Organizational Policy, Standards and Procedures - Information Security Incident Management - Legal Framework: Security Standards and Procedures. Nodule:3 Module:3 Security Life Cycle and Controls 8 hours Information Security Uffe Cycle - Testing, Audit, Review and Controls - Systems Development and Support - General Controls - People Security - Virferent Uses of Controls. Module:3 Module:4 Security Managemen	MCSE008L		Nii		Sylle	3 shua	U	U	3
Course Objectives 9,110 1. To learn about security policies and their impacts. 2. To assess the framework, lifecycle and controls of security under a variety of scenarios. 3. To analyze the security risk calculations and mitigating them by using various policies. Course Outcome Upon completion of this course, the student will be able to: 1. Understand the principles and policies of information security. 2. Analyze and explore the information security controls. 3. Assess and evaluate the risk management practices of information security. 4. Identify the disasters and recovering from them with appropriate decisions. Module:1 Information Security Principles 6 hours Information Security Pramework 7 hours Organization and Responsibilities: Organizational Policy, Standards and Procedures - Information Security Uncident Management - Legal Framework is Cortrols - Systems Development and Support - General Controls - Poople Security Use of Controls - Systems Development and Support - General Controls - Poople Security - Standards and Performance 6 hours Module:3 Security Management Models and Performance 6 hours Medule:4 Security Management Models and Performance 6 hours Module:5 Risk Assessment 6 hours Module:6 Risk Analysis - Risk Evaluation - Risk Control - Risk - Calculation of Overa	Pre-requisite	•			Sylla	abus	ver	<u>sion</u>	1.0
1. To learn about security policies and their impacts. 2. To assess the framework, lifecycle and controls of security under a variety of scenarios. 3. To analyze the security risk calculations and mitigating them by using various policies. Course Outcome Upon completion of this course, the student will be able to: 1. Understand the principles and policies of information security. 2. Analyze and explore the information security controls. 3. Assess and evaluate the risk management practices of information security. 4. Identify the disasters and recovering from them with appropriate decisions. Module:1 Information Security Principles 6 hours Information Security Pranework 7 hours Organization and Responsibilities: Organizational Policy, Standards and Procedures - Information Security Information Assurance Programme Implementation - Security Information Security Life Cycle and Controls 8 hours Information Security Life Cycle and Controls 8 hours 8 hours Information Security Management Models and Performance 6 hours 8 hours Information Security Management Models and Performance 6 hours Measurement Module:3 Security Management Models and Performance 6 hours Module:4 Security Management Models and Performance 6 hours<	Course Obie	ctives						v	.1.0
2. To assess the framework, lifecycle and controls of security under a variety of scenarios. 3. To analyze the security risk calculations and mitigating them by using various policies. Course Outcome Upon completion of this course, the student will be able to: Understand the principles and policies of information security. Analyze and explore the information security controls. Assess and evaluate the risk management practices of information security. Identify the disasters and recovering from them with appropriate decisions. Module:1 Information Security Principles 6 hours Information Security Pramework Thours Organization and Responsibilities: Organizational Policy, Standards and Procedures - Information Assurance Programme Implementation - Security Incident Module:3 Security Life Cycle and Controls Shours Information Assurance Programme Implementation - Security - Protection fromation Security Life Cycle and Controls - Systems Development and Support - General Controls - People Security - Different Uses of Controls. Module:4 Security Management Models and Performance	1. To lea	rn abou	t security policies and their impacts.						
3. To analyze the security risk calculations and mitigating them by using various policies. Course Outcome Upon completion of this course, the student will be able to: 1. Understand the principles and policies of information security. 2. Analyze and explore the information security controls. 3. Assess and evaluate the risk management practices of information security. 4. Identify the disasters and recovering from them with appropriate decisions. Module:1 Information Security Principles formation Security - Assets and Types - Threat, Vulnerability, Risk and Impact - Information Security Policy Concepts - Need for Information Security. Module:2 Information Security Framework 7 hours Organization and Responsibilities: Organizational Policy, Standards and Procedures - Information Security Governance - Information Assurance Programme Implementation - Security Incident Management - Legal Framework: Security Standards and Procedures. 8 hours Module:3 Security Life Cycle - Testing, Audit, Review and Controls - Systems Development and Support - General Controls - People Security - User Access Controls. 8 hours Information Security Models and Performance 6 hours Module:4 Security Management Models and Performance 6 hours Measurement Information - Risk Analysis - Risk Evaluation - Risk Control - Risk Treatmetio - Risk Reduction - Risk Analysis - Risk Evaluation - Ri	2. To ass	sess the	framework, lifecycle and controls of security	under a variety	v of sc	cena	rios.		
Course Outcome Upon completion of this course, the student will be able to: 1. Understand the principles and policies of information security. 2. Analyze and explore the information security controls. 3. Assess and evaluate the risk management practices of information security. 4. Identify the disasters and recovering from them with appropriate decisions. Module:1 Information Security Principles Information Security Principles 6 hours Information Security Principles 7 hours Organization and Responsibilities: Organizational Policy, Standards and Procedures - Information Security Covernance - Information Assurance Programme Implementation - Security Incident Management - Legal Framework: Security Standards and Procedures. 8 hours Information Security Life Cycle and Controls 8 hours Information Security Policy Concels - Systems Development and Support - General Controls - People Security - User Access Controls - Systems Development and Support - General Controls - People Security - Different Uses of Controls. Module:3 Security Management Models and Performance 6 hours Measurement Informatio	3. To ana	alyze th	e security risk calculations and mitigating the	n by using var	ious r	oolic	ies.		
Course Outcome Upon completion of this course, the student will be able to: Understand the principles and policies of information security. Analyze and explore the information security controls. Assess and evaluate the risk management practices of information security. Identify the disasters and recovering from them with appropriate decisions. Module:1 Information Security Principles 6 hours Information Security - Assets and Types - Threat, Vulnerability, Risk and Impact - Information Security Policy Concepts - Need for Information Security Framework 7 hours Organization and Responsibilities: Organizational Policy, Standards and Procedures - Information Security Incident Management - Legal Framework: Security Standards and Procedures. Module:3 Security Life Cycle and Controls Network and Procedures. Module:3 Security Life Cycle - Testing, Audit, Review and Controls - Systems Development and Support - General Controls - People Security - User Access Controls - Systems Development and Support - General Controls - People Security - Different Uses of Controls. Module:4 Security Management Models and Performance 6 hours Measurement. Module:5 Risk Assessment 6 hours Measurement. Module:5 Risk Analysis - Risk Evaluation - Risk Control - Risk Termination - Risk Reduction - R				, ,					
Upon completion of this course, the student will be able to: 1. Understand the principles and policies of information security. 2. Analyze and explore the information security controls. 3. Assess and evaluate the risk management practices of information security. 4. Identify the disasters and recovering from them with appropriate decisions. Module:1 Information Security Principles 6 hours Information Security - Assets and Types - Threat, Vulnerability, Risk and Impact - Information Security Policy Concepts - Need for Information Security. 7 hours Module:2 Information Security Framework 7 hours Organization and Responsibilities: Organizational Policy, Standards and Procedures - Information Security Standards and Procedures. 8 hours Information Security Life Cycle and Controls 8 hours Information Security Life Cycle and Controls 8 hours Information Security Life Cycle and Controls 8 hours Information Security Life Cycle and Security - Different Uses of Controls - Systems Development and Support - General Controls - People Security - Different Uses of Controls. Module:4 Security Management Models and Performance 6 hours Measurement Measurement. 6 hours Blueprints - Frameworks and Security Models - Security Architecture Models - Vario	Course Outc	ome							
1. Understand the principles and policies of information security. 2. Analyze and explore the information security controls. 3. Assess and evaluate the risk management practices of information security. 4. Identify the disasters and recovering from them with appropriate decisions. Module:1 Information Security Principles 6 hours Information Security- Assets and Types - Threat, Vulnerability, Risk and Impact - Information Security Policy Concepts - Need for Information Security. 7 hours Module:2 Information Security Framework 7 hours Organization and Responsibilities: Organizational Policy, Standards and Procedures - Information Security Incident Management - Legal Framework: Security Standards and Procedures. 8 hours Module:3 Security Life Cycle and Controls 8 hours Information Security Life Cycle - Resting, Audit, Review and Controls - Systems Development and Support - General Controls - People Security - User Access Controls - Systems Development and Support - General Controls - People Security - User Access Controls - Meanus Measurement 6 hours Blueprints - Frameworks and Security Models - Security Architecture Models - Various Access Control Models - Information Security Performance Measurement. 6 hours Module:5 Risk Assessment 6 hours Module:6 Risk Management 4 hours Risk Management Methoologies. Management	Upon comple	tion of	this course, the student will be able to:						
2. Analyze and explore the information security controls. 3. Assess and evaluate the risk management practices of information security. 4. Identify the disasters and recovering from them with appropriate decisions. Module:1 Information Security Principles 6 hours Information Security - Assets and Types - Threat, Vulnerability, Risk and Impact - Information Security Policy Concepts - Need for Information Security. 6 hours Module:2 Information Security Framework 7 hours Organization and Responsibilities: Organizational Policy, Standards and Procedures - Information Security Incident Management - Legal Framework: Security Standards and Procedures. 8 hours Module:3 Security Life Cycle and Controls 8 hours Information Security Life Cycle - Testing, Audit, Review and Controls - Systems Development and Support - General Controls - People Security - User Access Controls. 8 hours Module:4 Security Management Models and Performance Measurement. 6 hours Module:5 Risk Assessment 6 hours Module:5 Risk Assessment 6 hours Threats and its Categories - Vulnerabilities and its Categories - Risk Teratination - Risk Reduction - Risk Tansfer - Risk Tolerance - Overall Risk Assessment. 6 hours Module:5 Risk Management 4 hours Risk Management Framework and Process - Manag	1. Under	stand th	e principles and policies of information secur	rity.					
3. Assess and evaluate the risk management practices of information security. 4. Identify the disasters and recovering from them with appropriate decisions. Module:1 Information Security Principles 6 hours Information Security - Assets and Types - Threat, Vulnerability, Risk and Impact - Information Security Policy Concepts - Need for Information Security. 6 hours Module:2 Information Security Framework 7 hours Organization and Responsibilities: Organizational Policy, Standards and Procedures - Information Security Governance - Information Assurance Programme Implementation - Security Incident Management - Legal Framework: Security Standards and Procedures. 8 hours Module:3 Security Life Cycle and Controls 8 hours Information Security Life Cycle and Controls 8 hours 8 hours Information Security Life Cycle and Security - User Access Controls - Systems Development and Support - General Controls - People Security - User Access Controls. 8 hours Module:4 Security Management Models and Performance Measurement 6 hours Blueprints - Frameworks and Security Models - Security Architecture Models - Various Access Control Models - Information Security Performance Measurement. 6 hours Module:5 Risk Assessment 6 hours Information - Risk Analysis - Risk Evaluation - Risk Control - Risk Treatment- Alternative Risk Management - Risk Tolerance - Overall Risk Asse	2. Analy	2. Analyze and explore the information security controls.							
4. Identify the disasters and recovering from them with appropriate decisions. Module:1 Information Security Principles 6 hours Information Security - Assets and Types - Threat, Vulnerability, Risk and Impact - Information Security Policy Concepts - Need for Information Security. 7 hours Module:2 Information Security Framework 7 hours Organization and Responsibilities: Organizational Policy, Standards and Procedures - Information Security Governance - Information Assurance Programme Implementation - Security Incident Management - Legal Framework: Security Standards and Procedures. Module:3 Security Life Cycle and Controls 8 hours Information Security Life Cycle and Controls 8 hours Information Security Life Cycle - Testing, Audit, Review and Controls - Systems Development and Support - General Controls - People Security - User Access Controls. 6 hours Module:4 Security Management Models and Performance Measurement 6 hours Blueprints - Frameworks and Security Performance Measurement. 6 hours Module:5 Risk Assessment 6 hours Threats and its Categories - Vulnerabilities and its Categories - Risk - Calculation of Overall Risk - Risk Identification - Risk Management 6 hours Module:6 Risk Management General Methoologies. 6 hours Module:6 Risk Management	3. Assess	s and ev	valuate the risk management practices of infor	mation security	y.				
Module:1Information Security Principles6 hoursInformation Security- Assets and Types - Threat, Vulnerability, Risk and Impact - Information Security Policy Concepts - Need for Information Security.Module:2Information Security Framework7 hoursModule:2Information Security Framework7 hoursOrganization and Responsibilities: Organizational Policy, Standards and Procedures - Information Security Governance - Information Assurance Programme Implementation - Security Incident Management - Legal Framework: Security Standards and Procedures.8 hoursModule:3Security Life Cycle and Controls8 hoursInformation Security Life Cycle and ControlsSystems Development and Support - General Controls - People Security - User Access Controls - Technical Security - Protection from Malicious Software - Physical Security - Different Uses of Controls.6 hoursModule:4Security Management Models and Performance Maagement6 hoursModule:5Risk Assessment6 hoursModule:5Risk Assessment6 hoursModule:5Risk Assessment6 hoursModule:5Risk Analysis - Risk Evaluation - Risk Control - Risk Termination - Risk Reduction - Risk Transfer - Risk Tolerance - Overall Risk Assessment.6 hoursModule:6Risk Management4 hoursRisk Management Hethodologies.Module:7Disaster Recovery and Business Continuity Management - Resilience and Redundancy - Approaches to Writing and Implementing Plans - Need for Documentation - Risklience and Redundancy - Approaches to Writing and Implementing Plans - Need for Documentation - Maintenance and Testing.2 hours <td>4. Identit</td> <td>fy the d</td> <td>isasters and recovering from them with appro</td> <td>priate decision</td> <td>s.</td> <td></td> <td></td> <td></td> <td></td>	4. Identit	fy the d	isasters and recovering from them with appro	priate decision	s.				
Module:1Information Security Principles6 hoursInformation Security - Assets and Types - Threat, Vulnerability, Risk and Impact - Information Security Policy Concepts - Need for Information Security.Security Risk and Impact - Information SecurityModule:2Information Security Framework7 hoursOrganization and Responsibilities: Organizational Policy, Standards and Procedures - Information Security Governance - Information Assurance Programme Implementation - Security Incident Management - Legal Framework: Security Standards and Procedures.Nodule:3Module:3Security Life Cycle and Controls8 hoursInformation Security Life Cycle - Testing, Audit, Review and Controls - Systems Development and Support - General Controls - People Security - User Access Controls - Technical Security - Protection from MaliciousSoftware - Physical Security - Different Uses of Controls.Module:4Security Management Models and Performance MeasurementG hoursBlueprints - Frameworks and Security Models - Security Architecture Models - Various Access Control Models - Information Security Performance Measurement.G hoursModule:5Risk AssessmentG hoursThreats and its Categories - Vulnerabilities and its Categories - Risk - Calculation of Overall Risk - Risk Identification - Risk Ralysis - Risk Evaluation - Risk Control - Risk Tremination - Risk Reduction - Risk Management Framework and Process - Managing Risk - Risk Treatment - Alternative Risk ManagementModule:6Risk Management Approaches Continuity Management - Resilience and Redundancy - Approaches to Writing and Implementing Plans - Need for 									
Information Security- Assets and Types - Threat, Vulnerability, Risk and Impact - Information Security Policy Concepts - Need for Information Security. Module:2 Information Security Framework 7 hours Organization and Responsibilities: Organizational Policy, Standards and Procedures - Information Assurance Programme Implementation - Security Incident Management - Legal Framework: Security Standards and Procedures. 8 hours Module:3 Security Life Cycle and Controls 8 hours Information Security Life Cycle - Testing, Audit, Review and Controls - Systems Development and Support - General Controls - People Security - User Access Controls - Security - Protection from Malicioux Software - Physical Security - Different Uses of Controls. Module:4 Security Management Models and Performance Measurement 6 hours Blueprints - Frameworks and Security Models - Security Architecture Models - Various Access Control Models - Information Security Performance Measurement. 6 hours Module:5 Risk Assessment 6 hours Threats and its Categories - Vulnerabilities and its Categories - Risk - Calculation of Overall Risk - Risk Identification - Risk Analysis - Risk Evaluation - Risk Control - Risk Termination - Risk Reduction - Risk Transfer - Risk Management 4 hours Risk Management Models e Security and Business Continuity Management Hethodologies. 6 hours Module:6 Risk Management Alternative Risk Module:7 Di	Module:1	Inform	nation Security Principles					6 ha	urs
Policy Concepts - Need for Information Security.7 hoursModule:2Information Security Framework7 hoursOrganization and Responsibilities: Organizational Policy, Standards and Procedures - Information Assurance Programme Implementation - Security IncidentManagement - Legal Framework: Security Standards and Procedures.8 hoursModule:3Security Life Cycle and Controls8 hoursInformation Security Life Cycle - Testing, Audit, Review and Controls - Systems Development and Support - General Controls - People Security - User Access Controls - Technical Security - Protection from Malicious Software - Physical Security - Different Uses of Controls.Module:4Security Management Models and Performance MeasurementBlueprints - Frameworks and Security Models - Security Architecture Models - Various Access Control Models - Information Security Performance Measurement.Module:5Risk AssessmentModule:6Risk Analysis - Risk Evaluation - Risk Control - Risk Control - Risk Reduction - Risk Transfer - Risk Tolerance - Overall Risk Assessment.Module:7Disaster Recovery and Business Continuity Management Methodologies.Module:8Issater Recovery and Business Continuity Management - Resilience and Redundancy - Approaches to Writing and Implementing Plans - Need for Documentatior - Maintenance and Testing.Module:8Contemporary Issues2 hours	Information S	Security	- Assets and Types - Threat, Vulnerability, Ri	isk and Impact	- Info	rma	tion	Secu	rity
Module:2Information Security Framework7 hoursOrganizationand Responsibilities: Organizational Policy, Standards and Procedures - InformationSecurity Governance - Information Assurance Programme Implementation - Security IncidentManagement - Legal Framework: Security Standards and Procedures.Module:3Security Life Cycle and ControlsShoursInformationSecurity Life Cycle - Testing, Audit, Review and Controls - Systems Development and Support - Gerral Controls - People Security - User Access Controls - Technical Security - Protection from Malicious Software - Physical Security - Different Uses of ControlsSecurity Management Models and Performance MeasurementModule:4Security Management Models and Performance 	Policy Conce	pts - Ne	ed for Information Security.	1					
Organization and Responsibilities: Organizational Policy, Standards and Procedures - Information Security Governance - Information Assurance Programme Implementation - Security Incident Management - Legal Framework: Security Standards and Procedures. Module:3 Security Life Cycle and Controls Security Life Cycle - Testing, Audit, Review and Controls - Systems Development and Support - General Controls - People Security - User Access Controls - Technical Security - Protection from Malicious Software - Physical Security - Different Uses of Controls. Module:4 Security Management Models and Performance Measurement Blueprints - Frameworks and Security Models - Security Architecture Models - Various Access Control Models - Information Security Performance Measurement. Module:5 Risk Assessment 6 hours Module:6 Risk Management Assessment. 6 hours Module:6 Risk Management 4 hours Risk Management Framework and Process - Managing Risk - Risk Treatment- Alternative Risk Management - Resilience and Redundancy - Approaches to Writing and Implementing Plans - Need for Disaster Recovery and Business Continuity Management - Resilience and Redundancy - Approaches to Writing and Implementing Plans - Need for Documentation - Maintenance and Testing. 2 hours Module:8 Contemporary Issues 2 hours<	Module:2	Inform	nation Security Framework					7 ho	urs
Security Governance - Information Assurance Programme Implementation - Security Incident Management - Legal Framework: Security Standards and Procedures. Module:3 Security Life Cycle and Controls 8 hours Information Security Life Cycle and Controls - People Security - User Access Controls - Systems Development and Support - General Controls - People Security - Different Uses of Controls. Review and Controls. Module:4 Security Management Models and Performance Measurement 6 hours Blueprints - Frameworks and Security Models - Security Architecture Models - Various Access Control Models - Information Security Performance Measurement. 6 hours Module:5 Risk Assessment 6 hours Threats and its Categories - Vulnerabilities and its Categories - Risk - Calculation of Overall Risk - Risk Identification - Risk Kolerance - Overall Risk Assessment. 6 hours Module:6 Risk Management 4 hours Risk Management Methodologies. 0 6 hours Module:6 Risk Management 6 hours Disaster Recovery and Business Continuity Management - Resilience and Redundancy - Approaches to Writing and Implementing Plans - Need for Documentatior - Maintenance and Testing. 0 Module:8 Contemporary Issues 2 hours	Organization and Responsibilities: Organizational Policy, Standards and Procedures - Information								
Management - Legal Framework: Security Standards and Procedures.Module:3Security Life Cycle and Controls8 hoursInformation Security Life Cycle - Testing, Audit, Review and Controls - Systems Development and Support - General Controls - People Security - User Access Controls - Technical Security - Protection from Malicious Software - Physical Security - Different Uses of Controls.Module:4Security Management Models and Performance Measurement6 hoursBlueprints - Frameworks and Security Models - Security Architecture Models - Various Access Control Models - Information Security Performance Measurement.6 hoursModule:5Risk Assessment6 hoursThreats and its Categories - Vulnerabilities and its Categories - Risk - Calculation of Overall Risk - Risk Identification - Risk Analysis - Risk Evaluation - Risk Control - Risk Tremination - Risk Reduction - Risk Management Framework and Process - Managing Risk - Risk Treatment- Alternative Risk Management Modologies.4 hoursModule:6Risk Management4 hoursDisaster Recovery and Business Continuity Management - Resilience and Redundancy - Approaches to Writing and Implementing Plans - Need for Documentation - Maintenance and Testing.6 hoursModule:8Contemporary Issues2 hours	Security Gov	vernanc	e - Information Assurance Programme I	mplementation	- S	ecur	ity	Incie	lent
Module:3Security Life Cycle and Controls8 hoursInformation Security Life Cycle - Testing, Audit, Review and Controls - Systems Development and Support - General Controls - People Security - User Access Controls - Technical Security - Protection from Malicious- Technical Security - ProtectionModule:4Security Management Models and Performance Measurement6 hoursBlueprints - Frameworks and Security Models - Security Architecture Models - Various Access Control Module:56 hoursModule:5Risk Assessment6 hoursModule:5Risk Assessment6 hoursThreats and its Categories - Vulnerabilities and its Categories - Risk - Calculation of Overall Risk - Risk Identification - Risk Analysis - Risk Evaluation - Risk Control - Risk Transfer4 hoursRisk Management-4 hoursRisk Management-6 hoursModule:6Risk Management-Module:7Disaster Recovery and Business Continuity Management-Disaster Recovery Process and policy - Relationship between Disaster Recovery and Business Continuity 	Management	- Legal	Framework: Security Standards and Procedure	res.					
Information Security Life Cycle - Testing, Audit, Review and Controls - Systems Development and Support - General Controls - People Security - User Access Controls - Technical Security - Protection from Malicious Software - Physical Security - Different Uses of Controls.Module:4Security Management Models and Performance Measurement6 hoursBlueprints - Frameworks and Security Models - Security Architecture Models - Various Access Control Module:56 hoursModule:5Risk Assessment6 hoursModule:5Risk Assessment6 hoursThreats and its Categories - Vulnerabilities and its Categories - Risk - Calculation of Overall Risk - Risk Identification - Risk Analysis - Risk Evaluation - Risk Control - Risk Termination - Risk Reduction - Risk Transfer - Risk Tolerance - Overall Risk Assessment.4 hoursModule:6Risk Management4 hoursRisk Management Methodologies.6 hoursModule:7Disaster Recovery and Business Continuity Management - Resilience and Redundancy - Approaches to Writing and Implementing Plans - Need for Documentation - Maintenance and Testing.2 hoursModule:8Contemporary Issues2 hours	Module:3 Security Life Cycle and Controls							8 ho	urs
Support - General Controls - People Security - User Access Controls - Technical Security - Protection from Malicious Software - Physical Security - Different Uses of Controls. Module:4 Security Management Models and Performance Measurement 6 hours Blueprints - Frameworks and Security Models - Security Architecture Models - Various Access Control Models - Information Security Performance Measurement. 6 hours Module:5 Risk Assessment 6 hours Module:6 Risk Assessment 6 hours Threats and its Categories - Vulnerabilities and its Categories - Risk - Calculation of Overall Risk - Risk Identification - Risk Analysis - Risk Evaluation - Risk Control - Risk Transfer - Risk Tolerance - Overall Risk Assessment. 4 hours Module:6 Risk Management 4 hours Risk Management Framework and Process - Managing Risk - Risk Treatment- Alternative Risk Management Methodologies. 6 hours Module:7 Disaster Recovery and Business Continuity Management - Resilience and Redundancy - Approaches to Writing and Implementing Plans - Need for Documentation - Maintenance and Testing. 2 hours Module:8 Contemporary Issues 2 hours	Information S	Security	Life Cycle - Testing, Audit, Review and C	Controls - Syste	ems D	Deve	lopn	nent	and
from Malicious Software - Physical Security - Different Uses of Controls.Module:4Security Management Models and Performance Measurement6 hoursBlueprints - Frameworks and Security Models - Security Architecture Models - Various Access Control Models - Information Security Performance Measurement.6 hoursModule:5Risk Assessment6 hoursModule:5Risk Assessment6 hoursThreats and its Categories - Vulnerabilities and its Categories - Risk - Calculation of Overall Risk - Risk Identification - Risk Analysis - Risk Evaluation - Risk Control - Risk Termination - Risk Reduction - Risk Transfer - Risk Tolerance - Overall Risk Assessment.4 hoursModule:6Risk Management4 hoursRisk Management Framework and Process - Managing Risk - Risk Treatment- Alternative Risk Management Methodologies.6 hoursModule:7Disaster Recovery and Business Continuity Management - Resilience and Redundancy - Approaches to Writing and Implementing Plans - Need for Documentation - Maintenance and Testing.2 hoursModule:8Contemporary Issues2 hours	Support - Gei	neral Co	ontrols - People Security - User Access Control	rols - Technica	l Secu	urity	- Pr	otec	tion
Module:4Security Management Models and Performance Measurement6 hoursBlueprints - Frameworks and Security Models - Security Architecture Models - Various Access Control Models - Information Security Performance Measurement.Models - Various Access ControlModule:5Risk Assessment6 hoursModule:5Risk Assessment6 hoursThreats and its Categories - Vulnerabilities and its Categories - Risk - Calculation of Overall Risk - Risk Identification - Risk Analysis - Risk Evaluation - Risk Control - Risk Termination - Risk Reduction - Risk Tolerance - Overall Risk Assessment.4 hoursModule:6Risk Management4 hoursRisk Management Framework and Process - Managing Risk - Risk Treatment- Alternative Risk Management Wethodologies.6 hoursModule:7Disaster Recovery and Business Continuity Management - Resilience and Redundancy - Approaches to Writing and Implementing Plans - Need for Documentation - Maintenance and Testing.2 hoursModule:8Contemporary Issues2 hours	from Maliciou	us Softv	vare - Physical Security - Different Uses of C	ontrols.					
MeasurementMeasurementBlueprints - Frameworks and Security Models - Security Architecture Models - Various Access Control Models - Information Security Performance Measurement.Module:5Risk AssessmentModule:5Risk AssessmentModule:5Risk AssessmentThreats and its Categories - Vulnerabilities and its Categories - Risk - Calculation of Overall Risk - Risk Identification - Risk Analysis - Risk Evaluation - Risk Control - Risk Termination - Risk Reduction - Risk Transfer - Risk Tolerance - Overall Risk Assessment.Module:6Risk ManagementModule:7Risk ManagementModule:7Disaster Recovery and Business Continuity ManagementDisaster Recovery and policy - Relationship between Disaster Recovery and Business Continuity Management - Resilience and Redundancy - Approaches to Writing and Implementing Plans - Need for Documentation - Maintenance and Testing.Module:8Contemporary Issues2 hoursModule:8Contemporary Issues45 hours	Module:4	Secur	ity Management Models and Performance					6 ho	urs
Blueprints - Frameworks and Security Models - Security Architecture Models - Various Access ControlModels - Information Security Performance Measurement.Models - Information Security Performance Measurement.Module:5Risk Assessment6 hoursThreats and its Categories - Vulnerabilities and its Categories - Risk - Calculation of Overall Risk - RiskIdentification of Overall Risk - Risk Reduction -Threats and its Categories - Nulnerabilities and its Categories - Risk Control - Risk Termination - Risk Reduction -Risk Termination - Risk Reduction -Risk Transfer - Risk Tolerance - Overall Risk Assessment.Module:6Risk Management - Overall Risk Assessment.Module:6Risk ManagementFramework and Process - Managing Risk - Risk Treatment- Alternative Risk Management Methodologies.Ontinuity ManagementDisaster Recovery and Business Continuity Management - Resilience and Redundancy - Approaches to Writing and Implementing Plans - Need for Documentation - Maintenance and Testing.Ontenance and Testing.Module:8Contemporary Issues2 hoursModule:8Contemporary Issues2 hours		Measu	irement					9	
Models - Information Security Performance Measurement.Module:5Risk Assessment6 hoursThreats and its Categories - Vulnerabilities and its Categories - Risk - Calculation of Overall Risk - Risk Identification - Risk Analysis - Risk Evaluation - Risk Control - Risk Termination - Risk Reduction - Risk Transfer - Risk Tolerance - Overall Risk Assessment.6 hoursModule:6Risk Management4 hoursRisk Management Framework and Process - Managing Risk - Risk Treatment- Alternative Risk Management Methodologies.6 hoursModule:7Disaster Recovery and Business Continuity Management6 hoursDisaster Recovery Process and policy - Relationship between Disaster Recovery and Business Continuity Management - Resilience and Redundancy - Approaches to Writing and Implementing Plans - Need for Documentation - Maintenance and Testing.2 hoursModule:8Contemporary Issues2 hours	Blueprints - F	ramew	orks and Security Models - Security Architect	ure Models - V	ariou	s Ac	cess	Con	trol
Module:5Risk Assessment6 hoursThreats and its Categories - Vulnerabilities and its Categories - Risk - Calculation of Overall Risk - Risk Identification - Risk Analysis - Risk Evaluation - Risk Control - Risk Termination - Risk Reduction - Risk Transfer - Risk Tolerance - Overall Risk Assessment.Risk Termination - Risk Reduction - Risk Termination - Risk Reduction - Risk Management Framework and Process - Managing Risk - Risk Treatment- Alternative Risk Management Methodologies.4 hoursModule:7Disaster Recovery and Business Continuity Management6 hoursDisaster Recovery and policy - Relationship between Disaster Recovery and Business Continuity Management - Resilience and Redundancy - Approaches to Writing and Implementing Plans - Need for Documentation - Maintenance and Testing.2 hoursModule:8Contemporary Issues2 hours	Models - Info	rmation	Security Performance Measurement.	Γ				<u> </u>	
Module:6 Risk Management 4 hours Module:6 Risk Management 4 hours Risk Management Framework and Process - Managing Risk - Risk Treatment- Alternative Risk 4 hours Module:7 Disaster Recovery and Business Continuity Management - Resilience and Redundancy - Approaches to Writing and Implementing Plans - Need for Documentation - Maintenance and Testing. 6 hours Module:8 Contemporary Issues 2 hours Module:8 Contemporary Issues 2 hours	Module:5	Risk A	Assessment		6.0	-	1.D.	<u>6 ho</u>	urs
Identification - Risk Analysis - Risk Evaluation - Risk Control - Risk Termination - Risk Reduction - Risk Reduction - Risk Transfer - Risk Tolerance - Overall Risk Assessment. Module:6 Risk Management 4 hours Risk Management Framework and Process - Managing Risk - Risk Treatment- Alternative Risk Management Methodologies. 4 hours Module:7 Disaster Recovery and Business Continuity Management 6 hours Disaster Recovery Process and policy - Relationship between Disaster Recovery and Business Continuity Management - Resilience and Redundancy - Approaches to Writing and Implementing Plans - Need for Documentation - Maintenance and Testing. 2 hours Module:8 Contemporary Issues 4 hours	Threats and it	ts Categ	ories - Vulnerabilities and its Categories - Ris	k - Calculation	of Ov	veral	I R18	3K - F	X 1SK
Misk Transfer - Risk Tolerance - Overall Risk Assessment. Module:6 Risk Management 4 hours Risk Management Framework and Process - Managing Risk - Risk Treatment- Alternative Risk Management- Alternative Risk Management Methodologies. Disaster Recovery and Business Continuity Management 6 hours Disaster Recovery Process and policy - Relationship between Disaster Recovery and Business Continuity Management - Resilience and Redundancy - Approaches to Writing and Implementing Plans - Need for Documentation - Maintenance and Testing. 2 hours Module:8 Contemporary Issues 2 hours	Identification	- K1SK	Analysis - Risk Evaluation - Risk Control -	Risk Terminati	ion - I	K1SK	Red	luction	on -
Module:6Kisk Management4 noursRisk ManagementFramework and Process - Managing Risk - Risk Treatment- Alternative Risk Management Methodologies.Alternative RiskModule:7Disaster Recovery and Business Continuity Management6 hoursDisaster Recovery Process and policy - Relationship between Disaster Recovery and Business Continuity Management - Resilience and Redundancy - Approaches to Writing and Implementing Plans - Need for 	Risk Transfer	- K1SK	Tolerance - Overall Risk Assessment.					41	· · · · ·
Risk Management Framework and Process - Managing Risk - Risk Treatment- Alternative Risk Management Methodologies. Disaster Recovery and Business Continuity 6 hours Management Disaster Recovery and policy - Relationship between Disaster Recovery and Business Continuity 6 hours Disaster Recovery Process and policy - Relationship between Disaster Recovery and Business Continuity Management - Resilience and Redundancy - Approaches to Writing and Implementing Plans - Need for Documentation - Maintenance and Testing. Contemporary Issues 2 hours Module:8 Contemporary Issues 45 hours	Module:6		Vlanagement			A 1/		4 ho	urs
Management Methodologies. Module:7 Disaster Recovery and Business Continuity Management 6 hours Disaster Recovery Process and policy - Relationship between Disaster Recovery and Business Continuity Management - Resilience and Redundancy - Approaches to Writing and Implementing Plans - Need for Documentation - Maintenance and Testing. Module:8 Contemporary Issues 2 hours Module:8 Total Lecture hours: 45 hours	Risk Manage	ement I	ramework and Process - Managing Risk	- Risk Treatm	ent-	Alte	rnati	ve I	X 1SK
Module:7 Disaster Recovery and Business Continuity Management 6 hours Disaster Recovery Process and policy - Relationship between Disaster Recovery and Business Continuity Management - Resilience and Redundancy - Approaches to Writing and Implementing Plans - Need for Documentation - Maintenance and Testing. 6 hours Module:8 Contemporary Issues 2 hours Total Lecture hours:	Management	Niethoc							
Management Management Disaster Recovery Process and policy - Relationship between Disaster Recovery and Business Continuity Management - Resilience and Redundancy - Approaches to Writing and Implementing Plans - Need for Documentation - Maintenance and Testing. Module:8 Contemporary Issues 2 hours Total Lecture hours:	Module:7	Disast	er Recovery and Business Continuity					6 no	urs
Disaster Recovery Process and policy - Relationship between Disaster Recovery and Business Continuity Management - Resilience and Redundancy - Approaches to Writing and Implementing Plans - Need for Documentation - Maintenance and Testing. Module:8 Contemporary Issues 2 hours Total Lecture hours:	Disector	Mana	gement		- 1 D		C		
Management - Resinence and Redundancy - Approaches to writing and implementing Plans - Need for Documentation - Maintenance and Testing. Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours	Disaster Recovery Process and policy - Relationship between Disaster Recovery and Business Continuity								
Module:8 Contemporary Issues 2 hours Total Lecture hours: 45 hours	Management - Residence and Redundancy - Approaches to writing and implementing Plans - Need for								
Module:s Contemporary issues 2 hours Total Lecture hours: 45 hours	Modulo:8	Conte	morary Issues					2 ho	
Total Lecture hours: 45 hours		Conte						<i>4</i> II0	u1 S
1 Utal Lecture nours, 45 nours			Tatal Laatura haura				/	5 ho	lira
			Total Lecture nours.				-	5 110	ui 3

Text Book(s)							
1.	Andy Taylor, David Alexander, Amanda Finch and David Sutton, "Information Security						
	Principles",2020, Third Edition, BCS, United Kingdom.						
2.	Michael E. Whitman and Herbert J. Mattord, "Management of Information Security", 2018,						
	Sixth Edition, Cengage Learning, United States of America.						
Reference Books							
1.	Calder, A., and Watkins, S. G., "Information security risk management for						
	ISO27001/ISO27002", 2018, Third Edition, IT Governance Ltd, United States of America.						
2.	Susanto, H., and Almunawar, M. N, "Information security management systems: A novel						
	framework and software as a tool for compliance with information security standards", 2018, First						
	Edition, Apple Academic Press, New York.						
Mod	le of Evaluation: CAT / Assignment / Quiz / FAT						
Reco	ommended by Board of Studies 26-07-2022						
App	roved by Academic Council No.67 Date 08-08-2022						

Course cod	e	CRYPTOSYSTEMS			L	Т	P	С		
MCSE609I					2	0	0	2		
Pre-requisi	te	NIL		S	ylla	bus '	vers	sion		
							v	.1.0		
Course Ob	jectives	5								
1. To l	earn the	e concept of Cryptosystems.								
2. To u	Indersta	nd the design of cryptanalytics and security a	algorithms.							
3. To e	xplore	various authentication and hashing algorithm	18.							
Course Ou	tcome									
Upon comp	letion o	f this course, the student will be able to:								
1. Understand the fundamental of Cryptosystems requirements.										
2. Identify and apply the concept of Cryptographic algorithms.										
3. Analy	ze and	explore the use of authentication and hashing	g.							
4. Gain a	a deep i	nsight into attacks and emerging security alg	orithms.							
5. Explo	re and a	analyze of signature and key exchange algori	thms.							
							4 1			
Module:1	Math	ematical Foundations of Cryptosystems	F1 1 7	T 1			<u>i ho</u>			
Cryptographic attacks – Modular arithmetic – Fermat's Theorem, Euler's Theorem, Extended										
Euclidean A	Algorith An Matl	m, Chinese Remainder Theorem - Solovay S	Straseen Test - T	ne Ja	acoi	51 S y	mo	01 – 10		
Pollard's Rho Method, Pollard's p-1 Method, Pollard's Kangaroo Algorithm.										
Cryptosystems: Affine Cipher Vigenere Cipher Hill Cipher Linear Feedback Shift Register (LESR)										
Cryptosystems: Affine Cipher, Vigenere Cipher, Hill Cipher and J ESP										
- Cryptanarysis on Annie Cipher, vigenere Cipher, fill Cipher and LFSK.										
WIOUULE:5 DIOCK CIPITERS and Stream Cipiters 4 nours Shonnon's Theory Linear Cruptonalusis Differential Cruptonalusis Description										
of DES Description and Analysis of AES Modes of Operation										
Module:4	Hash	Functions and Message Authentication				4	1 ho	urs		
Hash Functi	ions and	1 Data Integrity – Security of Hash Function	s - MD5 - SHA	512	– N	leste	d M	AC		
and HMAC	– CBC	MAC.	5 1120 5111		-					
Module:5	Publi	c Key Cryptography and Discrete				4	1 ho	urs		
	Loga	rithms								
RSA Crypto	osystem	- Shanks' Algorithm - Elliptic Curves Over	the Reals – Elli	ptic	Cur	ves]	Mod	lulo		
a Prime – E	lliptic (Curves Over Finite Fields – ElGamal Crypto	systems on Ellip	otic C	Curv	'es -	Elli	ptic		
Curve Diffi	e – Hell	man.								
Module:6	Signa	ture Schemes and Post-Quantum				5	5 ho	urs		
	Cryp	tography								
Number Th	eory R	esearch Unit (NTRU): Basics, Lattices and	Security of N	ΓRU	- (Code	e Ba	ised		
Cryptograp	ny – N	IcEliece Cryptography – Lamport Signatu	re Scheme – W	Vinte	rnit	z Si	gna	ture		
Scheme – M	Ierkle S	signature Scheme.								
Module:7	Key	Distribution and Key Agreement				2	1 ho	urs		
	Schei	nes	11 0 1 1	0.1		17	1			
Key Predist	r1but101	1 - Session Key Distribution Schemes: Need	anam Schroeder	Sch	eme	э, Ке		ros,		
Cruntoquate	gaway	scheme – Dime-Heilman Key Agreement	- MII Key A	gree	mei	1l -	Pail	mer		
Cryptosystem – Argeoraic Suucinies – Group and King.										
Modulare	Modulo:8 Contemporary Issues 1 hours									
moune:0	Cont	any or at y abbach					110	ul S		
		Total Lecture hours				3() ho	lire		
		i otar Decture nours.				50	, 110	u 13		
	l									

Text	Text Book(s)								
1.	Douglas R. Stinson, "Cryptogr	aphy: Theory and	Practice",	2018, 4th Edition, CRC Press,					
	United states.								
Reference Books									
1.	Bruce Schneier, "Applied Cryptography: Protocols, Algorithms and Source code in C", 2017,								
	20 th edition, John Wiley & Sons, New York.								
2.	Behrouz A Forouzan, Debdeep	Mukhopadhyay, "Ci	ryptograph	y and Network Security", 2011,					
	Tata Mcgraw Hill education priv	vate limited, India							
Mod	e of Evaluation: CAT / Assignme	ent / Quiz / FAT							
Reco	ommended by Board of Studies	26-07-2022							
Appi	roved by Academic Council	No.67	Date	08-08-2022					

Cou	rse code		CRYPTOSYSTE	MS LAI	3	L	Τ	P	С	
MCS	SE609P					0	0	2	1	
Pre-	requisite	NIL				Sylla	bus v	vers	ion	
								v.	1.0	
Cou	rse Objective	S								
1.	To learn the	e concept of Crypto	osystems.							
2.	To understa	and the design of cr	yptanalytics and se	ecurity al	gorithms.					
3.	To explore	various authenticat	tion and hashing al	gorithms.						
Course Outcome										
Upor	n completion	of this course, the s	student will be able	to:	• •					
	Gain a deep	insight into attacks	and emerging sec	urity algo	prithms.					
2.	Explore and	analyze of signatu	re and key exchang	ge algorit	nms.					
Indi	cative Experi	iments	1:56							
1.	Implement a	client and a server	r on different comp	outers. Pe	rform the com	municati	lon			
2	between these two entities by using KSA cryptosystem.									
Ζ.	hat has a two antities by using digital signature counters. Perform the authentication of sender									
3	between these two entities by using digital signature cryptosystem									
<u>э.</u> Л	Implementi	$1 a H \Delta_{-512}$ messa	ge digest algorithm		y exchange arg	omunn				
- 1 . 5	Demonstrate	the classical crypt	tography algorithm	S						
6.	Implement I	Data Encryption Sta	andard algorithm.	.0						
7.	Implement a	session key agree	ment algorithm.							
8.	Demonstrate	e the hash-based m	essage authenticati	on code (HMAC) algori	ithm.				
9.	Implement I	ElGamal cryptosyst	tems on elliptic cur	ves						
10.	Implement A	Advanced Encrypti	on Standard algorit	thm						
	↓									
			Total Lecture	hours:			30) ho	urs	
Text	Book(s)									
1.	Douglas R.	Stinson, "Cryptog	raphy: Theory and	Practice	", 2018, 4th E	dition,	CRC	Pro	ess,	
	United states	3.								
Refe	rence Books	(s)			1 10				1.5	
1.	Bruce Schne	eier, "Applied Cryp	tography: Protocol	s, Algori	thms and Source	e code i	n C'	[,] 20	17,	
2	20^{ch} edition,	John Wiley & Son	s, New York.	٦		- 1- C	····,	, 20	11	
۷.	Denrouz A F	v Hill education and	wuknopaanyay, "	ryptogra	ipny and Netwo	Jrk Secu	rity	, 20	11,	
Mode of Evaluation: Continuous Assessment / EAT										
Recommended by Board of Studies 26.07.2022										
Ann	roved by Δcar	demic Council	No 67	Date	08-08-202	2				
Luhh	loved by Acal		110.07	Date	00-00-202	4				

Course cod	e	PENETRATION TESTING AND VULNERABILITY	L	Τ	P	С				
		ASSESSMENT								
MCSE610L	4		2	0	0	2				
Pre-requisi	te	NIL	S	<u>/llab</u>	us v	ersion				
						v.1.0				
Course Obj	jective	es								
1. To c	ompre	chend the security framework related occurrences and knowl	edge	on e	xpec	cted				
protections, and countermeasures against normal vulnerabilities.										
2. To ic	dentify	y security weaknesses in a network, machine, and in software	e.							
3. To make students familiarization with cyber kill-chains.										
Course Ordennes										
Upon compl	lotion	of this course, the student will be able to:								
		of this course, the student will be able to:	voto	man	roto					
1. Iden	ury na	aws and vulnerabilities in applications, websites, networks, s	yste	ns, p	1010	cois,				
2 Depl	ov an	d test exploits over targeting operating systems and services								
3 Rich	know	d test exploits over targeting operating systems and services dedge on legal and ethical issues related to vulnerability and	nen	etrati	on te	esting				
4 Abili	itv to	perform pentest on target and generate a report based on the	test :	and c	leter	mine				
the s	ecurit	v threats and vulnerabilities in computer networks.	cest (ina c	101011	lillile				
5. Usin	g the	acquired knowledge into practice for testing the vulnerabiliti	es ai	nd id	entif	ving				
threa	its.					J8				
Module:1	Pent	esting and Information Security			4	hours				
Pentester – Types of Hackers – Pentest Methodology – Pentest Types – Vulnerability Scanning –										
Vulnerabilit	y Ass	essments – Pentest Target and Specializations - Asset Manag	geme	nt: C	T AI	Triad –				
Security Co	ntrols	- Access Controls - Incident Responses - Malware - A	Adva	nced	Per	sistent				
Threats – Cy	yber K	Kill Chain – Air-gapped Machines – Dark Web.								
Module:2	Reco	on and Hijacking			4	hours				
Reconnaissa	nce –	External ¬- Dumpster Diving – Social Media – Social Eng	ineer	ing -	Inte	ernal –				
Sniffing and	Scan	ning – De-Authentication of Attacks – Detection Mechanism	- Ses	sion	Hija	cking:				
Blind and N	on-Bl	ind Spoofing - Detection and Prevention Mechanisms.	r							
Module:3	Netv	vork and Wireless Mayhem			4	hours				
WEP Theor	y – SS	SID - WPA – WPS - MAC Filtering – Port Security – IPsec	- Wa	r Div	ving:	Basic				
Web Crack	ıng –	Detecting Wireless Attacks - Fake Authentication – H	ands	hake	The	eory -				
Bypassing F	irewa	Ils – Evading Intruder Detection System - Securing Network	tror	n Att	tacks					
Module:4	Web	Server Attacks	ļ		4	hours				
Understandi	ng W	eb Languages - Web Architecture - Webpage Spoofing – Inf	orm	ation	Gat	hering				
From Target	web	sites – Finding Subdomains – Files Based Analysis - Cook	ies F	Iandi	ling	- web				
Page Attack	$\frac{S - Al}{Injoe}$	tion Vulnershility	IVIF	Code	<u>3 mje</u> 4	bound				
Databases	Tostir	uon Vuinerability Securing SOI Server Detecting	Dat	ahass	4 > \ \ ff	nours				
Protection Ac	result vainst l	Database Attacks - File Unload Vulnerability – Inclusion Vulnerab	ility.	abase . Cod	s Au e Exe	acks –				
– Local File –	– Rem	ote File – Mitigation Strategies.	mey	Cou	C LA	Jourion				
Module:6	Gain	ing Access			5	hours				
Introduction	to Gai	ning Access – Server Side – Client Side – Post – Exploitation S	Serve	r Sid	e Att	tacks –				
Metasploit ar	nd MS	FS - Scripting Vulnerabilities - Automatic Vulnerability Compli	ance	s usir	ng O	WASP				
ZAP.					-					
Module:7	Escal	ation			4	hours				
Trojan, Viru	ises an	d Backdoor Applications - Detection Mechanism - Unix Permissi	on ar	id Ro	ot A	ccess				
- Butter ov	- Buffer overflow - Memory Architecture - Examples - Escalation - Linux - Window - Preventing									
Modulo 9	-DD(JS – Detection and Prevention – 100is.			1	hours				
moune:0	COII	comportary 155005			1	nours				
		Tatal Lactura hourse			30	hours				
		Total Lecture nours:			50	110013				

Text Book(s)							
1.	Phillip L. Wylie, Kim Crawley, "The	e Pentester BluePrint	: Starting a Career as	s an Ethical Hacker",			
	2020, Wiley, United States.						
2.	Sabih, Zaid, "Learn Ethical Hacking	from Scratch: Your s	from Scratch: Your stepping stone to penetration testing", 2018				
	Packt Publishing Ltd, United Kingdom.						
Reference Books							
1.	Diogenes, Yuri, and Erdal Ozkaya, "Cybersecurity??? Attack and Defense Strategies: Infrastructure						
	security with Red Team and Blue Tea	am tactics", 2018, Pac	ckt Publishing Ltd, U	nited Kingdom.			
2.	Andrew Whitaker, and Daniel P. New	man. "Penetration Te	esting and Network I	Defense", 2005, Cisco			
	Press, New Jersey.		-				
Mod	e of Evaluation: CAT / Assignment	/ Quiz / FAT					
Reco	ommended by Board of Studies	26-07-2022					
Appi	roved by Academic Council	No.67	Date	08-08-2022			

Соі	ırse code	PENETRATION TEST ASSESSMENT LAB	ING AND VULNERABI	LITY	L	'	Г	P	С
MCS	SE610P				0		0	2	1
Pre-	requisite				Sylla	ab	us v	ers	ion
								v.	1.0
Coi	ırse Objecti [,]	ves:							
1.	To compre	hend the security framework	k related occurrences a	nd knowledge on e	xpecte	ed			
	protections	, and countermeasures again	nst normal vulnerabiliti	es.					
2.	To identify	v security weaknesses in a ne	etwork, machine, and ir	n software.					
3.	To make st	tudents familiarization with	cyber kill-chains.						
Coi	arse Outcom	ie:							
Upoi	n completion	of this course, the student v	vill be able to:						
1.	Ability to p	perform pentest on target an	d generate a report base	ed on the test and d	eterm	in	e the	e	
	security the	reats and vulnerabilities in c	omputer networks.						
2.	Using the a	acquired knowledge into pra	ctice for testing the vul	nerabilities and ide	entifyi	ng	g thro	eat	s.
List	of Challeng	ing Experiments (Indicativ	/e)						
1.	Set up of Ka	li Linux in a Virtual machine a	and setup with DNS info a	and collection of			3	ho	urs
	local networ	ks							
2.	Scan the net	work for Windows XP and Wi	ndows 7 Target machines	in local			3	ho	urs
	network and	virtual network							
3.	Identify the	open ports and firewall rules se	etup				2	ho	urs
4.	Use passwor	d guessing tools to guess a pas	ssword. Use password str	engthening tools			2	ho	urs
	to strengther	the password. Try guessing th	e password and tabulate	the enhanced					
	difficulty du	difficulty due to length of password and addition of special characters.							
5								ho	1120
5.	Extract pass	word hashes from Windows X	P/NT machine. Use a pass	sword extraction			2	110	uis
	tool, using word list, single crack or external mode to recover the password.								
	increase the	tomplexity of the password an	id determine the point at	which the					
6	Cracking Liu	nux passwords					2	ho	1120
0.	Experiments	on SOL injections					$\frac{2}{2}$	ho	urs
7.	Analysis of	WEP flaws					$\frac{2}{2}$	ho	urs
0.	Experiments	on Wireless DDoS Attacks					$\frac{2}{2}$	ho	urs
<i>9</i> .	Prevention a	gainst Cross Site Scripting Att	acks				$\frac{2}{2}$	ho	urs
10.	Experiments	on Metasploit Framework	deks				$\frac{2}{2}$	ho	urs
11.	Cross Site S	crinting					$\frac{2}{2}$	ho	urs
12.	Cross Site B	equest Forgery					$\frac{2}{2}$	ho	urs
13. 14	File upload y	ulnerability on social engineer	inσ				$\frac{2}{2}$	ho	urs
Tot	al Laborato	ry Hours					30	hoi	irs
100		iy iiou is					501	100	
Tex	t Book(s)								
1.	Phillip L. Wy	lie, Kim Crawley, "The Pentes	ster BluePrint: Starting a	Career as an Ethical	Hacke	r".	, 202	0,	
	Wiley, United	l States.	C C						
2.	Sabih, Zaid, "	Learn Ethical Hacking from S	cratch: Your stepping sto	ne to penetration test	ting", 1	20	18 P	ack	ct
	Publishing Lt	d, United Kingdom.							
Refe	rence Book(s)							
1.	Diogenes, Yu	ri, and Erdal Ozkaya, "Cybers	ecurity??? Attack and De	efense Strategies: Inf	rastruc	ctu	re se	ecui	rity
	with Red Tea	m and Blue Team tactics", 201	8, Packt Publishing Ltd,	United Kingdom.					
2.	Andrew Whit	aker, and Daniel P. Newman.	"Penetration Testing and	Network Defense",	2005,	С	isco	Pre	ess,
	New Jersey.								
Mo	de of Evaluat	tion: Continuous Assessmen	nt / FAT						
Rec	ommended by	Board of Studies	26-07-2022						
App	proved by Ac	ademic Council	No. 67	Date	08-0	8-	$20\overline{22}$	2	

MCSE611L Malware Analysis 2 0 0 2 Pre-requisite NIL Syllabus version v.1.0 Course Objectives v.1.0 v.1.0 1. To introduce malware taxonomy and life cycle. v.1.0 v.1.0 2. To analyze malware samples using static, dynamic analysis, and reverse engineering techniques. v.1.0 Course Outcomes After completion of this course, the student shall be able to: 1. Apply the static and dynamic malware analysis on emerging samples. 2. Analyze the executable file and malware classification. 3. Understand the disassemblers, debuggers, and decompilers in malware analysis. 4. 5. Apply the reverse-engineering of malware and Obfuscation using emerging tools. 4 hours Module:1 Introduction to Malware 4 hours Module:2 Static Malware Analysis 4 hours Fingerprinting the Malware - Pi: File types, and header analysis, Extracting Strings - Classifying Malware using YARA - Tools: PEi dand TrID, MASTIFF, PE executables. 4 hours Module:3 Dynamic Malware Analysis 4 hours Reverse engineering as a process - Binary analysis tools, Disassemblers - Debuggers - Decompilers - Identification and Extraction of Hidden Components - Typical malware delaburey. Module:3	Course code	Course title	L T P C							
Pre-requisite NIL Syllabus version Course Objectives v.1.0 1. To introduce malware taxonomy and life cycle. 2. 2. To analyze malware samples using static, dynamic analysis, and reverse engineering techniques. 3. 3. To detect and analyze obfuscation and anti-malware techniques. Course Outcomes After completion of this course, the student shall be able to: 1. 1. Apply the static and dynamic malware analysis on emerging samples. 2. 2. Analyze the executable file and malware classification. 3. 3. Understand the disassemblers, debuggers, and decompilers in malware analysis. 4. 4. Explore the anti-malware analysis techniques. 5. 5. Apply the reverse-engineering of malware and Obfuscation using emerging tools. 4 hours Malware Taxonomy - Malware Attack Life Cycle - The Combat Teams - Anti-malware Products- Reverse 4 hours Infroduction to Malware Mack Life Cycle - The Combat Teams - Anti-malware low of the using YARA - Tools: PEid and TrID, MASTIFF, PE executables. 4 hours Module:3 Dynamic Malware Atalysis 4 hours Behavior Events Analysis using ProcMon and Autoruns - Detecting Code Injection - Automated dynamic analysis - Sandboxing: Tools and Techniques - Virus Total. 4 hours Module:	MCSE611L	Malware Analysis	2	0	0	2				
Course Objectives v.1.0 1. To introduce malware taxonomy and life cycle. v.1.0 2. To analyze malware samples using static, dynamic analysis, and reverse engineering techniques. To detect and analyze obfuscation and anti-malware techniques. Course Outcomes After completion of this course, the student shall be able to: 1. Apply the static and dynamic malware analysis on emerging samples. 2. Analyze the executable file and malware classification. 3. Understand the disassemblers, debuggers, and decompilers in malware analysis. 4. Explore the anti-malware analysis techniques. 4 hours Module:1 Introduction to Malware 4 hours Malware Taxonomy - Malware Attack Life Cycle - The Combat Teams - Anti-malware Products- Reverse Engineering for Windows and Linux systems. 4 hours Module:2 Static Malware Analysis 4 hours Fingerprinting the Malware - PE: File types, and header analysis, Extracting Strings - Classifying Malware using YARA - Tools: PEid and TrID, MASTIFF, PE executables. 4 hours Module:3 Dynamic Malware Analysis 4 hours Module:4 Prepare for Reverse Engineering as process - Binary analysis tools, Disassemblers - Debuggers - Decompilers - Identification and Extraction of Hidden Components - Typical malware behavior - Malware delivery. Module:5 Module:5 Build and Debug the Malware - Assembly of data - Encrypted data ident	Pre-requisite	NIL	Syll	abus	s vers	sion				
Course Objectives 1. To introduce malware taxonomy and life cycle. 2. To analyze malware samples using static, dynamic analysis, and reverse engineering techniques. 3. To detect and analyze obfuscation and anti-malware techniques. Course Outcomes After completion of this course, the student shall be able to: . 1. Apply the static and dynamic malware analysis on emerging samples. . 2. Analyze the executable file and malware classification. . 3. Understand the disassemblers, debuggers, and decompilers in malware analysis. . 4. Explore the anti-malware analysis techniques. . 5. Apply the reverse-engineering of malware and Obfuscation using emerging tools. . Module:1 Introduction to Malware 4 hours Malware Taxonomy - Malware Attack Life Cycle - The Combat Teams - Anti-malware Products- Reverse Engineering for Windows and Linux systems. 4 hours Module:2 Static Malware Analysis 4 hours Fingerprinting the Malware Analysis 4 hours Behavior Events Analysis using ProcMon and Autoruns - Detecting Code Injection - Automated dynamic analysis - Sandboxing: Tools and Techniques - Virus Total. 4 hours Module:3 Dynamic Malware Analysis 4 hours Module:4 Prepare for Reverse Enginecring as a process - Binary analysis tools,					v	1.0				
1. To introduce malware taxonomy and life cycle. 2. To analyze malware samples using static, dynamic analysis, and reverse engineering techniques. 3. To detect and analyze obfuscation and anti-malware techniques. Course Outcomes After completion of this course, the student shall be able to: 1. Apply the static and dynamic malware analysis on emerging samples. 2. Analyze the executable file and malware classification. 3. Understand the disassemblers, debuggers, and decompilers in malware analysis. 4. Explore the anti-malware analysis techniques. 5. Apply the reverse-engineering of malware and Obfuscation using emerging tools. Module:1 Introduction to Malware 4 hours Malware Taxonomy - Malware Attack Life Cycle - The Combat Teams - Anti-malware Products- Reverse Engineering for Windows and Linux systems. Module:2 Static Malware Analysis Module:3 Dynamic Malware Analysis Module:4 Prepare for Reverse Engineering 4 hours Behavior Events Analysis using ProcMon and Autoruns - Detecting Code Injection - Automated dynamic analysis - Sandboxing: Tools and Techniques - Virus Total. 4 hours Reverse engineering as a process - Binary analysis tools, Disassemblers - Debuggers - Decompilers - Identification and Extraction of Hidden Components - Typical malware behavior - Malware delivery.	Course Objectives									
2. To analyze malware samples using static, dynamic analysis, and reverse engineering techniques. 3. To detect and analyze obfuscation and anti-malware techniques. Course Outcomes After completion of this course, the student shall be able to: 1. Apply the static and dynamic malware analysis on emerging samples. 2. Analyze the executable file and malware classification. 3. Understand the disassemblers, debuggers, and decompilers in malware analysis. 4. Explore the anti-malware analysis techniques. 5. Apply the reverse-engineering of malware and Obfuscation using emerging tools. Module:1 Introduction to Malware Malware Taxonomy - Malware Attack Life Cycle - The Combat Teams - Anti-malware Products- Reverse Engineering for Windows and Linux systems. 4 hours Module:2 Static Malware Analysis 4 hours Fingerprinting the Malware - PE: File types, and header analysis, Extracting Strings - Classifying Malware using YARA - Tools: PEid and TrID, MASTIFF, PE executables. Module:3 Dynamic Malware Analysis 4 hours Behavior Events Analysis using ProcMon and Autoruns - Detecting Code Injection - Automated dynamic analysis - Samboxing: Tools and Techniques - Virus Total. 4 hours Module:4 Prepare for Reverse Engineering 4 hours Reverse engincering as a process - B	1. To introduce	malware taxonomy and life cycle.								
3. To detect and analyze obfuscation and anti-malware techniques. Course Outcomes After completion of this course, the student shall be able to: 1. Apply the static and dynamic malware analysis on emerging samples. 2. Analyze the executable file and malware classification. 3. Understand the disassemblers, debuggers, and decompilers in malware analysis. 4. Explore the anti-malware analysis techniques. 5. Apply the reverse-engineering of malware and Obfuscation using emerging tools. Module:1 Introduction to Malware Molue:2 Static Malware Attack Life Cycle - The Combat Teams - Anti-malware Products- Reverse Engineering for Windows and Linux systems. Module:2 Istic Malware Analysis 4 hours Fingerprinting the Malware analysis, Extracting Strings - Classifying Malware using YARA - Tools: PEid and TrID, MASTIFF, PE executables. 4 hours Module:3 Dynamic Malware Analysis 4 hours Module:4 Prepare for Reverse Engineering 4 hours Reverse engineering as a process - Binary analysis tools, Disassemblers - Debuggers - Decompilers - Identification and Extraction of Hidden Components - Typical malware behavior - Malware delivery. Module:5 Module:5 Build and Debug the Malware 5 hours File Obfuscation Techniques - Dechiques - Assembly of data - Encrypted data identification - De	2. To analyze m	alware samples using static, dynamic analysis, and reverse engined	ering te	chni	ques	•				
Course Outcomes After completion of this course, the student shall be able to: 1. Apply the static and dynamic malware analysis on emerging samples. 2. Analyze the executable file and malware classification. 3. Understand the disassemblers, debuggers, and decompilers in malware analysis. 4. Explore the anti-malware analysis techniques. 5. Apply the reverse-engineering of malware and Obfuscation using emerging tools. Module:1 Introduction to Malware Malware Taxonomy - Malware Attack Life Cycle - The Combat Teams - Anti-malware Products- Reverse Engineering for Windows and Linux systems. Module:2 Static Malware Analysis Ingerprinting the Malware - PE: File types, and header analysis, Extracting Strings - Classifying Malware using YARA - Tools: PEid and TrID, MASTIFF, PE executables. Module:3 Dynamic Malware Analysis Module:4 Prepare for Reverse Engineering 4 hours Behavior Events Analysis using ProcMon and Autoruns - Detecting Code Injection - Automated dynamic analysis - Sandboxing: Tools and Techniques - Virus Total. 4 hours Reverse engineering as a process - Binary analysis tools, Disassemblers - Debuggers - Decompilers - Identification and Extraction of Hidden Components - Typical malware behavior - Malware delivery. Module:5 Module:6 Obfuscation Techniques A hours Low-Level Language: Registers, Memor	3. To detect and	l analyze obfuscation and anti-malware techniques.								
After completion of this course, the student shall be able to: 1. Apply the static and dynamic malware analysis on emerging samples. 2. Analyze the executable file and malware classification. 3. Understand the disassemblers, debuggers, and decompilers in malware analysis. 4. Explore the anti-malware analysis techniques. 5. Apply the reverse-engineering of malware and Obfuscation using emerging tools. Module:1 Introduction to Malware 4 hours Malware Taxonomy - Malware Antack Life Cycle - The Combat Teams - Anti-malware Products- Reverse Engineering for Windows and Linux systems. Module:2 Static Malware Analysis Fingerprinting the Malware - PE: File types, and header analysis, Extracting Strings - Classifying Malware using YARA - Tools: PEid and TrID, MASTIFF, PE executables. Module:3 Dynamic Malware Analysis Fingerprinting the Malware Pice File types, and header analysis, Extracting Strings - Classifying Malware using YARA - Tools: PEid and TrID, MASTIFF, PE executables. Module:3 Dynamic Malware Analysis Fingerprinting the Malware Pice File types, and header analysis, Extracting Strings - Classifying Malware using YARA - Tools: PEid and TrID, MASTIFF, PE executables. Module:3 Dynamic Malware Analysis File Obtaing: Tools and Techniques - Virus Total. Module:4 Prepare for Reverse Engineering	Course Outcomes									
1. Apply the static and dynamic malware analysis on emerging samples. 2. Analyze the executable file and malware classification. 3. Understand the disassemblers, debuggers, and decompilers in malware analysis. 4. Explore the anti-malware analysis techniques. 5. Apply the reverse-engineering of malware and Obfuscation using emerging tools. Module:1 Introduction to Malware Module:2 Introduction to Malware and Obfuscation using emerging tools. Module:3 Introduction to Malware Attack Life Cycle - The Combat Teams - Anti-malware Products- Reverse Engineering for Windows and Linux systems. Module:2 Static Malware Analysis 4 hours Fingerprinting the Malware Analysis 4 hours Module:3 Dynamic Malware Analysis 4 hours Module:3 Dynamic Malware Analysis 4 hours Behavior Events Analysis using ProcMon and Autoruns - Detecting Code Injection - Automated dynamic analysis - Sandboxing: Tools and Techniques - Virus Total. 4 hours Module:4 Prepare for Reverse Engineering 4 hours Module:5 Build and Debug the Malware 4 hours Module:6 Obfuscation Techniques Typical malware behavior - Malware delivery. Module:6 Obfuscation Techniques Assembly of data - Encrypted data identification - Decry	After completion of	this course, the student shall be able to:								
1. Apply the static and dynamic malware analysis on emerging samples. 2. Analyze the executable file and malware classification. 3. Understand the disassemblers, debuggers, and decompilers in malware analysis. 4. Explore the anti-malware analysis techniques. 5. Apply the reverse-engineering of malware and Obfuscation using emerging tools. Module:1 Introduction to Malware Malware Taxonomy - Malware Analysis 4 hours Module:2 Static Malware Analysis 4 hours Fingerprinting the Malware - PE: File types, and header analysis, Extracting Strings - Classifying Malware using YARA - Tools: PEid and TrID, MASTIFF, PE executables. 4 hours Module:3 Dynamic Malware Analysis 4 hours Behavior Events Analysis using ProcMon and Autoruns - Detecting Code Injection - Automated dynamic analysis - Sandboxing: Tools and Techniques - Virus Total. 4 hours Module:4 Prepare for Reverse Engineering 4 hours Reverse engineering as a process - Binary analysis tools, Disassemblers - Debuggers - Decompilers - Identification and Extraction of Hidden Components - Typical malware behavior - Malware delivery. 4 hours Module:5 Build and Debug the Malware 4 hours Low-Level Language: Registers, Memory addressing, Opcode bytes - Builder and debugger: IDA Pro, Ollydebug -Windows API libraries - Packing and Encryption. Module:7 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></tr<>										
 2. Analyze the executable file and malware classification. 3. Understand the disassemblers, debuggers, and decompilers in malware analysis. 4. Explore the anti-malware analysis techniques. 5. Apply the reverse-engineering of malware and Obfuscation using emerging tools. Module:1 Introduction to Malware Malware and Obfuscation using emerging tools. Module:2 Static Malware Antack Life Cycle - The Combat Teams - Anti-malware Products- Reverse Engineering for Windows and Linux systems. Module:2 Static Malware Analysis 4 hours Fingerprinting the Malware - PE: File types, and header analysis, Extracting Strings - Classifying Malware using YARA - Tools: PEid and TrID, MASTIFF, PE executables. Module:3 Dynamic Malware Analysis 4 hours Behavior Events Analysis using ProcMon and Autoruns - Detecting Code Injection - Automated dynamic analysis - Sandboxing: Tools and Techniques - Virus Total. Module:4 Prepare for Reverse Engineering 4 hours Reverse engineering as a process - Binary analysis tools, Disassemblers - Debuggers - Decompilers - Identification and Extraction of Hidden Components - Typical malware behavior - Malware delivery. Module:5 Build and Debug the Malware Acception. Module:6 Obfuscation Techniques - Assembly of data - Encrypted data identification - Decrypting with x86dsde - Control flow flattening obfuscation - Garbage code insertion - Dynamic library loading. Module:7 Anti-Malware analysis - Assembly of data - Encrypted data identification - Decrypting with x86dsde - Control flow flattening obfuscation - Garbage code insertion - Dynamic library loading. Anti-debugging - Anti-VM - Anti-emulation - Anti-dumping - SysInternals Suite Tools - Deadlisting - Analysis of HTML scripts - MS Office macro analysis - PDF file analysis - SWFTools - FLASM - Flare. Module:8 Contemporary Issues - DPD fil	1. Apply the static and dynamic malware analysis on emerging samples.									
 3. Understand the disassemblers, debuggers, and decompilers in malware analysis. 4. Explore the anti-malware analysis techniques. 5. Apply the reverse-engineering of malware and Obfuscation using emerging tools. Module:1 Introduction to Malware 4 hours Malware Taxonomy - Malware Attack Life Cycle - The Combat Teams - Anti-malware Products- Reverse Engineering for Windows and Linux systems. Module:2 Static Malware Analysis 4 hours Fingerprinting the Malware - PE: File types, and header analysis, Extracting Strings - Classifying Malware using YARA - Tools: PEid and TrID, MASTIFF, PE executables. Module:3 Dynamic Malware Analysis 4 hours Behavior Events Analysis using ProcMon and Autoruns - Detecting Code Injection - Automated dynamic analysis - Sandboxing: Tools and Techniques - Virus Total. Module:4 Prepare for Reverse Engineering 4 hours Reverse engineering as a process - Binary analysis tools, Disassemblers - Debuggers - Decompilers - Identification and Extraction of Hidden Components - Typical malware behavior - Malware delivery. Module:5 Build and Debug the Malware 4 thours Low-Level Language: Registers, Memory addressing, Opcode bytes - Builder and debugger: IDA Pro, Ollydebug -Windows API libraries - Packing and Encryption. Module:6 Obfuscation Techniques - Assembly of data - Encrypted data identification - Decrypting with x86dbg - Control flow flattening obfuscation - Garbage code insertion - Dynamic library loading. Module:7 Anti-Malware analysis - PDF file analysis - SWFTools - Deadlisting - Analysis of HTML scripts - MS Office macro analysis - PDF file analysis - SWFTools - FLASM - Flare. Module:8 Otheres - MS Office macro analysis - PDF file analysis - SWFTools - FLASM - Flare. Module:8 Contemporary Issues 1 hours 	2. Analyze the e	executable file and malware classification.								
 Apply the reverse-engineering of malware and Obfuscation using emerging tools. Module:1 Introduction to Malware Malware and Obfuscation using emerging tools. Module:2 Static Malware Attack Life Cycle - The Combat Teams - Anti-malware Products- Reverse Engineering for Windows and Linux systems. Module:2 Static Malware Analysis 4 hours Fingerprinting the Malware - PE: File types, and header analysis, Extracting Strings - Classifying Malware using YARA - Tools: PEid and TrID, MASTIFF, PE executables. Module:3 Dynamic Malware Analysis 4 hours Behavior Events Analysis using ProcMon and Autoruns - Detecting Code Injection - Automated dynamic analysis - Samdboxing: Tools and Techniques - Virus Total. Module:4 Prepare for Reverse Engineering 4 hours Reverse engineering as a process - Binary analysis tools, Disassemblers - Debuggers - Decompilers - Identification and Extraction of Hidden Components - Typical malware behavior - Malware delivery. Module:5 Build and Debug the Malware 4 and Encryption. Module:6 Obfuscation Techniques - Assembly of data - Encrypted data identification - Decrypting with x86dbg - Control flow flattening obfuscation - Garbage code insertion - Dynamic library loading. Module:7 Anti-Malware analysis - Asti-dumping - SysInternals Suite Tools - Deadlisting - Analysis of HTML scripts - MS Office macro analysis - PDF file analysis - SWFTools - FLASM - Flare. Module:8 Contemporary Issues 1 Total Lecture hours: 30 hours 	3. Understand t	3. Understand the disassemblers, debuggers, and decompilers in malware analysis.								
Module:1 Introduction to Malware 4 hours Module:1 Introduction to Malware 4 hours Malware Taxonomy - Malware Attack Life Cycle - The Combat Teams - Anti-malware Products- Reverse Engineering for Windows and Linux systems. 4 hours Module:2 Static Malware Analysis 4 hours Fingerprinting the Malware - PE: File types, and header analysis, Extracting Strings - Classifying Malware using YARA - Tools: PEid and TrID, MASTIFF, PE executables. 4 hours Module:3 Dynamic Malware Analysis 4 hours Behavior Events Analysis using ProcMon and Autoruns - Detecting Code Injection - Automated dynamic analysis - Sandboxing: Tools and Techniques - Virus Total. 4 hours Module:4 Prepare for Reverse Engineering 4 hours Reverse engineering as a process - Binary analysis tools, Disassemblers - Debuggers - Decompilers - Identification and Extraction of Hidden Components - Typical malware behavior - Malware delivery. Module:5 Module:5 Build and Debug the Malware 4 hours Low-Level Language: Registers, Memory addressing, Opcode bytes - Builder and debugger: IDA Pro, Ollydebug -Windows API libraries - Packing and Encryption. Module:6 Module:7 Anti-Malware analysis - Assembly of data - Encrypted data identification - Decrypting with x86dbg - Control flow flattening obfuscation - Garbage code insertion - Dynamic library loading. 4 hours	4. Explore the a	4. Explore the anti-malware analysis techniques.								
Module:1 Introduction to Malware 4 nours Malware Taxonomy - Malware Attack Life Cycle - The Combat Teams - Anti-malware Products- Reverse Engineering for Windows and Linux systems. 4 hours Module:2 Static Malware Analysis 4 hours Fingerprinting the Malware - PE: File types, and header analysis, Extracting Strings - Classifying Malware using YARA - Tools: PEid and TrID, MASTIFF, PE executables. 4 hours Module:3 Dynamic Malware Analysis 4 hours Behavior Events Analysis using ProcMon and Autoruns - Detecting Code Injection - Automated dynamic analysis - Sandboxing: Tools and Techniques - Virus Total. 4 hours Module:4 Prepare for Reverse Engineering 4 hours Reverse engineering as a process - Binary analysis tools, Disassemblers - Debuggers - Decompilers - Identification and Extraction of Hidden Components - Typical malware behavior - Malware delivery. Module:5 Module:5 Build and Debug the Malware 4 hours Low-Level Language: Registers, Memory addressing, Opcode bytes - Builder and debugger: IDA Pro, Ollydebug -Windows API libraries - Packing and Encryption. 5 hours File Obfuscation - Binary Obfuscation Techniques - Assembly of data - Encrypted data identification - Decrypting with x86dbg - Control flow flattening obfuscation - Garbage code insertion - Dynamic library loading. 4 hours Module:7 Anti-Malware analysis Assembly of data - Encrypted data identi	J. Apply the rev	verse-engineering of marware and Objuscation using emerging tool	s.		1 h					
Matwate Factorionity - Matwate Attack Effe Cycle - The Combat Teams - Anti-Intatwate Froducts- Reverse Engineering for Windows and Linux systems. Module:2 Static Malware Analysis 4 hours Fingerprinting the Malware - PE: File types, and header analysis, Extracting Strings - Classifying Malware using YARA - Tools: PEid and TrID, MASTIFF, PE executables. 4 hours Module:3 Dynamic Malware Analysis 4 hours Behavior Events Analysis using ProcMon and Autoruns - Detecting Code Injection - Automated dynamic analysis - Sandboxing: Tools and Techniques - Virus Total. 4 hours Module:4 Prepare for Reverse Engineering 4 hours Reverse engineering as a process - Binary analysis tools, Disassemblers - Debuggers - Decompilers - Identification and Extraction of Hidden Components - Typical malware behavior - Malware delivery. 4 hours Module:5 Build and Debug the Malware 4 hours Low-Level Language: Registers, Memory addressing, Opcode bytes - Builder and debugger: IDA Pro, Ollydebug -Windows API libraries - Packing and Encryption. Module:6 Obfuscation Techniques 5 hours File Obfuscation - Binary Obfuscation Techniques - Assembly of data - Encrypted data identification - Decrypting with x86dbg - Control flow flattening obfuscation - Garbage code insertion - Dynamic library loading. 4 hours Module:7 Anti-Malware analysis PDF file analysis - SWFTools - FLASM - Flare. Module:8 <	Moluora Tayonomy	Malwara Attack Life Cycle The Combet Teems Anti malwar	Drad	note	4 nc	ora				
Module:2 Static Malware Analysis 4 hours Fingerprinting the Malware Analysis Extracting Strings - Classifying Malware using YARA - Tools: PEid and TrID, MASTIFF, PE executables. 4 hours Module:3 Dynamic Malware Analysis 4 hours Behavior Events Analysis using ProcMon and Autoruns - Detecting Code Injection - Automated dynamic analysis - Sandboxing: Tools and Techniques - Virus Total. 4 hours Module:4 Prepare for Reverse Engineering 4 hours Reverse engineering as a process - Binary analysis tools, Disassemblers - Debuggers - Decompilers - Identification and Extraction of Hidden Components - Typical malware behavior - Malware delivery. 4 hours Module:5 Build and Debug the Malware 4 hours Low-Level Language: Registers, Memory addressing, Opcode bytes - Builder and debugger: IDA Pro, Ollydebug -Windows API libraries - Packing and Encryption. 5 hours File Obfuscation Techniques Assembly of data - Encrypted data identification - Decrypting with x86dbg - Control flow flattening obfuscation - Garbage code insertion - Dynamic library loading. 4 hours Module:7 Anti-Malware analysis Assembly of gata - Encrypted data identification - Decrypting with x86dbg - Control flow flattening obfuscation - Garbage code insertion - Dynamic library loading. 4 hours Module:7 Anti-Malware analysis PDF file analysis - SWFTools - FLASM - Flare.	Engineering for Win	- Marware Attack Life Cycle - The Combat Teams - Anti-marwar	e Prou	ucts-	Rev	erse				
Module:2 Static Malware Analysis 4 hours Fingerprinting the Malware - PE: File types, and header analysis, Extracting Strings - Classifying Malware using YARA - Tools: PEid and TrID, MASTIFF, PE executables. 4 hours Module:3 Dynamic Malware Analysis 4 hours Behavior Events Analysis using ProcMon and Autoruns - Detecting Code Injection - Automated dynamic analysis - Sandboxing: Tools and Techniques - Virus Total. 4 hours Module:4 Prepare for Reverse Engineering 4 hours Reverse engineering as a process - Binary analysis tools, Disassemblers - Debuggers - Decompilers - Identification - and Extraction of Hidden Components - Typical malware behavior - Malware delivery. Module:5 Build and Debug the Malware 4 hours Low-Level Language: Registers, Memory addressing, Opcode bytes - Builder and debugger: IDA Pro, Ollydebug -Windows API libraries - Packing and Encryption. 5 hours File Obfuscation Techniques S hours 5 hours File Obfuscation - Binary Obfuscation Techniques - Assembly of data - Encrypted data identification - Decrypting with x86dbg - Control flow flattening obfuscation - Garbage code insertion - Dynamic library loading. 4 hours Module:7 Anti-Malware analysis Athi-debugging - Anti-VM - Anti-emulation - Anti-dumping - SysInternals Suite Tools - Deadlisting - Analysis of HTML scripts - MS Office macro analysis - PDF file analysis - SWFTools - FLASM - Flare. Module:8 <t< td=""><td>Module:2 Statio</td><td>Molware Analysis</td><td></td><td></td><td>1 h</td><td></td></t<>	Module:2 Statio	Molware Analysis			1 h					
Pringerprinting the Malware - P.E. Frie types, and feader analysis, Excluding Strings - Classifying Malware using YARA - Tools: PEid and TrID, MASTIFF, PE executables. Module:3 Dynamic Malware Analysis 4 hours Behavior Events Analysis using ProcMon and Autoruns - Detecting Code Injection - Automated dynamic analysis - Samboxing: Tools and Techniques - Virus Total. 4 hours Module:4 Prepare for Reverse Engineering 4 hours Reverse engineering as a process - Binary analysis tools, Disassemblers - Debuggers - Decompilers - Identification and Extraction of Hidden Components - Typical malware behavior - Malware delivery. Module:5 Module:5 Build and Debug the Malware 4 hours Low-Level Language: Registers, Memory addressing, Opcode bytes - Builder and debugger: IDA Pro, Ollydebug -Windows API libraries - Packing and Encryption. 5 hours File Obfuscation Techniques Assembly of data - Encrypted data identification - Decrypting with x86dbg - Control flow flattening obfuscation - Garbage code insertion - Dynamic library loading. 4 hours Module:7 Anti-Malware analysis 4 hours Anti-debugging - Anti-VM - Anti-emulation - Anti-dumping - SysInternals Suite Tools – Deadlisting - Analysis of HTML scripts - MS Office macro analysis - PDF file analysis – SWFTools – FLASM – Flare. 1 hours Module:8 Contemporary Issues 1 hours	Fingerprinting the M	Woodule:2 Static Malware Analysis 4 nours Einemeinting the Melanary DE Eile tensor and handen analysis Charifering Melanary								
Module:3 Dynamic Malware Analysis 4 hours Behavior Events Analysis using ProcMon and Autoruns - Detecting Code Injection - Automated dynamic analysis - San⊎boxing: Tools and Techniques - Virus Total. 4 hours Module:4 Prepare for Reverse Engineering 4 hours Reverse engineering as a process - Binary analysis tools, Disassemblers - Debuggers - Decompilers - Identification and Extraction of Hidden Components - Typical malware behavior - Malware delivery. Module:5 Build and Debug the Malware 4 hours Low-Level Language: Registers, Memory addressing, Opcode bytes - Builder and debugger: IDA Pro, Ollydebug -Windows API libraries - Packing and Encryption. 5 hours File Obfuscation Techniques Assembly of data - Encrypted data identification - Decrypting with x86dbg - Control flow flattening obfuscation - Garbage code insertion - Dynamic library loading. 4 hours Module:7 Anti-Malware analysis Anti-dumping - SysInternals Suite Tools – Deadlisting - Analysis of HTML scripts - MS Office macro analysis - PDF file analysis – SWFTools – FLASM – Flare. Module:8 Contemporary Issues 1 hours	$\frac{1}{1}$	· DEid and TrID MASTIFE DE executables		ymg	wiarv	vale				
Module:.5 Dynamic Malware Analysis 4 hours Behavior Events Analysis using ProcMon and Autoruns - Detecting Code Injection - Automated dynamic analysis - Samboxing: Tools and Techniques - Virus Total. 4 hours Module:4 Prepare for Reverse Engineering 4 hours Reverse engimeering as a process - Binary analysis tools, Disassemblers – Debuggers – Decompilers - Identificatiom and Extraction of Hidden Components - Typical malware behavior - Malware delivery. 4 hours Module:5 Build and Debug the Malware 4 hours Low-Level Language: Registers, Memory addressing, Opcode bytes - Builder and debugger: IDA Pro, Ollydebug -Windows API libraries - Packing and Encryption. 5 hours File Obfuscation Techniques - Assembly of data - Encrypted data identification - Decrypting with x86dbg - Control flow flattening obfuscation - Garbage code insertion - Dynamic library loading. 4 hours Module:7 Anti-Malware analysis - Anti-dumping - SysInternals Suite Tools – Deadlisting - Analysis of HTML scripts - MS Office macro analysis - PDF file analysis – SWFTools – FLASM – Flare. 1 hours Module:8 Contemporary Issues 1 hours	Module-3 Dyner	nie Malwara Analysis			1 hc	MIPG				
Module:4 Prepare for Reverse Engineering 4 hours Reverse engineering as a process - Binary analysis tools, Disassemblers - Debuggers - Decompilers - Identification and Extraction of Hidden Components - Typical malware behavior - Malware delivery. 4 hours Module:5 Build and Debug the Malware 4 hours Low-Level Language: Registers, Memory addressing, Opcode bytes - Builder and debugger: IDA Pro, Ollydebug - Windows API libraries - Packing and Encryption. 5 hours File Obfuscation - Binary Obfuscation Techniques - Assembly of data - Encrypted data identification - Decrypting with x86dbg - Control flow flattening obfuscation - Garbage code insertion - Dynamic library loading. 4 hours Module:7 Anti-Malware analysis 4 hours Anti-debugging - Anti-VM - Anti-emulation - Anti-dumping - SysInternals Suite Tools – Deadlisting - Analysis of HTML scripts - MS Office macro analysis - PDF file analysis – SWFTools – FLASM – Flare. 1 hours Module:8 Contemporary Issues 1 hours	Behavior Events An	alveis using ProcMon and Autorups - Detecting Code Injection -	Autom	ated	dyna	mic				
Module:4 Prepare for Reverse Engineering 4 hours Reverse engineering as a process - Binary analysis tools, Disassemblers – Debuggers – Decompilers - Identification and Extraction of Hidden Components - Typical malware behavior - Malware delivery. Module:5 Build and Debug the Malware 4 hours Low-Level Language: Registers, Memory addressing, Opcode bytes - Builder and debugger: IDA Pro, Ollydebug -Windows API libraries - Packing and Encryption. 4 hours Module:6 Obfuscation Techniques S hours File Obfuscation - Binary Obfuscation Techniques - Assembly of data - Encrypted data identification - Decrypting with x86dbg - Control flow flattening obfuscation - Garbage code insertion - Dynamic library loading. Module:7 Anti-Malware analysis 4 hours Anti-debugging - Anti-VM - Anti-emulation - Anti-dumping - SysInternals Suite Tools – Deadlisting - Analysis of HTML scripts - MS Office macro analysis - PDF file analysis – SWFTools – FLASM – Flare. 1 hours Module:8 Contemporary Issues 1 hours	analysis - Sandboxin	arysis using Proceeding Code injection - J	utom	aicu	uyna	unic				
Reverse engineering as a process - Binary analysis tools, Disassemblers - Debuggers - Decompilers - Identification and Extraction of Hidden Components - Typical malware behavior - Malware delivery.Module:5Build and Debug the Malware4 hoursLow-Level Language: Registers, Memory addressing, Opcode bytes - Builder and debugger: IDA Pro, Ollydebug -Windows API libraries - Packing and Encryption.4 hoursModule:6Obfuscation Techniques5 hoursFile Obfuscation - Binary Obfuscation Techniques - Assembly of data - Encrypted data identification - Decrypting with x86dbg - Control flow flattening obfuscation - Garbage code insertion - Dynamic library loading.4 hoursModule:7Anti-Malware analysis4 hoursAnti-debugging - Anti-VM - Anti-emulation - Anti-dumping - SysInternals Suite Tools - Deadlisting - Analysis of HTML scripts - MS Office macro analysis - PDF file analysis - SWFTools - FLASM - Flare.1000Module:8Contemporary Issues1 hours	Module 4 Prena	re for Reverse Engineering			4 hc	mrs				
Identification and Extraction of Hidden Components - Typical malware behavior - Malware delivery. Module:5 Build and Debug the Malware 4 hours Low-Level Language: Registers, Memory addressing, Opcode bytes - Builder and debugger: IDA Pro, Ollydebug -Windows API libraries - Packing and Encryption. 5 hours Module:6 Obfuscation Techniques Assembly of data - Encrypted data identification - Decrypting with x86dbg - Control flow flattening obfuscation - Garbage code insertion - Dynamic library loading. 4 hours Module:7 Anti-Malware analysis 4 hours Anti-debugging - Anti-VM - Anti-emulation - Anti-dumping - SysInternals Suite Tools – Deadlisting - Analysis of HTML scripts - MS Office macro analysis - PDF file analysis – SWFTools – FLASM – Flare. Module:8 Contemporary Issues 1 hours Total Lecture hours: 30 hours	Reverse engineering	as a process - Binary analysis tools Disassemblers – Debugge	rs – T	eco	nnile	ers -				
Module:5Build and Debug the Malware4 hoursLow-Level Language: Registers, Memory addressing, Opcode bytes - Builder and debugger: IDA Pro, Ollydebug -Windows API libraries - Packing and Encryption.Module:6Obfuscation Techniques5 hoursModule:6Obfuscation Techniques- Assembly of data - Encrypted data identification - Decrypting with x86dbg - Control flow flattening obfuscation - Garbage code insertion - Dynamic library loading Anti-Malware analysis4 hoursModule:7Anti-Malware analysis4 hoursAnti-debugging - Anti-VM - Anti-emulation - Anti-dumping - SysInternals Suite Tools - Deadlisting - Analysis of HTML scripts - MS Office macro analysis - PDF file analysis - SWFTools - FLASM - Flare.1 hoursModule:8Contemporary Issues1 hours	Identification and Ex	traction of Hidden Components - Typical malware behavior - Mal	ware d	elive	rv.	10				
Low-Level Language: Registers, Memory addressing, Opcode bytes - Builder and debugger: IDA Pro, Ollydebug -Windows API libraries - Packing and Encryption.Module:6Obfuscation Techniques5 hoursFile Obfuscation - Binary Obfuscation Techniques - Assembly of data - Encrypted data identification - Decrypting with x86dbg - Control flow flattening obfuscation - Garbage code insertion - Dynamic library loading.4 hoursModule:7Anti-Malware analysis4 hoursAnti-debugging - Anti-VM - Anti-emulation - Anti-dumping - SysInternals Suite Tools - Deadlisting - Analysis of HTML scripts - MS Office macro analysis - PDF file analysis - SWFTools - FLASM - Flare.1 hoursModule:8Contemporary Issues1 hours	Module:5 Build	and Debug the Malware			4 hc	ours				
Ollydebug -Windows API libraries - Packing and Encryption. Module:6 Obfuscation Techniques File Obfuscation - Binary Obfuscation Techniques - Assembly of data - Encrypted data identification - Decrypting with x86dbg - Control flow flattening obfuscation - Garbage code insertion - Dynamic library loading. Module:7 Anti-Malware analysis 4 hours Anti-debugging - Anti-VM - Anti-emulation - Anti-dumping - SysInternals Suite Tools – Deadlisting - Analysis of HTML scripts - MS Office macro analysis - PDF file analysis – SWFTools – FLASM – Flare. 1 hours Module:8 Contemporary Issues 30 hours	Low-Level Languag	e: Registers, Memory addressing, Opcode bytes - Builder and	lebugg	er: I	DA	Pro,				
Module:6Obfuscation Techniques5 hoursFile Obfuscation - Binary Obfuscation Techniques - Assembly of data - Encrypted data identification - Decrypting with x86dbg - Control flow flattening obfuscation - Garbage code insertion - Dynamic library loading.OutputModule:7Anti-Malware analysis4 hoursAnti-debugging - Anti-VM - Anti-emulation - Anti-dumping - SysInternals Suite Tools - Deadlisting - Analysis of HTML scripts - MS Office macro analysis - PDF file analysis - SWFTools - FLASM - Flare.1 hoursModule:8Contemporary Issues30 hours	Ollydebug -Window	s API libraries - Packing and Encryption.				,				
File Obfuscation - Binary Obfuscation Techniques - Assembly of data - Encrypted data identification - Decrypting with x86dbg - Control flow flattening obfuscation - Garbage code insertion - Dynamic library loading. Module:7 Anti-Malware analysis Anti-debugging - Anti-VM - Anti-emulation - Anti-dumping - SysInternals Suite Tools - Deadlisting - Analysis of HTML scripts - MS Office macro analysis - PDF file analysis - SWFTools - FLASM - Flare. Module:8 Contemporary Issues I hours 30 hours	Module:6 Obfus	cation Techniques			5 ho	ours				
Decrypting with x86dbg - Control flow flattening obfuscation - Garbage code insertion - Dynamic library loading. Module:7 Anti-Malware analysis 4 hours Anti-debugging - Anti-VM - Anti-emulation - Anti-dumping - SysInternals Suite Tools – Deadlisting - Analysis of HTML scripts - MS Office macro analysis - PDF file analysis – SWFTools – FLASM – Flare. Module:8 Contemporary Issues 1 hours Total Lecture hours: 30 hours	File Obfuscation - H	Binary Obfuscation Techniques - Assembly of data - Encrypted	data id	entif	icati	on -				
Ioading. Module:7 Anti-Malware analysis 4 hours Anti-debugging - Anti-VM - Anti-emulation - Anti-dumping - SysInternals Suite Tools – Deadlisting - Analysis of HTML scripts - MS Office macro analysis - PDF file analysis – SWFTools – FLASM – Flare. Deadlisting - Information - Informatio - Information - Information - Information - Informa-	Decrypting with x86	dbg - Control flow flattening obfuscation - Garbage code insertio	n - Dy	nami	ic lib	rary				
Module:7Anti-Malware analysis4 hoursAnti-debugging - Anti-VM - Anti-emulation - Anti-dumping - SysInternals SuiteTools - Deadlisting -Analysis of HTML scripts - MS Office macro analysis - PDF file analysis - SWFTools - FLASM - Flare.1 hoursModule:8Contemporary Issues1 hoursTotal Lecture hours:30 hours	loading.		-			-				
Anti-debugging - Anti-VM - Anti-emulation - Anti-dumping - SysInternals Suite Tools – Deadlisting - Analysis of HTML scripts - MS Office macro analysis - PDF file analysis – SWFTools – FLASM – Flare. Module:8 Contemporary Issues 1 hours Total Lecture hours: 30 hours	Module:7 Anti-N	Aalware analysis			4 ho	ours				
Analysis of HTML scripts - MS Office macro analysis - PDF file analysis - SWFTools - FLASM - Flare. Module:8 Contemporary Issues 1 hours Total Lecture hours: 30 hours	Anti-debugging - A	nti-VM - Anti-emulation - Anti-dumping - SysInternals Suite To	ools –	Dead	dlisti	ng -				
Module:8 Contemporary Issues 1 hours Total Lecture hours: 30 hours	Analysis of HTML s	Analysis of HTML scripts - MS Office macro analysis - PDF file analysis – SWFTools – FLASM – Flare.								
Total Lecture hours: 30 hours	Module:8 Cont	emporary Issues			1 ha	ours				
Total Lecture hours: 30 hours										
		Total Lecture hours:		•	30 ha	ours				

Tex	Text Book(s)						
1.	Abhijit Mohanta, Anoop Saldanha, Ma	alware Analysis and	d Detection	Engineering a Comprehensive			
	Approach to Detect and Analyze Mod	lern Malware, 2020, 1st edition, Apress (ISBN 978-1-4842-					
	6192-7), United States.						
2.	Reginald Wong, Mastering Reverse	e Engineering, 20	18, 1st ec	lition, Packt Publishing Ltd,			
	Birmingham, ISBN 978-1-78883-884-9, UK.						
Reference Books							
1.	M. Sikorski and A. Honig, Practical M	Ialware Analysis:	The Hands-	on Guide to Dissecting Malicious			
	Software. 2012, 1 st edition, No Starch	Press San Francisc	o, CA. (ISI	BN No.: 9781593272906), United			
	States.						
Moo	de of Evaluation: CAT, assignment, Qui	iz and FAT					
Rec	commended by Board of Studies	18-11-2022					
App	proved by Academic Council	No.	Date				

Course codeCourse titleLT						С		
MCSE	E611P	Malware Analysis Lab 0 (1		
Pre-re	equisite	NIL	S	llabu	s ver	sion		
	1		~,		<u>V.</u>	. 1.0		
Cours	e Objectives							
1. To	introduce malwa	re taxonomy and life cycle.						
2. To	analyze malware	samples using static, dynamic analysis, and reverse engineering t	techr	niques.				
3. To	detect and analyz	ze obfuscation and anti-malware techniques.						
Cours	e Outcome							
After o	completion of thi	s course, the student shall be able to:						
I. Exp	plore the anti-mal	lware analysis techniques						
2. Ap	ply the reverse-ei	ngineering of malware and Obfuscation using emerging tools.						
India	tivo Exnorimon	to						
	Disassemble	Portable Executable (PE32) Files using PEid and '	TrID) 3 h	oure			
1	to identify	Tortable Exceduable (TE32) Thes using TER and	m	, 51	Jours			
	• file compilation date							
 imports/ exports, suspicious strings 								
	• run-tin	ne effect, procmon filter						
 hist -based signatures revealing files 								
	 registry 	v kevs processes services						
	• networ	k-based signatures						
2	Static and Dyna	amic Malware Analysis:		4 h	ours			
_	Sandbox	xing the malware using SANDBOX tool: Cuckoo (open source)						
	Sample	Malware analysis Virus Total						
	• Registry	analysis using Any run						
	Malwar	e analysis via hex code						
3	Reverse-engine	ering the malware using IDA Pro: strings analysis, local varia	ables	s, 4 h	ours			
	graph mode to	cross-references, Analyzing Functions						
4	Debug and Dis	assemble the malware using OllyDbg: Debug the malware, Vie	win	g 4				
	Threads and St	acks, OllyDbg Code-Execution Options, Breakpoints, Loading E)LLs	, hou	ırs			
	Exception Hand	dling						
5	MASTIFF is a	static analyzer framework (Linux and Mac) with the following		4 h	ours			
	plugins:							
	• ssdeep:	fuzzy hash, or context-triggered piecewise hashes (CTPH) to						
	identify	nearly identical files for identifying variants of a malware family	r					
• pdftools: extracts information about PDF files.								
• exiftool: This shows into, from image files.								
	• disitool:	extract digital signatures from signed executables.						
	• pyOLEscanner: extract information from OLE file types, such as Word							
	docume	nts and Excel spreadsheets		21				
0	Packing and o			3 h	ours			
	• Pack an	a unpack the malware: UPX tool						
	 obfusca 	tion and de-obfuscation of the malware using CFF explorer						

7	Strings and API Analysis:	Strings and API Analysis: 4 ho						
	• SysInternals Suite's strings: T	This is a command-l	ine tool for	Windows that	at			
	shows the list of text strings i	in any type of file.						
	• BinText: This is a GUI-based	l Windows tool that	can displa	y the ASCII a	ind			
	Unicode text strings for a giv	en file.						
	• API Monitor: helps reverse e	ngineering by moni	toring API	calls as the				
	program runs.							
8	Anti Malware analysis using:				4 ł	nours		
	• WinDbg							
	IDA Pro / OllyDBG							
	SysInternals Suite Tools							
	Total Laboratory Hours 30 hours							
Text B	Text Book(s)							
1.	Reginald Wong, Mastering Reverse	e Engineering, 2018	, 1 st edition	, Packt Publis	shing Ltd,			
	Birmingham, ISBN 978-1-78883-8	84-9, UK						
Refere	ence Books							
1.	Abhijit Mohanta, Anoop Saldanha,	Malware Analysis a	and Detecti	on Engineerii	ng a			
	Comprehensive Approach to Detect	t and Analyze Mode	ern Malwar	e, 2020, 1^{st} ec	lition, Apr	ess		
	(ISBN 978-1-4842-6192-7), United	States.						
2.	C. Eagle, The IDAPro Book: The U	Inofficial Guide to t	he worlds r	nost popular	Disassemb	oler, 2nd		
	Ed. San Francisco: No Starch Press	San Francisco, CA	, 2011. (ISI	BN No. :				
	978-1-59327-289-0).							
Mode	of assessment: Continuous assessment	t and FAT						
Recom	Recommended by Board of Studies 18-11-2022							
Appro	ved by Academic Council	No.	Date					

Course code	Course title	L	Τ	P	C
MCSE612L Cyber Security				0	3
Pre-requisite	Nil	Syll	abu	s ver	sion
				V	v. 1.0

Course Objectives

- 1. To understand key terms and concepts in Cyber security, Policies, Governance and Compliance.
- 2. To exhibit knowledge to secure corrupted systems, protect personal data, and secure computer networks in an Organization.
- 3. To understand principles of cyber security and to guarantee a secure network by analyzing the nature of attacks through cyber forensics software or tools.

Course Outcome

After completion of this course, the student shall be able to:

- 1. Analyze and evaluate the cyber security needs of an organization.
- 2. Analyze the security issues in networks and computer systems to secure an infrastructure.
- 3. Design operational cyber security strategies and policies.
- 4. Apply critical thinking and problem-solving skills to detect current and future attacks on an organization's computer systems and networks.

Module:1	Introduction to Cyber Security	6 hours			
Cyber Security- Layers of security, Vulnerability, Assets and Threat, Challenges and Constraints -					
Computer C	Computer Criminals - CIA Triad - Motive of attackers - Spectrum of attacks - Taxonomy of various				
attacks - Cr	yptography - Security Governance – Challenges and Constraints, Secu	rity Models and Risk			
Managemen	t, Legacy Cyber security systems – Transformations in Cyber security	•			
Module:2	Cyber Security Technologies	6 hours			
Mobile Secu	urity – Advanced Data Security: Cloud Security, IoT Security - Incide	nt detection response			
- Penetration	testing – User Behavior Analytics (UBA) – Endpoint Detection and I	Response (EDR).			
Module:3	Vulnerabilities and Safeguards	6 hours			
Software Vu	Inerabilities - Complex Network Architectures, Open Access to Organ	izational Data, Weak			
Authenticati	on, poor cyber security awareness - Cyber Security Safeguards – Over	view, Access control,			
Audit, Auth	entication, Biometrics, Deception, Denial of Service Filters, Ethical	Hacking, Firewalls,			
Scanning, S	ecurity policy, Threat Management, Defending malicious software,	Applying software			
update and p	patches.				
Module:4	Securing Infrastructure and Local Host	7 hours			
Infrastructur	e security in the real world and challenges – Understanding access co	ntrol and monitoring			
systems: Ac	cess control security policies, Physical security controls - Intrusion det	tection and Reporting			
systems – S	ecuring host device and challenges - Protecting the inner perimeter	- Protecting remote			
access: Loca	I protection tools, local intrusion detection tools, configuring browse	r security, Hardening			
operating sy	stems.				
Module:5	Cyber Security Tools	6 hours			
Zenmap – H	ydra -Kismet - John the Ripper - Airgeddon - Deauther Board - Airc	rack-ng – EvilOSX.			
Module:6	Cyber Security Strategies	6 hours			
Need for built	ilding cyber strategy – Cyber-attack strategies (Red team) – Cyber de	fense strategies (blue			
team) – Int	roduction to Cyber security kill chain - Reconnaissance - Weapo	onization – Privilege			
Escalation -	Exfiltration - Threat Life cycle management phases.				
Module:7	Cybercrime Challenges	6 hours			
Challenges	of fighting cybercrime- Opportunities, general challenges, and legal of	challenges - Capacity			
building- Cy	ber security and cybercrime: Capacity building methodology, Strates	gy as a starting point,			
the relevanc	e of policy, the role of regulators in fighting cybercrime, high star	ndards in developing			
countries.		1 0			
Module:8	Contemporary Issues	2 hours			
	Total Lecture hours:	45 hours			

Text Book(s)					
1.	Yuri Diogenes, Erdal Ozkaya, Cyber security - Attack and Defense Strategies, Packt Publishers,				
	2018.				
2.	Charles J. Brooks, Christopher Grow, Philip A. Craig, Donald Short, Cybersecurity Essentials,				
	Wiley Publisher, 2018.				
Ref	erence Books				
1.	William Stallings, Effective Cybersecurity: A Guide to Using Best Practices and Standards, 1st				
	edition, 2019.				
2.	Nina Godbole, Sunit Belapure, Cyber Security - Understanding cybercrimes, Computer Forensics				
	and Legal Perspectives, Wiley, 2011.				
Mode of Evaluation: CAT / Assignment / Quiz / FAT					
Rec	Recommended by Board of Studies 18-11-2022				
App	proved by Academic Council	No.	Date		
	· · · · · · · · · · · · · · · · · · ·				

Course code	Course title	L	Т	Р	С		
MCSE613L	Digital Forensics			0	3		
Pro-requisite	Digital Forensics				reion		
rie-iequisite			Synabus version				
Course Objectives					V.1.0		
1 To understar	od the basics of digital forensics technology systems and se	rvices					
2 To learn abo	ut data recovery data seizure digital evidence controls and	forens	ics a	nalve	sis		
3 To learn and	develop different tools for digital forensic acquisition and	analysi		inary	,15.		
Course Outcomes	develop unterent tools for digital forensie acquisition and	anarysn					
After completion of	this course, the student shall be able to:						
1. Learn the fu	indamentals of digital forensics technology along with o	lifferen	t sv	stem	s and		
services.			J				
2. Recover and	I seize data from a crime scene without damage, using	legal p	roce	dure	s and		
standards.		0 1					
3. Exhibit know	wledge in forensic data acquisition and analysis and in	vestiga	te a	rtifa	cts in		
different ope	erating systems.	U					
4. Apply foren	sics tools and concepts on modern frameworks such as r	etwork	, em	nail,	smart		
phones, clou	d and social media.						
Module:1 Introd	uction to Digital Forensics			6 I	nours		
Digital forensics fu	ndamentals: Use of Computer Forensics - Benefits of P	rofessi	onal	Fore	ensics		
Methodology - Step	s Taken by Computer Forensics Specialists - Case Studies	- Type	s of	Con	puter		
Forensics Technolog	gy: Military, Law Enforcement, Business - Specialized Fo	orensics	s Teo	chnic	jues -		
Hidden Data and H	low to Find It - Protecting Data from Being Compromis	ed - In	terne	et Tr	acing		
Methods.					U		
Module:2 Digital	Forensics Systems and Services			61	nours		
Types of Computer	Forensics Systems: Firewall and IDS Security Systems - S	storage	Area	a Ne	twork		
Security Systems - In	nstant Messaging (IM) Security Systems - Biometric Securit	y Syste	ms -	Com	puter		
Forensics Services:	Occurrence of Cyber Crime - Cyber Detectives - Fighting C	yber C	rime	with	Risk		
Management Tech	niques - Computer Forensics Investigative Services	- For	ensi	e Pr	ocess		
Improvement.							
Module:3 Digita	l Forensics Evidence and Capture			61	nours		
Data Recovery: Data	a Backup and Recovery, Data-Recovery Solution, Hiding ar	d Reco	veri	ng H	idden		
Data - Evidence Col	lection and Data Seizure: Collection of Evidence and Optic	ons, Ob	stacl	es - [Гуреs		
of Evidence - The R	Rules of Evidence - Volatile Evidence - Volatile Memory H	Forensie	cs- C	ontr	olling		
Contamination: The Chain of Custody, Reconstructing the Attack.							
Module:4 Data l	Preservation and Forensics Analysis			71	nours		
Duplication and Preservation of Digital Evidence: Preserving the Digital Crime Scene - Computer							
Evidence Processing Steps - Legal Aspects of Collecting and Preserving Evidence - Computer Image							
Verification and Authentication - Computer Forensics Analysis: Discovery of Electronic Evidence -							
Identification of Data - Reconstructing Past Events - disk and file system analysis.							
Module:5 Netwo	rk and Operating System Forensics			61	nours		
Network forensics:	Investigation on virtual network and Email, Internet A	Artifact	s - 1	Dam	aging		
Computer Evidence - System Testing - Operating System Artifacts: Windows System Artifacts, Linux							
System Artifacts.							
Module:6 Mobil	e and Cloud Forensics			61	nours		
Mobile Forensics: Acquisition Procedures for Mobile, Equipment, Tools, Internet of Anything - Cloud							
Forensics: Service Levels, cloud vendors, Legal Challenges and Technical Challenges, Acquisition,							
Investigation, Tools	: Open-Stack, F-Response, AXIOM.			-			

Mo	dule:7	Forensics Tools				6 hours
Ope	Open source tools: The Sleuth Kit (TSK) and Autopsy - SANS SIFT Investigative tool - Voltality -					
CA	INE inve	estigative environment - win	ndows System inte	rnals-Com	mercial too	ols: Encase, FTK, PRO
Dis	cover Ba	sic, Nirsoft.				
Mo	dule:8	Contemporary Issues				2 hours
			T	otal Lectu	re hours:	45 hours
Tex	kt Book(s)				
1.	John R	. Vacca, Computer Forens	sics: Computer Ci	rime Scen	e Investiga	tion, 2015, Second
	Edition	, Charles River Media, Inc.	(ISBN No.: 978-	1-58450-3	89-7)	
2.	2. Cory Altheide, Harlan Carvey, Digital Forensics with Open Source Tools: Using Open Source					
	Platform Tools, 2011, First Edition, British Library Cataloguing-in-Publication Data. (ISBN					
	No.: 978-1-59749-586-8)					
Reference Books						
1.	1. B. Nelson, A. Phillips, F. Enfinger, and C. Steuart, Guide to Computer Forensics and					
	Investigations, 2019, Sixth Edition. CENGAGE, INDIA (ISBN: 9789353506261)					
Mode of Evaluation: CAT, assignment, Quiz and FAT						
Recommended by Board of Studies 18-11-2022						
Approved by Academic Council No. Date						