

SCHOOL OF ELECTRICAL ENGINEERING

B. Tech Electrical and Electronics Engineering

(B.Tech EEE)

Curriculum (2018-2019 admitted students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

Rewarding Co-creations: Active collaboration with national & international industries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF ELECTRICAL ENGINEERING

To be a leader for academic excellence in the field of electrical, instrumentation and control engineering imparting high quality education and research leading to global competence for the societal and industrial developments.

MISSION STATEMENT OF THE SCHOOL OF ELECTRICAL ENGINEERING

M1: Impart high quality education and interdisciplinary research by providing conducive teaching learning environment and team spirit resulting in innovation and product development.

M2: Enhance the core competency of the students to cater to the needs of the industries and society by providing solutions in the field of electrical, electronics, instrumentation, and automation engineering.

M3: Develop interpersonal skills, leadership quality and societal responsibility through ethical value-added education.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The school of Electrical Engineering has established and sustained a welldefined set of educational objectives and preferred program outcomes. Educational objectives of the program satisfy to the requirements of the stakeholders such as students, parents, employers, alumni, faculty etc. The Program Educational Objectives (PEOs) are as follows.

PEO-1: Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems in electrical engineering and allied disciplines.

PEO-2: Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.

PEO-3: Graduates will function in their profession with social awareness and responsibility.

PEO-4: Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.

PEO-5: Graduates will be successful in pursuing higher studies leading to careers in engineering, management, teaching, and research.

PROGRAMME OUTCOMES (POs)

POs are statements that describe what students are expected to know and be able to do upon graduating from the program. These relate to the skills, knowledge, analytical ability attitude and behaviour that students acquire through the program.

NBA has defined the following twelve POs for an engineering graduate. These are in line with the Graduate Attributes as defined by the Washington Accord:

PO_01: Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO_02: Problem Analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.

PO_03: Design / Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO_04: Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions for complex problems:

• that cannot be solved by straightforward application of knowledge, theories and techniques applicable to the engineering discipline as against problems given at the end of chapters in a typical text book that can be solved using simple engineering theories and techniques

• that may not have a unique solution. For example, a design problem can be solved in many ways and lead to multiple possible solutions

• that require consideration of appropriate constraints / requirements not explicitly given in the problem statement such as cost, power requirement, durability, product life, etc.

• which need to be defined (modelled) within appropriate mathematical framework

• that often require use of modern computational concepts and tools, for example, in the design of an antenna or a DSP filter.

PO_05: Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO_06: The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO_07: Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO_08: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO_09: Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO_10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO_11: Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO_12: Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of B. Tech. (Electrical and Electronics Engineering) programme, graduates will be able to

- PSO1: Analyze and design electrical and electronics systems for societal and industrial needs.
- PSO2: Design power systems network, power electronic circuits, electric drives and develop control strategies by considering economic and environmental constraints.
- PSO3: Apply and implement intelligent systems using modern tools for electrical engineering applications.

CREDIT STRUCTURE

Category-wise Credit distribution

Category	Credits
University core (UC)	70
Programme core (PC)	59
Programme elective (PE)	39
University elective (UE)	12
Bridge course (BC)	-
Total credits	180

DETAILED CURRICULUM

University Core

S. No.	Course Code	Course Title	L	Т	Р	J	C
1.	CHY1002	Environmental Sciences	3	0	0	0	3
2.	CHY1701	Engineering Chemistry	3	0	2	0	4
3.	CSE1001	Problem Solving and Programming	0	0	6	0	3
4.	CSE1002	Problem Solving and Object Oriented Programming	0	0	6	0	3
5.	EEE3099	Industrial Internship	0	0	0	0	2
6.	EEE3999	Technical Answers for Real World Problems (TARP)	1	0	0	8	3
7.	EEE4098	Comprehensive Examination	0	0	0	0	2
8.	EEE4099	Capstone Project	0	0	0	0	20
9.	ENG1011	English for Engineers	0	0	4	0	2
10.	HUM1021	Ethics and Values	2	0	0	0	2
11.	MAT1011	Calculus for Engineers	3	0	2	0	4
12.	MAT2001	Statistics for Engineers	2	1	2	0	4
13.	MGT1022	Lean Start-up Management	1	0	0	4	2
14.	PHY1701	Engineering Physics	3	0	2	0	4
15.	PHY1999	Introduction to Innovative Projects	1	0	0	4	2
16.	FLC4097	Foreign Language	2	0	0	0	2
17.	EXC4097	Extra / Curricular Activity Basket	0	0	0	0	2
18.	STS4097	Soft Skills	0	0	0	0	6

Programme Core

S. No.	Course Code	Course Title	L	Т	Р	J	C
1.	EEE1002	Electric Circuits	3	0	0	0	3
2.	EEE1003	Electrical Workshop	0	0	2	0	1
3.	EEE1004	Engineering Electromagnetics	3	0	2	0	4
4.	EEE1005	Signals and Systems	3	0	0	0	3
5.	EEE2001	Network Theory	3	0	0	0	3
6.	EEE2002	Semiconductor Devices and Circuits	2	0	2	4	4
7.	EEE2003	Electromechanical Energy Conversion	3	0	2	0	4
8.	EEE2004	Measurement and Instrumentation	2	0	0	4	3
9.	EEE2005	Digital Signal Processing	2	0	2	0	3
10.	EEE3001	Control Systems	3	0	2	0	4
11.	EEE3002	Analog and Digital Circuits	3	0	2	0	4
12.	EEE3003	Power System Engineering	3	0	2	0	4
13.	EEE3004	Power Electronics and Drives	3	0	2	0	4
14.	EEE4001	Microprocessor and Microcontroller	2	0	2	0	3
15.	MAT2002	Applications of Differential and Difference Equations	3	0	2	0	4
16.	MAT3003	Complex Variables and Partial Differential Equations	3	1	0	0	4
17.	MAT3005	Applied Numerical Methods	3	1	0	0	4

Programme Elective

S. No.	Course Code	Course Title	L	Т	Р	J	C
1.	EEE1007	Neural Network and Fuzzy Control	2	0	0	4	3
2.	EEE1008	Bio-Medical Instrumentation	3	0	0	4	4
3.	EEE1011	Automated Test Engineering	2	0	2	0	3
4.	EEE1018	Nanotechnology Fundamentals and its Applications	3	0	0	0	3
5.	EEE1020	Engineering Optimization	2	1	0	4	4
6.	EEE2006	Communication Engineering	3	0	2	0	4
7.	EEE3005	Design of Electrical Apparatus	2	0	0	4	3
8.	EEE3006	Special Electrical Machines	3	0	0	0	3
9.	EEE3007	Finite Element analysis for Electrical Machines	2	0	0	4	3
10.	EEE4002	Power System Protection and Switchgear	3	0	2	0	4
11.	EEE4003	Generation and Utilization of Electrical Energy	2	0	0	4	3
12.	EEE4004	Distributed Generation and Microgrids	3	0	0	4	4
13.	EEE4005	Power System Operation and Control	2	0	0	4	3
14.	EEE4006	Restructured Power Systems	3	0	0	0	3
15.	EEE4007	Energy Management and SCADA	3	0	0	0	3
16.	EEE4008	High Voltage Engineering	3	0	0	0	3
17.	EEE4009	FACTS and HVDC	3	0	0	4	4
18.	EEE4010	Power Quality	2	0	0	4	3
19.	EEE4011	Energy Audit and Conservation	2	0	0	4	3
20.	EEE4012	Renewable Energy Sources	3	0	0	0	3
21.	EEE4013	Smart Grid	3	0	0	4	4
22.	EEE4016	Electric Vehicles	2	0	0	4	3

23.	EEE4017	Industrial Drives and Automation	3	0	0	4	4
24.	EEE4018	Advanced Control Theory	3	0	0	4	4
25.	EEE4019	Advanced Digital System Design With FPGAs	2	0	0	4	3
26.	EEE4020	Embedded System Design	2	0	0	4	3
27.	EEE4027	Robotics and Control	2	0	0	4	3
28.	EEE4028	VLSI Design	3	0	2	0	4
29.	EEE4037	Rapid Prototyping with FPGAs	0	0	4	0	2
30.	EEE4038	Testing and Calibration Systems	0	0	2	0	1
31.	MEE1006	Applied Mechanics and Thermal Engineering	2	0	2	0	3
32.	PHY1002	Materials Science	3	0	2	0	4
33.	ECE3501	IoT Fundamentals	2	0	2	4	4
34.	ECE3502	IoT Domain Analyst	2	0	2	4	4

University Elective Baskets

Management courses

Sl.No	Code	Title	L	Т	Р	J	C
1	MGT1001	Basic Accounting	3	0	0	0	3
2	MGT1002	Principles of Management	2	0	0	4	3
3	MGT1003	Economics for Engineers	2	0	0	4	3
4	MGT1004	Resource Management	2	0	0	4	3
5	MGT1005	Design, Systems and Society	2	0	0	4	3
6	MGT1006	Environmental and Sustainability Assessment	2	0	0	4	3
7	MGT1007	Gender, Culture and Technology	2	0	0	4	3
8	MGT1008	Impact of Information Systems on Society	2	0	0	4	3
9	MGT1009	Technological Change and Entrepreneurship	2	0	0	4	3
10	MGT1010	Total Quality Management	2	2	0	0	3
11	MGT1014	Supply Chain Management	3	0	0	0	3

		(Deemed to be University under section 3 of UGC Act, 1956)					
12	MGT1015	Business Mathematics	3	0	0	0	3
13	MGT1016	Intellectual Property Rights	3	0	0	0	3
14	MGT1017	Business Regulatory Framework For Start-ups	3	0	0	0	3
15	MGT1018	Consumer Behaviour	3	0	0	0	3
16	MGT1019	Services Marketing	3	0	0	0	3
17	MGT1020	Marketing Analytics	2	0	2	0	3
18	MGT1021	Digital and Social Media Marketing	3	0	0	0	3
19	MGT1022	Lean Start-up Management	1	0	0	4	2
20	MGT1023	Fundamentals of Human Resource Management	3	0	0	4	4
21	MGT1024	Organizational Behaviour	3	0	0	4	4
22	MGT1025	Foundations of Management And	3	0	0	4	4
		Organizational Behaviour					
23	MGT1026	Information Assurance and Auditing	2	0	0	4	3
24	MGT1028	Accounting and Financial Management	2	2	0	4	4
25	MGT1029	Financial Management	2	1	0	4	4
26	MGT1030	Entrepreneurship Development	3	0	0	4	4
27	MGT1031	International Business	3	0	0	4	4
28	MGT1032	Managing Asian Business	3	0	0	4	4
29	MGT1033	Research Methods in Management	2	1	0	4	4
30	MGT1034	Project Management	3	0	0	4	4
31	MGT1035	Operations Management	3	0	0	0	3
32	MGT1036	Principles of Marketing	3	0	0	4	4
33	MGT1037	Financial Accounting and Analysis	2	1	0	4	4
34	MGT1038	Financial Econometrics	2	0	0	4	3
35	MGT1039	Financial Markets and Institutions	2	0	0	4	3
36	MGT1040	Personal Financial Planning	2	0	0	4	3
37	MGT1041	Financial Derivatives	2	1	0	4	4
38	MGT1042	Investment Analysis and Portfolio Management	2	0	0	4	3
39	MGT1043	Applications in Neuro Marketing	3	0	0	4	4
L	1				i		1

40 MGT1044 Global Brand Marketing Strategies 3 0 0 4 4 41 MGT1045 Industrial Marketing 3 0 0 4 4 42 MGT1046 Sales and Distribution Management 3 0 0 4 4 43 MGT1047 Social Marketing 3 0 0 4 4 44 MGT1048 Political Economy of Globalization 3 0 0 4 4 45 MGT1049 Sustainable Business Models 3 0 0 4 4 46 MGT1050 Software Engineering Management 2 0 0 4 3 47 MGT1051 Business Analytics for Engineers 2 2 0 0 3 48 MGT1052 Bottom of the Pyramid Operations 3 0 0 0 3 49 MGT1054 Product Planning and Strategy 2 2 0 0 3 51 MGT1055 Design Management 2 2 0								
42 MGT1046 Sales and Distribution Management 3 0 0 4 4 43 MGT1047 Social Marketing 3 0 0 4 4 44 MGT1048 Political Economy of Globalization 3 0 0 4 4 45 MGT1049 Sustainable Business Models 3 0 0 4 4 46 MGT1050 Software Engineering Management 2 0 0 4 3 47 MGT1051 Business Analytics for Engineers 2 2 0 0 3 48 MGT1052 Bottom of the Pyramid Operations 3 0 0 0 3 49 MGT1053 Entrepreneurship Development, Business Communication and IPR 1 0 2 0 2 50 MGT1054 Product Planning and Strategy 2 2 0 0 3 51 MGT1056 Accounting and Financial Management 3 0 0 4 4	40	MGT1044	Global Brand Marketing Strategies	3	0	0	4	4
43 MGT1047 Social Marketing 3 0 0 4 4 44 MGT1048 Political Economy of Globalization 3 0 0 4 4 45 MGT1049 Sustainable Business Models 3 0 0 4 4 46 MGT1050 Software Engineering Management 2 0 0 4 3 47 MGT1051 Business Analytics for Engineers 2 2 0 0 3 48 MGT1052 Bottom of the Pyramid Operations 3 0 0 0 3 49 MGT1053 Entrepreneurship Development, Business Communication and IPR 1 0 2 0 2 50 MGT1054 Product Planning and Strategy 2 2 0 0 3 51 MGT1056 Accounting and Financial Management 3 0 0 4 4	41	MGT1045	Industrial Marketing	3	0	0	4	4
44MGT1048Political Economy of Globalization3004445MGT1049Sustainable Business Models3004446MGT1050Software Engineering Management2004347MGT1051Business Analytics for Engineers2200348MGT1052Bottom of the Pyramid Operations3000349MGT1053Entrepreneurship Development, Business Communication and IPR1020250MGT1054Product Planning and Strategy2200351MGT1055Design Management2200352MGT1056Accounting and Financial Management30044	42	MGT1046	Sales and Distribution Management	3	0	0	4	4
45MGT1049Sustainable Business Models3004446MGT1050Software Engineering Management2004347MGT1051Business Analytics for Engineers2200348MGT1052Bottom of the Pyramid Operations3000349MGT1053Entrepreneurship Development, Business1020250MGT1054Product Planning and Strategy2200351MGT1055Design Management2200352MGT1056Accounting and Financial Management30044	43	MGT1047	Social Marketing	3	0	0	4	4
46MGT1050Software Engineering Management2004347MGT1051Business Analytics for Engineers2200348MGT1052Bottom of the Pyramid Operations3000349MGT1053Entrepreneurship Development, Business Communication and IPR1020250MGT1054Product Planning and Strategy2200351MGT1055Design Management2200352MGT1056Accounting and Financial Management30044	44	MGT1048	Political Economy of Globalization	3	0	0	4	4
47MGT1051Business Analytics for Engineers22200348MGT1052Bottom of the Pyramid Operations3000349MGT1053Entrepreneurship Development, Business1020250MGT1054Product Planning and Strategy2200351MGT1055Design Management2200352MGT1056Accounting and Financial Management30044	45	MGT1049	Sustainable Business Models	3	0	0	4	4
48MGT1052Bottom of the Pyramid Operations3000349MGT1053Entrepreneurship Development, Business Communication and IPR1020250MGT1054Product Planning and Strategy2200351MGT1055Design Management2200352MGT1056Accounting and Financial Management30044	46	MGT1050	Software Engineering Management	2	0	0	4	3
49MGT1053Entrepreneurship Development, Business Communication and IPR1020250MGT1054Product Planning and Strategy22200351MGT1055Design Management2200352MGT1056Accounting and Financial Management30044	47	MGT1051	Business Analytics for Engineers	2	2	0	0	3
Communication and IPRCommunication and IPR50MGT1054Product Planning and Strategy2200351MGT1055Design Management2200352MGT1056Accounting and Financial Management30044	48	MGT1052	Bottom of the Pyramid Operations	3	0	0	0	3
51MGT1055Design Management2200352MGT1056Accounting and Financial Management30044	49	MGT1053		1	0	2	0	2
52MGT1056Accounting and Financial Management3044	50	MGT1054	Product Planning and Strategy	2	2	0	0	3
	51	MGT1055	Design Management	2	2	0	0	3
53 MGT6001 Organizational Behaviour 2 0 0 4 3	52	MGT1056	Accounting and Financial Management	3	0	0	4	4
	53	MGT6001	Organizational Behaviour	2	0	0	4	3

Humanities courses

Sl.No	Code	Title	L	Τ	Р	J	C
1	HUM1001	Fundamentals of Cyber Laws	3	0	0	0	3
2	HUM1002	Business Laws	3	0	0	0	3
3	HUM1003	Basic Taxation for Engineers	3	0	0	0	3
4	HUM1004	Corporate Law for Engineers	3	0	0	0	3
5	HUM1005	Cost Accounting for Engineers	3	0	0	0	3
6	HUM1006	Business Accounting for Engineers	3	0	0	0	3
7	HUM1007	Contemporary Legal Framework for Business	3	0	0	0	3
8	HUM1009	International Business	3	0	0	0	3
9	HUM1010	Foreign Trade Environment	3	0	0	0	3
10	HUM1011	Export Business	3	0	0	0	3

11	HUM1012	Introduction to Sociology	3	0	0	0	3
		Introduction to Sociology					
12	HUM1013	Population Studies	3	0	0	0	3
13	HUM1021	Ethics and Values	2	0	0	0	2
14	HUM1022	Psychology in Everyday Life	2	0	0	4	2
15	HUM1023	Indian Heritage and Culture	2	0	0	4	2
16	HUM1024	India and Contemporary World	2	0	0	4	2
17	HUM1025	Indian Classical Music	1	0	2	4	1
18	HUM1033	Micro Economics	3	0	0	0	3
19	HUM1034	Macro Economics	3	0	0	0	3
20	HUM1035	Introductory Econometrics	2	0	2	0	2
21	HUM1036	Engineering Economics and Decision Analysis	2	0	0	4	2
22	HUM1037	Applied Game Theory	2	0	0	4	2
23	HUM1038	International Economics	3	0	0	0	3
24	HUM1039	Community Development in India	2	0	0	4	2
25	HUM1040	Indian Social Problems	3	0	0	0	3
26	HUM1041	Indian Society Structure and Change	3	0	0	0	3
27	HUM1042	Industrial Relations and Labour Welfare in India	3	0	0	0	3
28	HUM1043	Mass Media and Society	2	0	0	4	2
29	HUM1044	Network Society	3	0	0	0	3
30	HUM1045	Introduction to Psychology	2	0	2	0	2
31	HUM1706	Business Accounting for Engineers	3	0	0	0	3

				3 0 0 0 3
no no c				
re-requisit	e Chemistr	y of 12 th standard or e	quivalent	Syllabus version
nti-requisi	te Nil			v.1.
ourse Obj	ectives:			
		and and appreciate the u	nity of life in all its form	ns, the
-	•	e on the environment.		
		s causes for environment	0	
		s contribution in the envi		
	-	of pollution at the globa	l level and also in the lo	cal
enviror	ment.			
	0.1			
-	urse Outcome:			
	ill be able to	41		
	-	the environmental issue	s in a problem oriented i	nterdisciplinary
	ectives	d the key environmental	issues the science babi	nd those problems
	otential solutions.	u the key environmental	issues, the science bein	iu mose problems
-		tte the significance of bi	odiversity and its preser	vation
		arious environmental ha	• •	vation
		rious methods for the co		
	•	action plans for sustaina		orporate science.
	nity, and social as			1
	•	dational knowledge enal	oling them to make soun	d life decisions as
well a	s enter a career in	an environmental profes	ssion or higher education	1.
fodule:1	Environment and	l Ecosystem		7 hours
ey enviror	mental problems	, their basic causes a	nd sustainable solution	ns. IPAT equation
cosystem, e	arth – life suppor	t system and ecosystem	components; Food chai	n, food web, Energy
ow in ecos	ystem; Ecologica	l succession- stages inv	volved, Primary and se	condary succession
•		utrient, water, carbon, ni	trogen, cycles; Effect of	human activities
n these cycl	es.			
Iodule:2	Biodiversity			6 hours
		versity; Species interaction		
	1 · 1	Advantages and disadva	0	• 1
•	- Significance, Th	reats due to natural and a	anthropogenic activities	and Conservation
ethods.				
lodule:3	Sustaining Na	tural Resources	and Environmental	7 hours
louule.5	Quality	turai Resources		
nvironmont		ses and solutions. Biolo	orical hazarda AIDC	Malaria Chamica
		s, Mercury, Nuclear haz	6	
izarus- DF/		-		
	ual water blue re-	volution. Water quality r	nanagement and its con-	servation Solid and

	(Deemed to be University under section 3 of UGC Act, 1956)	
Module:4	Energy Resources	6 hours
Coal, Nuclea	Non renewable energy resources- Advantages and disadvanta ar energy. Energy efficiency and renewable energy. Solar energy in thermal energy, Wind and geothermal energy. Energy from	gy, Hydroelectric
Module:5	Environmental Impact Assessment	6 hours
Introduction	to environmental impact analysis. EIA guidelines, Notificatio	n of Government of India
•	ntal Protection Act – Air, water, forest and wild life). Impact a	ssessment
methodologi	es. Public awareness. Environmental priorities in India.	
Madular	Human Danulation Change and Environment	6 hours
Module:6	Human Population Change and Environment	0 nours
developmen	onmental problems; Consumerism and waste products; Promot t – Impact of population age structure – Women and child well nt. Sustaining human societies: Economics, environment, polic	fare, Women
Module:7	Global Climatic Change and Mitigation	5 hours
technology i	its, Carbon sequestration methods and Montreal Protocol. Role n environment-Case Studies.	
Module:8	Contemporary issues V Industry Experts	2 hours
Lecture by	Total Lecture h	ours 45 hours
Text Books		
learning		
0	Tyler Miller, Jr. and Scott Spoolman (2012), Living in the En-	
Principl	les, Connections and Solutions, 17 th Edition, Brooks/Cole, USA	Α.
Reference B		
	M.Hassenzahl, Mary Catherine Hager, Linda R.Ben mental Science, 4thEdition, John Wiley & Sons, USA.	
	luation: Internal Assessment (CAT, Quizzes, Digital Assignm	ents) & FAT
	led by Board of Studies 12/08/2017	0/0018
Approved by	y Academic Council 46 th AC Date 24/0	8/2017

		(Deemed to be University under section 3 of UGC Act, 1956)	
CHY1701		Engineering Chemistry	L T P J C
	cr c, c, c, th		
Pre-requisit		Chemistry of 12 th standard or equivalent	Syllabus version
Anti-requisi		Nil	v.1.1
Course Obj			
	-	chnological aspects of applied chemistry	
		dation for practical application of chemistry in engineering	aspects
		Dutcomes (CO): Students will be able to	
		analyze the issues related to impurities in water and their re	
11.		methodologies in water treatment for domestic and industr	6
		e causes of metallic corrosion and apply the methods for	corrosion protection
of me			
		e electrochemical energy storage systems such as lithium	
		lls, and design for usage in electrical and electronic applica	
		quality of different fossil fuels and create an awaren	ess to develop the
	native f		waana wahish son ha
-	•	e properties of different polymers and distinguish the poly	mers which can be
0		d demonstrate their usefulness) understanding the
		heoretical aspects: (a) in assessing the water quality; (b) and working of electrochemical cells; (c) analyzing me	
		mental methods; (d) evaluating the viscosity and water abs	
-		naterials	oroning properties of
· ·		· Technology	5 hours
		ard water - hardness, DO, TDS in water and their determ	
		s determination by EDTA; Modern techniques of water ar	
-		of hard water in industries.	
	-	Treatment	8 hours
		hods: - Lime-soda, Zeolite and ion exchange processes and	
		ater for domestic use (ICMR and WHO); Unit processes	
treatment for	munici	pal supply - Sedimentation with coagulant- Sand Filtration	- chlorination;
		fication – Candle filtration- activated carbon filtration; Di	
Ultrafiltration	ı, UV tı	eatment, Ozonolysis, Reverse Osmosis; Electro dialysis.	
Module:3	Corre	osion	6 hours
Dry and wet o	corrosi	on - detrimental effects to buildings, machines, devices & c	lecorative art forms,
emphasizing	Differe	ential aeration, Pitting, Galvanic and Stress corrosion cra	acking; Factors that
enhance corro	osion a	nd choice of parameters to mitigate corrosion.	
Madulard	Com	osion Control	4 h
			4 hours
-		n - cathodic protection – sacrificial anodic and impressed	_
memous, Auv	anceu	protective coatings: electroplating and electroless plating, P	
Allowing for a	corrosi	on protection – Basic concepts of Eutectic composition and	Futectic mixtures
		Ferrous and non-ferrous alloys.	
		rochemical Energy Systems	6 hours
		conventional primary and secondary batteries; High ene	
		thium batteries – Primary and secondary batteries, fight energy the secondary batteries – Primary and secondary, its Chemist	
applications.		and secondary, its chemist	i, auvantages and
	Polvme	r membrane fuel cells, Solid-oxide fuel cells- working pri	nciples, advantages
	. oryme	memorane ruer cons, sond oxide ruer cons working pri	interpres, au analos,

-	(Deemed to be University under section 3 of UGC Act, 1956)					
appli	cations.					
	cells - Types - Importance of silicon single crystal, polycrystalline and amo	-				
solar	cells, dye sensitized solar cells - working principles, characteristics and applica					
	lule:6 Fuels and Combustion	8 hours				
Calor	ific value - Definition of LCV, HCV. Measurement of calorific value using bo	mb calorimeter				
	oy's calorimeter including numerical problems.					
Conti	olled combustion of fuels - Air fuel ratio - minimum quantity of air by v	volume and by				
U	at-Numerical problems-three way catalytic converter- selective catalytic redu	action of NO _X ;				
Knoc	king in IC engines-Octane and Cetane number - Antiknocking agents.					
	lule:7 Polymers	6 hours				
Diff	erence between thermoplastics and thermosetting plastics; Engineering application	tion of plastics				
- Al	3S, PVC, PTFE and Bakelite; Compounding of plastics: molding of plastics	for Car parts,				
	e caps (Injection molding), Pipes, Hoses (Extrusion molding), Mobile Phone					
	s, (Compression molding), Fiber reinforced polymers, Composites (Transfer					
	es (blow molding); Conducting polymers - Polyacetylene- Mechanism of	conduction –				
appl	ications (polymers in sensors, self-cleaning windows)					
	lule:8 Contemporary issues:	2 hours				
Lect	ure by Industry Experts					
	Total Lecture hours	45 hours				
Toy	t Book(s)					
1.	Sashi Chawla, A Text book of Engineering Chemistry, Dhanpat Rai Publishing	Co Put Itd				
1.	Educational and Technical Publishers, New Delhi, 3rd Edition, 2015.	g CO., I vi. Liu.,				
2.	O.G. Palanna, McGraw Hill Education (India) Private Limited, 9 th Reprint, 201	5				
2.	B. Sivasankar, Engineering Chemistry 1 st Edition, Mc Graw Hill Education (I					
3.	B. Sivasankar, Engineering Chemistry 1 Edition, we Graw Thin Education (1	liula), 2008				
	Angele Reinders, Pierre Verlinden, Wilfried van Sark, Alexandre	Freundlich,				
4.	"Photovoltaic solar energy : From fundamentals to Applications", Wiley publis					
L	erence Books					
1.	O.V. Roussak and H.D. Gesser, Applied Chemistry-A Text Book for Engineer	s and				
	Technologists, Springer Science Business Media, New York, 2 nd Edition, 201					
2.	S. S. Dara, A Text book of Engineering Chemistry, S. Chand & Co Ltd., N					
	Edition, 2013.	,,				
Mod	e of Evaluation: Internal Assessment (CAT, Quizzes, Digital Assignments) & I	FAT				
	of Experiments					
	Experiment title	Hours				
1.	Water Purification: Estimation of water hardness by EDTA method and its	3 hours				
	removal by ion-exchange resin					
	Water Quality Monitoring:	3 hours				
2		5 110018				
2.	Assessment of total dissolved oxygen in different water samples by					
	Winkler's method					
3.	3. Estimation of sulphate/chloride in drinking water by conductivity method					
4/5	Material Analysis: Quantitative colorimetric determination of divalent metal ions of	6 hours				
+/ J	Ni/Fe/Cu using conventional and smart phone digital-imaging methods					
6.	Arduino microcontroller based sensor for monitoring pH/temperature/conductivity	3 hours				
0.	radino merocontroner based sensor for monitoring pri/temperature/conductivity	5 110415				

	in samples				
7.	Iron in carbon steel by potentiometry		3 hours		
8.	Construction and working of an Z	n-Cu electrochem	nical cell		3 hours
9.	Determination of viscosity-averag	e molecular weig	ht of differ	rent	6 hours
	natural/synthetic polymers				
10.	Preparation/demonstration of a wo	orking model rele	vant to syl	labus. Ex.	Non-contact
	1. Construction and working of ele	ectrochemical end	ergy systen	n – students	hours
	should demonstrate working of the	e system.			
	2. Model corrosion studies (buckli	ing of Steel under	applied lo	ad).	
	3. Demonstration of BOD/COD				
	4. Construction of dye sensitized s	solar cell and dem	nonstration	of its	
	working				
	5. Calcium in food samples				
	6. Air quality analysis				
			Total Lab	oratory Hours	30 hours
Mod	le of Evaluation: Viva-voce and La	b performance &	FAT		
Reco	ommended by Board of Studies	31/05/2019			
App	roved by Academic Council	55 th AC	Date	13/06/2019	

CSE10	01	Problem Solving and Programming				L	Τ	Р	J	C	
							0	0	6	0	3
Pre-req	uisite	Nil					Sy	llab	us v	<i>ers</i>	sion
Anti-re	-	Nil								V	.1.0
	Objectives									1 .1	
	generati 2. Introduc	e the essential skil expertise in ess r	ls for a logic	cal thinkin	ig for prob	lem solvi	ing	-			
-		nd the working pr	inciple of a	computer	and identi	fv the pu	rpose	e of a	a co	mp	ute
	program 2. Learn v approac 3. Differen 4. Solve va	ming language. arious problem s to solve the problection tiate the programm rious engineering	olving appr lem ning Languag problems us	coaches an ge constru ing differe	nd ability acts approp ent data str	to iden riately to uctures	tify o solv	an a ve an	appı y pı	copr	riate
		nodulate the given	1	0	11	1	0		0	. 1	
		ly handle data usir		o process	and store of	lata for t	ne gi	ven	prol	Slen	n
List of 1.		<u>Experiments (In</u>		hart using	vEd tool/E	Pontor To	<u></u>		<u>2 Ц</u>	0115	
	1.Steps in Problem Solving Drawing flowchart using yEd tool/Raptor Tool3 Hours										
2.	Introduction Statements	n to Python, Demo	o on IDE, Ke	eywords, I	dentifiers,	I/O			4 H	our	S
3.	Simple Pro	gram to display He	ello world in	Python.					4 H	our	s
4.	Operators a	nd Expressions in	Python						2 H	our	s
5.	Algorithmi	c Approach 1: Seq	uential					,	2 H	our	s
6.	Algorithmi	c Approach 2: Sele	ection (if, el	lif, if else	e, nested if	else		4	4 H	our	s
7	Algorithmi	e Approach 3: Itera	ation (while	and for)					2 H	our	s
8	Strings and	its Operations						,	2 Hours		
9.	Regular Ex	pressions						,	2 H	our	s
10	List and its	operations.							2 H	our	s
11	11. Dictionaries: operations2 Hours					S					
12.	Tuples and	its operations							2 H	our	s
13	Set and its	operations						,	2 H	our	s
14.	Functions,	Recursions							2 H	our	s
15.	Sorting Te	hniques (Bubble/S	Selection/Ins	sertion)					4 H	our	s

	(Deemed to be University under section 3 of UGC Act, 1956)						
	6. Searching Techniques : Sequential Search and Binary Search	3 Hours					
	17. Files and its Operations						
	Total Lecture Hour	s 45 hours					
Tex	t Book(s)						
1.	John V. Guttag., 2016. Introduction to computation and programming using python: with	h applications					
	to understanding data. PHI Publisher.						
Ref	erence Books						
1.	Charles Severance.2016.Python for everybody: exploring data in Python	a 3, Charles					
	Severance.						
2.	Charles Dierbach.2013.Introduction to computer science using python: a	computational					
	problem-solving focus. Wiley Publishers.	I					
Mod	le of Evaluation: PAT/CAT/FAT						
Rec	ommended by Board of Studies 04/04/2014						
App	roved by Academic Council 38th AC Date 23/10/2015						
	• • • •						

		(Deemed to be University under section 3 of UGC Act, 1956)				
CS.	E1002	Problem Solving and Object Oriented Programming			P J	C
_					60	
	-requisite	Nil	Syl	labus	s vers	
	ti-requisite	Nil			v.	1.0
Co	urse Objectives					
1.	1	the benefits of object oriented concepts				
2.		students to solve the real time applications using object orient	ed pr	ograi	mmin	ıg
	features.					
3.	-	e skills of a logical thinking and to solve the problems using a	iny p	roces	sing	
	elements					
F wa	antad Course	Outcome				
-	Pecall the basi	cs of procedural programming and to represent the real world	onti	tiona	<u> </u>	
1.	programming		enti	ues a	3	
2		ect oriented concepts and translate real-world applications int	o ora	nhic	al	
2.	representation	1 11	o gre	pine	*1	
3.	-	he usage of classes and objects of the real world entities in application of the real world entits entities in application of the real world entities in app	plicat	tions		
4.		he reusability and multiple interfaces with same functionality	-		tures	to
	solve complex	computing problems				
5.	Propose possib	ble error-handling constructs for unanticipated states/inputs an	nd to	use g	eneri	с
		constructs to accommodate different datatypes				
6.	Validate the pr	rogram against file inputs towards solving the problem				
		g Experiments (Indicative)				
1.	Postman Prol			••		
	-	eds to walk down every street in his area in order to deliver				
		ces between the streets along the roads are given. The postma				
		turns back to the post office after delivering all the main elep the post man to walk minimum distance for the purpose.	118. 1	mpie	ment	an
2.		ation for Marketing Campaign				
2.	0	ufacturing company has got several marketing options such a	s Rad	lio		
		campaign, TV non peak hours campaign, City top pap			·k V	iral
		npaign, Web advertising. From their previous experience,				
	-	t paybacks for each marketing option. Given the marketing			-	
	crores) for the	current year and details of paybacks for each option, imple	ment	an a	lgorit	hm
	to determine the	he amount that shall spent on each marketing option so that th	ne co	mpan	y atta	ains
	the maximum	▲ ▲				
3.		and Cannibals				
		aries and three cannibals are on one side of a river, along w				
		vo people. Implement an algorithm to find a way to get eve	•			
		er, without ever leaving a group of missionaries in one plac	e out	tnum	bered	by
1	the cannibals i					
4.	U	cation Problem component of a computer processor that can hold any type of	data	and	can h	P
	-	r. As registers are faster to access, it is desirable to use them to				
		execution is faster. For each code submitted to the pro-				
		raph (RIG) is constructed. In a RIG, a node represents a tempo			-	
		led between two nodes (variables) t1 and t2 if they are live				
		and settion the neares (variables) if and the iney are nive	SIIII	anun		, ui

	some point in the program. During same register if there is no edge co			-				
	between variables in a code, implement an algorithm to determine the number of registers							
	required to store the variables and speed up the code execution.							
5.	Selective Job Scheduling Problem							
	A server is a machine that waits for requests from other machines and responds to them. The purpose of a server is to share hardware and software resources among clients. All the clients submit the jobs to the server for execution and the server may get multiple requests at a time. In such a situation, the server schedule the jobs submitted to it based on some criteria and							
	logic. Each job contains two value that there are two servers that sci named as Time_Schedule_Server model and implement the time_Sch Time_Schedule_Server arranges jo whereas memory_Schedule_Server ascending order.	hedules jobs base and memory_Sch hedule_Server and obs based on time	d on time edule_Serv l memory_ required for	and memory. ver respectively Schedule_Serv or execution in a	The servers are . Design a OOP er. The ascending order			
6.	Fragment Assembly in DNA Seq	uencing						
	Fragment Assembly in DNA Sequencing DNA, or deoxyribonucleic acid, is the hereditary material in humans and almost all other organisms. The information in DNA is stored as a code made up of four chemical bases: adenine (A), guanine (G), cytosine (C), and thymine (T). In DNA sequencing, each DNA is sheared into millions of small fragments (reads) which assemble to form a single genomic sequence ("superstring"). Each read is a small string. In such a fragment assembly, given a set of reads, the objective is to determine the shortest superstring that contains all the reads. For example, given a set of strings, {000, 001, 010, 011, 100, 101, 110, 111} the shortest superstring is 0001110100. Given a set of reads, implement an algorithm to find the shortest superstring that contains all the given reads.							
7.	House Wiring							
	An electrician is wiring a house where where the different locations. Given a set of palgorithm to find the minimum cate	power points and t		•				
		Т	'otal Labo	oratory Hours	90 hours			
Tex	xt Book(s)							
1.	Stanley B Lippman, Josee Lajoie, Wesley, 2012.	Barbara E, Moo,	"C++ prin	ner", Fifth editio	on, Addison-			
2.	Ali Bahrami, Object oriented Syste	-						
3.	Brian W. Kernighan, Dennis M. Ritchie , The "C" programming Language, 2nd edition, Prentice Hall Inc., 1988							
	ference Books							
1.	Bjarne stroustrup, The C++ progra							
2.	Harvey M. Deitel and Paul J. Deite		-					
3.								
Mo	de of Evaluation: CAT / Assignmen	nt / Quiz / FAT / P	roject / Se	minar				
Rec	commended by Board of Studies	29/10/2015						
App	proved by Academic Council	39 th AC	Date	17/12/2015				
	-	•		•				

		E.millimi P. utilay Argub	(Deemed to be University	under section 3	3 of UGC Act, 1956)					
EEE3	099	Indu	strial Intern	ship		L	Τ	P	J	С
						0	0	0	0	2
Pre-re	quisite	Completion of min	imum of Tw	o semes	sters	Sy	llab	us V	⁷ ers	ion
Anti-r	equisite	Nil							v	1.0
Cours	e Objecti	ves:								
The co	ourse is de	esigned so as to expose	se the student	s to indu	ustry environ	men	it an	d to	tak	e up
on-site	assignme	ent as trainees or inte	rns.		-					-
Expec	ted Cour	se Outcome:								
At the	end of thi	is internship the stude	ent should be	able to:						
2. 3. 4. 5. 6.	Commun Understa environn Develop Comprel Engage i	exposure to industrianicate effectively and the impact of enginental and societal co the ability to engage nend contemporary is in establishing his/her	ineering solu ontext in research a ssues	tions in nd to in	a global, eco					
Conte	nts							4	We	eeks
Four w	veeks of w	vork at industry site.				1				
Superv	vised by a	n expert at the indust	ry.							
			-							
Mode	of Evalua	tion: Internship Repo	ort, Presentati	on and I	Project Revie	w				
Recom	initenaca i	by Board of Studies	05/03/2016							

EEE3999Technical Answers for Real World Problems (TARP)LT							
		1 0 0 8 3					
Pre-requisite	PHY1999 and 115 Credits Earned	Syllabus version					
Anti-requisite	Nil	v. 1.0					
Course Objectives							
-	s to identify the need for developing newer technologies for	industrial / societal					
needs		1 0.1					
	ts to propose and implement relevant technology for the deve	elopment of the					
prototypes / pro		41					
	idents learn to the use the methodologies available to assess	the developed					
prototypes / pro Expected Course							
	the course, the student will be able to						
	life problems related to society						
-	priate technology(ies) to address the identified problems using	ig engineering					
	arrive at innovative solutions	6 6 6					
Module:1		15 hours					
 6 – 10 stude Minimum of Appropriate Solution sh design/relev Consolidate Participatio will be used Project outo political and Contributio 	can be arranged by the faculty concerned ents can form a team (within the same / different discipline) of eight hours on self-managed team activity e scientific methodologies to be utilized to solve the identifier ould be in the form of fabrication/coding/modeling/product d vant scientific methodology(ies) ed report to be submitted for assessment n, involvement and contribution in group discussions during as the modalities for the continuous assessment of the theor come to be evaluated in terms of technical, economical, social d demographic feasibility n of each group member to be assessed component to have three reviews with the weightage of 20:3	lesign/process the contact hours ry component Il, environmental,					

Recommended by Board of Studies	05/03/2016		
Approved by Academic Council	40 th AC	Date	18/03/2016

EEE4098	4098 Comprehensive Examination					
		0 0 0 0 2				
Pre-requisite	As per the academic regulations	Syllabus version				
Anti-requisite	Nil	v. 1.0				

Module:1 Electrical Circuits

Voltage and current sources: independent, dependent, ideal and practical; V-I relationships of resistor, inductor, mutual inductor and capacitor; transient analysis of RLC circuits with dc excitation. Kirchhoff's laws, mesh and nodal analysis, superposition, Thevenin's, Norton, maximum power transfer and reciprocity theorems. Peak, average and rms values of ac quantities; apparent, active and reactive powers; phasor analysis, impedance and admittance; series and parallel resonance, locus diagrams, realization of basic filters with R, L and C elements. One-port and two-port networks, driving point impedance and admittance, open-, and short circuit parameters

Module:2 Engineering Electromagnetics

Coulomb's Law, Electric Field Intensity, Electric Flux Density, Gauss's Law, Divergence, Electric field and potential due to point, line, plane and spherical charge distributions, Effect of dielectric medium, Capacitance of simple configurations, Biot-Savart's law, Ampere's law, Curl, Faraday's law, Lorentz force, Inductance, Magneto motive force, Reluctance, Magnetic circuits, Self and Mutual inductance of simple configurations.

Module:3 Signals and Systems

Periodic, aperiodic and impulse signals; Laplace, Fourier and z-transforms; transfer function, frequency response of first and second order linear time invariant systems, impulse response of systems; convolution, correlation. Discrete time system: impulse response, frequency response, pulse transfer function; DFT and FFT; basics of IIR and FIR filters

Module:4 Control Systems

Mathematical modelling and representation of systems, Feedback principle, transfer function, Block diagrams and Signal flow graphs, Transient and Steady-state analysis of linear time invariant systems, Routh-Hurwitz and Nyquist criteria, Bode plots, Root loci, Stability analysis, Lag, Lead and Lead-Lag compensators; P, PI and PID controllers; State space model, State transition matrix

Module:5 | Electromechanical Energy Conversion

Single phase transformer: equivalent circuit, phasor diagram, open circuit and short circuit tests, regulation and efficiency; Three phase transformers: connections, parallel operation; Auto-transformer, Electromechanical energy conversion principles, DC machines: separately excited, series and shunt, motoring and generating mode of operation and their characteristics, starting and speed control of dc motors; Three phase induction motors: principle of operation, types, performance, torque-speed characteristics, no-load and blocked rotor tests, equivalent circuit, starting and speed control; Operating principle of single phase induction motors; Synchronous machines: cylindrical and salient pole machines, performance, regulation and parallel operation of generators, starting of synchronous motor, characteristics; Types of losses and efficiency calculations of electric machines

Module:6 **Power Systems and Power Electronics**

Power generation concepts, ac and dc transmission concepts, Models and performance of transmission lines and cables, Series and shunt compensation, Electric field distribution and

insulators, Distribution systems, Per-unit quantities, Bus admittance matrix, GaussSeidel and Newton-Raphson load flow methods, Voltage and Frequency control, Power factor correction, Symmetrical components, Symmetrical and unsymmetrical fault analysis, Principles of over-current, differential and distance protection; Circuit breakers, System stability concepts, Equal area criterion. Characteristics of semiconductor power devices: Diode, Thyristor, Triac, GTO, MOSFET, IGBT; DC to DC conversion: Buck, Boost and Buck-Boost converters; Single and three phase configuration of uncontrolled rectifiers, Line commutated thyristor based converters, Bidirectional ac to dc voltage source converters, Issues of line current harmonics, Power factor, Distortion factor of ac to dc converters, Single phase and three phase inverters, Sinusoidal pulse width modulation

Module:7 Analog and Digital Circuits

Characteristics and applications of diode, Zener diode, BJT and MOSFET; small signal analysis of transistor circuits, feedback amplifiers. Characteristics of operational amplifiers; applications of opamps: difference amplifier, adder, sub tractor, integrator, differentiator, instrumentation amplifier, precision rectifier, active filters and other circuits. Oscillators, signal generators, voltage controlled oscillators and phase locked loop. Combinational logic circuits, minimization of Boolean functions. IC families: TTL and CMOS. Arithmetic circuits, comparators, Schmitt trigger, multi-vibrators, sequential circuits, flip-flops, shift registers, timers and counters; sample-and-hold circuit, multiplexer, analog-to-digital (successive approximation, integrating, flash and sigma-delta) and digital-to-analog converters (weighted R, R-2R ladder and current steering logic). Characteristics of ADC and DAC (resolution, quantization, significant bits, conversion/settling time); basics of number systems, microcontroller: applications, memory and input-output interfacing; basics of data acquisition systems.

Module:8 Measurement and Instrumentation

SI units, systematic and random errors in measurement, expression of uncertainty - accuracy and precision index, propagation of errors. PMMC, MI and dynamometer type instruments; dc potentiometer; bridges for measurement of R, L and C, Q-meter. Measurement of voltage, current and power in single and three phase circuits; ac and dc current probes; true rms meters, voltage and current scaling, instrument transformers, timer/counter, time, phase and frequency measurements, digital voltmeter, digital multimeter; oscilloscope, shielding and grounding

Recommended by Board of Studies	5/06/2015		
Approved by Academic Council	37 th AC	Date	16/06/2015

EEE4099	Capstone Project	L T P J C
		0 0 0 20
Pre-requisite	As per the academic regulations	Syllabus version
Anti-requisite	Nil	v. 1.0
Course Objectiv	es:	
To provide suffic	ient hands-on learning experience related to the design.	development and

analysis of suitable product / process so as to enhance the technical skill sets in the chosen field.

Expected Course Outcome:

At the end of the course the student will be able to

- 1. Formulate specific problem statements for ill-defined real life problems with reasonable assumptions and constraints.
- 2. Perform literature search and / or patent search in the area of interest.
- 3. Conduct experiments / Design and Analysis / solution iterations and document the results.
- 4. Perform error analysis / benchmarking / costing
- 5. Synthesise the results and arrive at scientific conclusions / products / solution
- 6. Document the results in the form of technical report / presentation

Contents

- 1. Capstone Project may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities.
- 2. Project can be for one or two semesters based on the completion of required number of credits as per the academic regulations.
- 3. Can be individual work or a group project, with a maximum of 3 students.
- 4. In case of group projects, the individual project report of each student should specify the individual's contribution to the group project.
- 5. Carried out inside or outside the university, in any relevant industry or research institution.
- 6. Publications in the peer reviewed journals / International Conferences will be an added advantage

Mode of Evaluation: Periodic reviews, Presentation, Final oral viva, Poster submission

Recommended by Board of Studies	5/06/2015		
Approved by Academic Council	37 th AC	Date	16/06/2015

ENG1011	English for Engineers	L	Т	Р	J	С
		1	0	4	0	2
Pre-requisite		Syl	labu		rsio	n
Anti-requisite			v.2	2.2		
Course Objec						
	e effective language skills for academic purposes and real-life			1		
	e students' language and communication with focus on placeme lents apply language and communication skills in professional					
	irse Outcome:	reading		Tep	<u></u>	ıg.
	guage skills with ease in academic and real-life situations.					
11.0	job winning digital foot print and learn to face interviews confi	idently	,			
-	bood interpreting and reporting skills to aid them in research.	laoniti				
	nd language and communication skills in academic and social c	context	s.			
5. Acquire vo	ocabulary and learn strategies for error-free communication.					
Module:1	Listening				4 ho	ours
Casual and Ac	6					
	Speaking				4 ho)11 r 6
	• 0				T IIU	Juis
	ills - Introducing Oneself- His / Her Goals & SWOT					
	Reading				2 ho	ours
Skimming and	Scanning					
Module:4	Writing				2 ho	ours
Error-free sent	tences, Paragraphs					
Module:5	Listening				4 ho	ours
News (Authen	tic Material): Analyzing General and Domain Specific Informa	tion				
Module:6	Speaking				4 ho	ours
Group Discuss	sion on factual, controversial and abstract issues					
Module:7	Reading:				2 ho	ours
Extensive Rea	ding					
Module:8	Writing				2 ho	ours
Email Etiquett	e with focus on Content and Audience					
Module:9	Listening			4	4 ho	ours
Speeches : Ge	neral and Domain Specific Information					

Developing H	Persuasive Skills - Turncoat and Debate	
Module:11	Reading	2 hours
Intensive Rea	ading	
Module:12	Writing	2 hours
Data Transco	ding	
Module:13	Cross Cultural Communication	4 hours
Understandin	g Inter and Cross-Cultural Communication Nuances	
Module:14	Speaking	4 hours
Public Speak	ing/Extempore /Monologues	
Module:15	Reading for research	2 hours
Reading Scie	ntific/Technical Articles	
Module:16	Writing	2 hours
Creating a Di	igital/Online Profile – LinkedIn (Résumé/Video Profile)	
Module:17	Speaking:	4 hours
Mock Job/Pla	acement Interviews	
Module:18	Writing	2 hours
Report Writin	ng	
Module:19	Speaking	4 hours
Presentation	using Digital Tools	
Module:20	Vocabulary	2 hours
Crossword P	uzzles/Word games	
	Total Lecture Hours	60 hours

	(Deemed to be University under section 3 of UGC Act, 1956)
Text B	Book (s)
1.	Clive Oxenden and Christina Latham-Koenig, New English File: Advanced: Teacher's Book with Test and Assessment CD-ROM: Six-level general English course for adults Paperback – Feb 2013, Oxford University Press, UK
2	Clive Oxenden and Christina Latham-Koenig,New English File: Advanced Students Book Paperback – Feb 2012, Oxford University Press, UK
3	Michael Vince, Language Practice for Advanced - Students Book, Feb. 2014, 4th Edition, Macmillan Education, Oxford, United Kingdom
Refere	ence Books
1.	Steven Brown, Dorolyn Smith, Active Listening 3, 2011, 3 rd Edition, Cambridge University Press, UK
2.	Tony Lynch, Study Listening, 2013, 2 nd Edition, Cambridge University Press, UK
3.	Liz Hamp-Lyons, Ben Heasley, Study Writing, 2010, 2 nd Edition, Cambridge University Press, UK Kenneth Anderson, Joan Maclean, Tony Lynch, Study Speaking, 2013, 2 nd Edition, Cambridge University Press, UK
4.	Eric H. Glendinning, Beverly Holmstrom, Study Reading, 2012, 2 nd Edition Cambridge University Press, UK
	Michael Swan, Practical English Usage (Practical English Usage), Jun 2017, 4th edition, Oxford University Press, UK
6.	Michael McCarthy, Felicity O'Dell, English Vocabulary in Use Advanced (South Asian Edition), May 2015, Cambridge University Press, UK
7.	Michael Swan, Catherine Walter, Oxford English Grammar Course Advanced, Feb 2012, 4 th Edition, Oxford University Press, UK
8.	Heather Silyn-Roberts, Writing for Science and Engineering: Papers, Presentations and Reports, Jun 2016, 2 nd Edition, Butterworth-Heinemann, UK
	of Evaluation: Assignment and FAT- Mini Project, Flipped Class Room, Lecture, PPT's, Role
play, A	Assignments Class/Virtual Presentations, Report and beyond the classroom activities

1.	Create a Digital or Online Profile or a Digital Footprint				6 hours
2.	Prepare a video resume				8 hours
3.	Analyse a documentary critica	lly			4 hours
4.	Turn Coat- Speaking for and a Community Radio	gainst the topic	/ Activities th	rough VIT	6 hours
5	Present a topic using 'Prezi'				6 hours
6	Analyse a case on cross cultura	al communicati	on critically		6 hours
7	Create a list of words relating to your domain				4 hours
8	Listen to a conversation of native speakers of English and answer the following questions				6 hours
9	Read an article and critically analyse the text in about 150 words			vords	6 hours
10	Read an autobiography and role play the character in class by taking an excerpt from the book				8 hours
			Total Prac	tical Hours	60 hours
Class	e of evaluation: Mini Project, Flip /Virtual Presentations, Report an mmended by Board of Studies				ay, Assignments
	oved by Academic Council	47 th AC	Date	24/08/201	

	(Deemed to be University under section 3 of U	JGC Act, 1956)	
HUM1021	Ethics and Values		L T P J C
	X701		
Pre-requisite	Nil		Syllabus version
Anti-requisite	Nil		v1.2
Course Objectives:		1 1 1	• • • • • •
polity 2. To understand th	nd appreciate the ethical issues faced by an i e negative health impacts of certain unhealt e need and importance of physical, emotion	hy behaviors	
Expected Course C	Putcome:		
Students will be able			
 Understand va Understand the Identify ethica integrity, use a of human subj 	morals and ethical values scrupulously to particular social problems and learn to act ethicate concept of addiction and how it will affect a concerns in research and intellectual content and citation of sources, the objective present ects and typologies, characteristics, activities, activities	lly the physical and xts, including aca ation of data, and	mental health Idemic the treatment
		T	
	Good and Responsible th as truth and non-violence – Comparative		5 hours
	Issues 1		4 hours
Harassment – Type	s - Prevention of harassment, Violence and	Terrorism	
Module:3 Social	Issues 2		4 hours
Corruption: Ethical	values, causes, impact, laws, prevention – E - Tax evasions – Unfair trade practices	lectoral malpracti	
	*		
Module:4 Addict	ion and Health		5 hours
- Prevention of Suic	holism: Ethical values, causes, impact, laws ides; ention and impact of pre-marital pregnancy	-	-
Module:5 Drug A	Abuse		3 hours
Abuse of different prevention	types of legal and illegal drugs: Ethical val	ues, causes, impa	ct, laws and
Module:6 Person	al and Professional Ethics		4 hours
	ing - Malpractices in Examinations – Plagia	arism	
Module:7 Abuse	of Technologies		3 hours
	yber crimes, Addiction to mobile phone usa	ge, Video games	
	emporary issues:		2 hours

	Т	otal Lecture hours	S	30 hours		
Ref	ference Books					
1.	Dhaliwal, K.K , "Gandhian Philoso	ophy of Ethics: A S	tudy of Re	elationship between his		
	Presupposition and Precepts, 2016,	Writers Choice, Ne	ew Delhi,	India.		
2.	Vittal, N, "Ending Corruption? - H	low to Clean up Ind	lia?", 2012	2, Penguin Publishers, UK.		
3.	Pagliaro, L.A. and Pagliaro, A.M,	"Handbook of Chil	d and Ado	lescent Drug and Substance		
4	Abuse: Pharmacological, Develop	mental and Clinica	l Consider	rations", 2012Wiley		
4.	¹ . Publishers, U.S.A.					
	Pandey, P. K (2012), "Sexual Hara Germany.	ssment and Law in	India", 20)12, Lambert Publishers,		
Mo	de of Evaluation: CAT, Assignment	, Quiz, FAT and Se	eminar			
Rec	commended by Board of Studies	26/07/2017				
Ap	proved by Academic Council	46 th AC	Date	24/08/2017		

MAT1011	Calculus for Engineers	6	LT	P	J	C
	<u> </u>		3 0	2	0	4
Pre-requisite	Nil	S	Syllab	us V	/ers	sion
Anti-requisite	Nil		v.1.0			
Course Objectives :						
	e requisite and relevant background nec	-				
	ineering mathematics courses offered for	-		tists	•	
	mportant topics of applied mathematics	, namely Single	and			
	Calculus and Vector Calculus etc.					
-	knowledge of Laplace transform, an im	portant transform	m tech	niqu	le fo	or
Engineers whi	ch requires knowledge of integration					
Expected Course Ou						
At the end of this cou	rse the students should be able to					
1. apply single	variable differentiation and integration	on to solve app	olied r	orobl	ems	s in
	nd find the maxima and minima of func		r r			
0 0	sic concepts of Laplace Transforms a		ems w	ith 1	perio	odic
	functions, impulse functions and conv	-				
-	al derivatives, limits, total differentia		Favlor	ser	ies	and
-	problems involving several variables wi		•		100	unu
	ple integrals in Cartesian, Polar, Cylind				nate	es.
	adient, directional derivatives, diverg	_				
Gauss theoren	-	,ence, ean and		,	510	ке <i>в</i> ,
	IATLAB code for challenging problem	s in engineering				
	plication of Single Variable		nours			
	lculus	~ -	louis			
·						
	ma on an Interval-Rolle's Theorem and					
e	asing functions and First derivative test-					
	ty. Integration-Average function value		curves	- V	olur	nes
of solids of revolution	- Beta and Gamma functions-interrela	tion				
Module:2 La	nloss transforms	7 1	iours			
	place transforms e transform-Properties-Laplace transfo			one_	[an	1900
_	function, Impulse function-Inverse Lap	-			-	lace
transform of unit stop	function, impulse function inverse Eu		convo	Tuti	/11.	
Module:3 M	ultivariable Calculus	4 k	nours			
	ables-limits and continuity-partial deriv			ial-J	acoł	bian
and its properties.						
	plication of Multivariable Calculus	5 k	nours			
Module:4 Ap		a a materia a di ma a m	ima a	nd r	nini	ma
	or two variables-maxima and minima-	constrained max	anna a	nu i	mm	ma-
	or two variables-maxima and minima-	constrained max	anna a	nu i		111a-
Taylor's expansion fo Lagrange's multiplier	or two variables-maxima and minima-		10 U TS	<u> </u>		

Evaluation of double integrals-change of order of integration-change of variables between Cartesian and polar co-ordinates - Evaluation of triple integrals-change of variables between Cartesian and cylindrical and spherical co-ordinates- evaluation of multiple integrals using gamma and beta functions.

			- 1
Module:6		Vector Differentiation	5 hours
		valued functions – gradient, tangent plane- nd vector potentials–Statement of vector iden	
Module	Module:7 Vector Integration		5 hours
		volume integrals - Statement of Green's	
theorem	s -verifica	ation and evaluation of vector integrals using	g them.
Module	:8	Contemporary Issues:	2 hours
Indust	ry Expert		
	v 1		
		Total Lecture hours	45 hours
T 4 D -	- 1 -()		
Text Bo		nas' Calculus, George B.Thomas, D.Weir an	d L Hagg 12 th adition Dearson
1.	2014	-	id J. Hass, 13 edition, Pearson,
2.	Adva	unced Engineering Mathematics, Erwin Krey	vszig, 10 th Edition, Wiley India,
	2015		
Referen	ce Books		
1.	2015		
2.	High	er Engineering Mathematics, John Bird, 6 th	Edition, Elsevier Limited, 2017.
3.	Calcı 2017	ulus: Early Transcendentals, James Stewart,	8 th edition, Cengage Learning,
4.		neering Mathematics, K.A.Stroud and Dext nillan (2013)	er J. Booth, 7 th Edition, Palgrave
Mode of	² Evaluati	on: Digital Assignments, Quiz, Continuous	s Assessments, Final Assessment
Test			
List of (Challengi	ing Experiments (Indicative)	
1.	Introdu	ction to MATLAB through matrices, and ge	neral 3 hours
1.	Syntax	each to harren an ough matrices, and ge	
		TLAB – 3 hours	
		ic computations using MATLAB	
3.		ing Extremum of a single variable function	3 hours
4.	Underst	tanding integration as Area under the curve	3 hours
5.		ion of Volume by Integrals (Solids of Revol	
6.	Evaluat variable	ing maxima and minima of functions of sevents	eral 3 hours
7.	Applyir	ng Lagrange multiplier optimization method	2 hours

8.	Evaluating Volume under surface	es		2 hours	
9.	Evaluating triple integrals			2 hours	
10.	10. Evaluating gradient, curl and divergence			2 hours	
11.	11. Evaluating line integrals in vectors			2 hours	
12.	2. Applying Green's theorem to real world problems			2 hours	
		30 hours			
Mode of	Mode of Evaluation: CAT, Assignment, Quiz, FAT and Seminar.				
Recomm	Recommended by Board of Studies 12/06/2015				
Approve	d by Academic Council	37 th AC	Date	16/06/2015	

(Deemed to be University under section 3 of UGC Act, 1956)						
MAT2001	Statistics for Engineers	L	Т	Р	J	С
		3	0	2	0	4
Prerequisites	MAT1011		Syllab	us Vo	ersion	1
Anti-requisite	Nil			v.1.1		
Course Objectives :	1					
	ents with a framework that will l	help them ch	oose	the a	pprop	riate
descriptive metho	ds in various data analysis situations					
•	outions and relationship of real-time c					
	on and testing methods to make infe	rence and mo	delling	g tech	nique	s for
decision making.						
Expected Course Ou						
	rse the student should be able to:		1 · 1	. 1		
1	rpret descriptive statistics using num	0 1			-	
	asic concepts of random variables a specific to an experiment.	ing mig an ap	propri	ale u	Istridu	mon
	methods like correlation, regression	analysis in a	nalvsi	no ir	ternre	ətino
experimental data	.	anarysis in a	11a1 y 51.	iig, ii	licipit	ung
1	decisions using statistical inference	that is the ce	entral 1	to ext	berime	ental
research.	6			1		
5. Use statistical me	thodology and tools in reliability eng	ineering probl	ems.			
6. demonstrate R pro	ogramming for statistical data					
Module: 1	Introduction to Statistics		6 hou			
	stics and data analysis-Measures of		dency	–Me	easure	s of
	-Skewness-Kurtosis (Concepts only)].				
Module: 2	Random variables		8 hou			
	variables-Probability mass Function			-		
•	stribution and joint density functions	-				
	s- Mathematical expectation, and it	ts properties (Covari	ance	, moi	ment
	characteristic function.					
Module: 3	Correlation and regression		4 hou			
	ression – Rank Correlation- Partial	and Multiple	correl	ation	- Mul	tiple
regression.						
Module: 4	Probability Distributions	7 hours				
	n distributions – Normal distribution -	– Gamma dist	ributio	on –		
	ion – Weibull distribution.	L				
Module: 5	Hypothesis Testing I		4 hou			
	s – Introduction-Types of errors, c	-	-			-
	nple tests- Z test for Single Proportion	on, Difference	e of Pr	oport	ion, n	nean
and difference of mea						
Module: 6	Hypothesis Testing II		9 hou	rs		
		-				-
Small sample tests- S	tudent's t-test, F-test- chi-square test					
Small sample tests- S attributes- Design of						
Small sample tests- S	tudent's t-test, F-test- chi-square test			classi		

	-	Hazard function-Reliabilities of seri ainability-Preventive and repair mainter	
Modu		Contemporary Issues	2 hours
Indust	ry Expert Le		I
	<u> </u>	Total Lecture Hours	45 hours
Text k	ook(s)		I
1.		e, R.H.Myers, S.L.Mayers and K.Ye, Press, 9 th Edition, Pearson Education (2012	
2.		Montgomery, George C. Runger, Ap th Edition, John Wiley & Sons (2016).	oplied Statistics and Probability for
Refer	ence books		
1.	E.Balagurus	amy, Reliability Engineering, Tata Mc	Graw Hill, Tenth reprint 2017.
2.	(2012).	Probability and Statistics, 8 th Edition, E	
3.		n, Probability and Statistics for Enginee ll India (2011).	rs, Miller Freund's, 8th edition,
4.	Engineers a	yub and Richard H. McCuen, Probabilit nd Scientists, CRC press (2011).	ty, Statistics and Reliability for
Mode		n: Digital Assignments, Continuous As	sessment Tests, Quiz, Final
	sment Test.		
List of			
LISC U	f Experime	nts (Indicative)	
	f Experime	nts (Indicative)	
	-		/exporting data. 2 hours
	Introductio	n: Understanding Data types; importing	
1.	Introduction Computing	n: Understanding Data types; importing Summary Statistics /plotting and visua	
<u>1.</u> 2.	Introduction Computing Tabulation	n: Understanding Data types; importing	lizing data using 2 hours
<u>1.</u> 2.	Introduction Computing Tabulation Applying c	n: Understanding Data types; importing Summary Statistics /plotting and visua and Graphical Representations.	lizing data using2 hoursmodel to real2 hours
<u>1.</u> 2.	Introduction Computing Tabulation Applying c	n: Understanding Data types; importing Summary Statistics /plotting and visua and Graphical Representations. orrelation and simple linear regression nputing and interpreting the coefficient	lizing data using2 hoursmodel to real2 hours
<u>1.</u> 2.	Introduction Computing Tabulation Applying c dataset; con determinat	n: Understanding Data types; importing Summary Statistics /plotting and visua and Graphical Representations. orrelation and simple linear regression nputing and interpreting the coefficient	lizing data using2 hoursmodel to real of2 hours
<u>1.</u> 2. 3.	Introduction Computing Tabulation Applying of dataset; con determinat Applying r	n: Understanding Data types; importing Summary Statistics /plotting and visua and Graphical Representations. orrelation and simple linear regression mputing and interpreting the coefficient on.	lizing data using2 hoursmodel to real of2 hoursdataset;2 hours
<u>1.</u> 2. 3.	Introduction Computing Tabulation Applying of dataset; con determinat Applying r	n: Understanding Data types; importing Summary Statistics /plotting and visua and Graphical Representations. orrelation and simple linear regression mputing and interpreting the coefficient on. nultiple linear regression model to real of and interpreting the multiple coefficien	lizing data using2 hoursmodel to real of2 hoursdataset;2 hours
<u>1.</u> 2. 3.	Introduction Computing Tabulation Applying c dataset; con determinat Applying r computing determinat Fitting th	n: Understanding Data types; importing Summary Statistics /plotting and visua and Graphical Representations. orrelation and simple linear regression mputing and interpreting the coefficient on. nultiple linear regression model to real of and interpreting the multiple coefficient on.	lizing data using2 hoursmodel to real of2 hourslataset; t of2 hours
1. 2. 3. 4.	Introduction Computing Tabulation Applying c dataset; con determinat Applying r computing determinat Fitting th distribution	n: Understanding Data types; importing Summary Statistics /plotting and visua and Graphical Representations. orrelation and simple linear regression in nputing and interpreting the coefficient on. nultiple linear regression model to real of and interpreting the multiple coefficien on. the following probability distribution	lizing data using2 hoursmodel to real of2 hourslataset; t of2 hourscons:Binomial2 hours
1. 2. 3. 4. 5. 6.	Introduction Computing Tabulation Applying c dataset; con determinat Applying r computing determinat Fitting th distribution Normal dist	n: Understanding Data types; importing Summary Statistics /plotting and visua and Graphical Representations. orrelation and simple linear regression in mputing and interpreting the coefficient on. nultiple linear regression model to real of and interpreting the multiple coefficien on. nultiple linear probability distribution	lizing data using2 hoursmodel to real of2 hourslataset; t of2 hourslons:Binomial2 hours2 hours2 hours
1. 2. 3. 4. 5.	Introduction Computing Tabulation Applying c dataset; con determinat Applying r computing determinat Fitting th distribution Normal dis Testing of	n: Understanding Data types; importing Summary Statistics /plotting and visua and Graphical Representations. orrelation and simple linear regression in nputing and interpreting the coefficient on. nultiple linear regression model to real of and interpreting the multiple coefficien on. the following probability distribution hypothesis for One sample mean and	lizing data using2 hoursmodel to real of2 hourslataset; t of2 hourslons:Binomial2 hours2 hours2 hours
1. 2. 3. 4. 5. 6. 7.	Introduction Computing Tabulation Applying c dataset; con determinat Applying r computing determinat Fitting th distribution Normal dis Testing of real-time p	n: Understanding Data types; importing Summary Statistics /plotting and visua and Graphical Representations. orrelation and simple linear regression in mputing and interpreting the coefficient on. nultiple linear regression model to real of and interpreting the multiple coefficien on. the following probability distribution hypothesis for One sample mean and roblems.	lizing data using2 hoursmodel to real of2 hoursadataset; t of2 hourscons:Binomial2 hoursproportion from of2 hours
1. 2. 3. 4. 5. 6.	Introduction Computing Tabulation Applying c dataset; con determinat Applying r computing determinat Fitting the distribution Normal dis Testing of real-time p Testing of	n: Understanding Data types; importing Summary Statistics /plotting and visua and Graphical Representations. orrelation and simple linear regression nputing and interpreting the coefficient on. nultiple linear regression model to real of and interpreting the multiple coefficien on. te following probability distribution hypothesis for One sample mean and roblems. hypothesis for Two sample means and	lizing data using2 hoursmodel to real of2 hoursadataset; t of2 hourscons:Binomial2 hoursproportion from of2 hours
1. 2. 3. 4. 5. 6. 7. 8.	Introduction Computing Tabulation Applying c dataset; condition dataset; condition determinat Applying r computing determinat Fitting the distribution Normal diss Testing of real-time p Testing of real-time p	n: Understanding Data types; importing Summary Statistics /plotting and visua and Graphical Representations. orrelation and simple linear regression in mputing and interpreting the coefficient on. nultiple linear regression model to real of and interpreting the multiple coefficien on. the following probability distribution hypothesis for One sample mean and roblems. hypothesis for Two sample means and roblems	lizing data using2 hoursmodel to real of2 hoursadataset; t of2 hourscons:Binomial2 hoursproportion from proportion from2 hoursproportion from 2 hours
1. 2. 3. 4. 5. 6. 7. 8. 9.	Introduction Computing Tabulation Applying c dataset; con determinat Applying r computing determinat Fitting th distribution Normal dis Testing of real-time p Applying t	n: Understanding Data types; importing Summary Statistics /plotting and visua and Graphical Representations. orrelation and simple linear regression in nputing and interpreting the coefficient on. nultiple linear regression model to real of and interpreting the multiple coefficien on. tribution, Poisson distribution hypothesis for One sample mean and roblems. hypothesis for Two sample means and roblems he t test for independent and dependent	lizing data using2 hoursmodel to real of2 hoursadataset; t of2 hourslataset; t of2 hourslons:Binomial2 hoursproportion from proportion from2 hoursproportion from samples2 hours
1. 2. 3. 4. 5. 6. 7. 8.	Introduction Computing Tabulation Applying c dataset; con determinat Applying r computing determinat Fitting th distribution Normal dis Testing of real-time p Applying t Applying t	n: Understanding Data types; importing Summary Statistics /plotting and visua and Graphical Representations. orrelation and simple linear regression in mputing and interpreting the coefficient on. nultiple linear regression model to real of and interpreting the multiple coefficien on. tribution, Poisson distribution hypothesis for One sample mean and roblems. hypothesis for Two sample means and roblems he t test for independent and dependent Chi-square test for goodness of fit test a	lizing data using2 hoursmodel to real of2 hoursadataset; t of2 hourslataset; t of2 hourslons:Binomial2 hoursproportion from proportion from2 hoursproportion from samples2 hours
1. 2. 3. 4. 5. 6. 7. 8. 9. 10	Introduction Computing Tabulation Applying c dataset; con determinat Applying r computing determinat Fitting th distribution Normal dis Testing of real-time p Testing of real-time p Applying t Applying t	n: Understanding Data types; importing Summary Statistics /plotting and visua and Graphical Representations. orrelation and simple linear regression in mputing and interpreting the coefficient on. nultiple linear regression model to real of and interpreting the multiple coefficien on. tribution, Poisson distribution hypothesis for One sample mean and roblems. hypothesis for Two sample means and roblems he t test for independent and dependent Chi-square test for goodness of fit test a	lizing data using2 hoursmodel to real of2 hoursadataset; t of2 hourslataset; t of2 hourslons:Binomial2 hoursproportion from proportion from2 hoursproportion from samples2 hoursand Contingency2 hours

	10			
design, Randomized Block design	Latin square De	esign		
	y Hours	22 hours		
Mode of Evaluation: CAT, Assignment, Quiz, FAT and Seminar.				
Recommended by Board of Studies 25/02/2017				
Approved by Academic Council	47 th AC	Date:	05/10/2017	7

	(Deemed to be University under section 3 of UGC A	let, 1956)	
MGT1022	Lean Start up Manageme	ent	L T P J C
			1 0 0 4 2
Pre-requisite	Nil	S	Syllabus version
Anti-requisite	Nil		v.1.0
Course Objectives	: To develop the ability to	·	
1. Learn meth	ods of company formation and management.		
2. Gain practi	cal skills in and experience of stating of b	usiness using pre-	set collection of
business ide	eas.		
3. Learn basic	s of entrepreneurial skills.		
Expected Course	Outcome: On the completion of this course	the student will be	able to:
1. Understand	developing business models and growth driv	vers	
	siness model canvas to map out key component		
	arket size, cost structure, revenue streams, an	-	
	build-measure-learn principles		
	and quantifying business and financial risks		
Module:1			2 Hours
Creativity and Des	sign Thinking (identify the vertical for busi	ness opportunity,	understand your
-	ely assess market opportunity)		·
Module:2			3 Hours
Minimum Viable F	Product (Value Proposition, Customer Segme	nts, Build- measur	e-learn process)
Module:3			3 Hours
	Development(Channels and Partners, Re		
	ies and Costs, Customer Relationships and	Customer Develop	oment Processes,
Business model car	nvas –the lean model- templates)		
Module:4			3 Hours
	Access to Funding(visioning your ventu	ra taking the pro	
	an including Digital & Viral Marketing,		
· 1	Angel/VC,/Bank Loans and Key elements of	1	COSts/11011ts &
	inger ve, Bunk Louis and Key clements of	ruising money)	
Module:5			3 Hours
	CSR, Standards, Taxes		
	· · · · ·		
Module:6			2 Hours
Lectures by Entrep	reneurs		
	Total Lecture Hours		15 hours
			10 110415
Text Book(s)			
1. The Startup Ov	wner's Manual: The Step-By-Step Guide for B	uilding a Great Con	npany, Steve
Blank, K & S I	Ranch; 1 st edition (March 1, 2012)		
-	s to the Epiphany, Steve Blank, K&S Ranch;	2nd edition (July 1	7, 2013)
	up: How Today's Entrepreneurs Use Continuo		
1	<u> </u>		J

	(D	eemed to be University under secti	on 3 of UGC Act, 1950	6)	
	Successful Businesses, Eric Ries,	Crown Business;	(13 Septen	nber 2011)	
Ref	ference Books				
1.	Holding a Cat by the Tail, Steve Bl	lank, K&S Ranch	Publishing	gLLC (August 1	4, 2014)
2	Product Design and Development,	Karal T Ulrich, S	SD Eppinge	er, McGraw Hill	
3	Zero to One: Notes on Startups, or	How to Build the	Future, Pet	er Thiel, Crown	Business(2014)
4	Lean Analytics: Use Data to Build a	Better Startup Fa	ster (Lean S	Series), Alistair C	croll &
	Benjamin Yoskovitz, O'Reilly Me	dia; 1 st Edition (1	March 21, 2	2013)	
5	Inspired: How To Create Products	Customers Love,	Marty Caga	an, SVPG Press;	1st edition
	(June 18, 2008)				
6	Website References:				
	1. http://theleanstartup.com/				
	2. https://www.kickstarter.com/pr	ojects/881308232	2/only-on-k	cickstarter-the-le	aders-guide-
	by-eric-ries				
	3. http://businessmodelgeneratio				
	4. https://www.leanstartupmachin				
	5. https://www.youtube.com/watc				
	6. http://thenextweb.com/entrepre methodology/#gref	eneur/2015/07/05/	whats-wro	ng-with-the-lear	n-startup-
	7. http://www.businessinsider.in/	Whats-Lean-abou	it-Lean-Sta	rtup/articleshow	/53615661 cms
	8. https://steveblank.com/tools-an			rtup/ urticicisiio w	/33013001.ems
	9. https://hbr.org/2013/05/why-th	5	L .	rything chyentur	es.blogspot.in/
	platformsandnetworks.blogsp			· · · · · · · · · · · · · · · · · · ·	8-F
		1			
Mo	de of Evaluation: Assignments;	Field Trips. Cas	e Studies:	e-learning: Le	arning through
	earch, TED Talks	I .,	· ····,	6,	8
Pro	oject				
1.	Project				60 hours
			Total	Project Hours	60 hours
	commended by Board of Studies	08/06/2015		v	
Rec	commended by board of Studies				

PHY1701			
		Engineering Physics	L T P J C
		<u> </u>	3 0 2 0 4
Pre-requisit		Physics of 12 th standard or equivalent.	Syllabus version
Anti-requisi		Nil	v.1.0
Course Obj			
		ts to understand the basics of the latest advancements in physic	
Quantum mec	chanics, 1	Nanotechnology, lasers, Electromagnetic Theory and Fiber Opti	cs.
Expected Co	ourse Oi	utcome	
		l nature of radiation and matter.	
		er's equations to solve finite and infinite potential problems.	
		eas at the nanoscale.	
4. Apply quan	ntum idea	s for understanding the operation and working principle of opto	electronic devices.
		s equations in differential and integral form.	
÷		ypes of optical fibers for different Engineering applications.	
** •	various	types of optoelectronic devices for designing a typical optical	al fiber communicatio
system.	, <u>,</u> 1		
8. Demonstra	ite the qu	antum mechanical ideas	
Module:1	Introd	uction to Modern Physics	6 hours
			0 110 115
Module:2	Applic		
Particle in a		ations of Quantum Physics	5 hours
Effect (Quali	1-D box itative) ((Eigen Value and Eigen Function), 3-D Analysis (Qualitat AB 205), Scanning Tunneling Microscope (STM).	
Effect (Quali	itative) ((Eigen Value and Eigen Function), 3-D Analysis (Qualitat AB 205), Scanning Tunneling Microscope (STM).	tive), Tunneling
Effect (Quali	itative) (Nanop	(Eigen Value and Eigen Function), 3-D Analysis (Qualitat AB 205), Scanning Tunneling Microscope (STM). hysics	tive), Tunneling 5 hours
Effect (Quali Module:3 Introduction	itative) (Nanop to Nano	(Eigen Value and Eigen Function), 3-D Analysis (Qualitat AB 205), Scanning Tunneling Microscope (STM). hysics -materials, Moore's law, Properties of Nano-materials, Qu	tive), Tunneling 5 hours antum
Effect (Quali Module:3 Introduction	itative) (Nanop to Nano , Quantu	(Eigen Value and Eigen Function), 3-D Analysis (Qualitat AB 205), Scanning Tunneling Microscope (STM). hysics -materials, Moore's law, Properties of Nano-materials, Qu m well, wire & dot, Carbon Nano-tubes (CNT), Application	tive), Tunneling 5 hours antum
Effect (Quali Module:3 Introduction confinement, nanotechnolo	itative) (Nanop to Nano , Quantu ogy in in	(Eigen Value and Eigen Function), 3-D Analysis (Qualitat AB 205), Scanning Tunneling Microscope (STM). hysics -materials, Moore's law, Properties of Nano-materials, Qu m well, wire & dot, Carbon Nano-tubes (CNT), Application dustry.	tive), Tunneling 5 hours antum ons of
Effect (Quali Module:3 Introduction confinement, nanotechnolo	itative) (Nanop to Nano , Quantu ogy in in Laser	(Eigen Value and Eigen Function), 3-D Analysis (Qualitat AB 205), Scanning Tunneling Microscope (STM). hysics -materials, Moore's law, Properties of Nano-materials, Qu m well, wire & dot, Carbon Nano-tubes (CNT), Application dustry. Principles and Engineering	tive), Tunneling 5 hours antum
Effect (Quali Module:3 Introduction confinement nanotechnolo Module:4	itative) (Nanop to Nano , Quantu ogy in in Laser Applie	(Eigen Value and Eigen Function), 3-D Analysis (Qualitat AB 205), Scanning Tunneling Microscope (STM). hysics -materials, Moore's law, Properties of Nano-materials, Qu m well, wire & dot, Carbon Nano-tubes (CNT), Application dustry. Principles and Engineering cation	tive), Tunneling 5 hours antum ons of 6 hours
Effect (Quali Module:3 Introduction confinement nanotechnolo Module:4 Laser Charac	itative) (Nanop to Nano , Quantu ogy in in Laser Applic cteristics	(Eigen Value and Eigen Function), 3-D Analysis (Qualitat AB 205), Scanning Tunneling Microscope (STM). hysics -materials, Moore's law, Properties of Nano-materials, Qu m well, wire & dot, Carbon Nano-tubes (CNT), Application dustry. Principles and Engineering cation , Spatial and Temporal Coherence, Einstein Coefficient &	tive), Tunneling 5 hours antum ons of 6 hours its significance,
Effect (Quali Module:3 Introduction confinement nanotechnolo Module:4 Laser Charac Population in	itative) (Nanop to Nano , Quantu ogy in in Laser Applic cteristics nversion	(Eigen Value and Eigen Function), 3-D Analysis (Qualitate AB 205), Scanning Tunneling Microscope (STM). hysics -materials, Moore's law, Properties of Nano-materials, Que m well, wire & dot, Carbon Nano-tubes (CNT), Application dustry. Principles and Engineering cation , Spatial and Temporal Coherence, Einstein Coefficient & Two, three & four level systems, Pumping schemes, Three	tive), Tunneling 5 hours antum ons of 6 hours its significance,
Effect (Quali Module:3 Introduction confinement nanotechnolo Module:4 Laser Charac Population in coefficient, C	itative) (Nanop to Nano , Quantu ogy in in Laser Applic cteristics nversion. Compone	(Eigen Value and Eigen Function), 3-D Analysis (Qualitate AB 205), Scanning Tunneling Microscope (STM). hysics -materials, Moore's law, Properties of Nano-materials, Que m well, wire & dot, Carbon Nano-tubes (CNT), Application dustry. Principles and Engineering cation , Spatial and Temporal Coherence, Einstein Coefficient & Two, three & four level systems, Pumping schemes, Three	tive), Tunneling 5 hours antum ons of 6 hours its significance,
Effect (Quali Module:3 Introduction confinement, nanotechnolo Module:4 Laser Charac Population in coefficient, (itative) (Nanop to Nano , Quantu ogy in in Laser Applic cteristics nversion. Compone	(Eigen Value and Eigen Function), 3-D Analysis (Qualitat AB 205), Scanning Tunneling Microscope (STM). hysics -materials, Moore's law, Properties of Nano-materials, Qu m well, wire & dot, Carbon Nano-tubes (CNT), Application dustry. Principles and Engineering cation , Spatial and Temporal Coherence, Einstein Coefficient & four level systems, Pumping schemes, Three ents of	tive), Tunneling 5 hours antum ons of 6 hours its significance,
Effect (Quali Module:3 Introduction confinement nanotechnolo Module:4 Laser Charac Population in coefficient, C laser, Nd-YA	itative) (Nanop to Nano , Quantu ogy in in Laser Applic cteristics nversion Compone AG, He-N	(Eigen Value and Eigen Function), 3-D Analysis (Qualitat AB 205), Scanning Tunneling Microscope (STM). hysics -materials, Moore's law, Properties of Nano-materials, Qu m well, wire & dot, Carbon Nano-tubes (CNT), Application dustry. Principles and Engineering cation , Spatial and Temporal Coherence, Einstein Coefficient & , Two, three & four level systems, Pumping schemes, Three ents of Ne, CO2 and Dye laser and their engineering applications. omagnetic Theory and its	tive), Tunneling 5 hours antum ons of 6 hours its significance,
Effect (Quali Module:3 Introduction confinement, nanotechnolo Module:4 Laser Charac Population in coefficient, C laser, Nd-YA Module:5 Physics of	itative) (Nanop to Nano , Quantu ogy in in Laser Applic cteristics nversion Compone AG, He-N Electro applica	(Eigen Value and Eigen Function), 3-D Analysis (Qualitat AB 205), Scanning Tunneling Microscope (STM). hysics -materials, Moore's law, Properties of Nano-materials, Qu m well, wire & dot, Carbon Nano-tubes (CNT), Application dustry. Principles and Engineering cation , Spatial and Temporal Coherence, Einstein Coefficient & Two, three & four level systems, Pumping schemes, Three ents of Ne, CO2 and Dye laser and their engineering applications. omagnetic Theory and its ation nce, Gradient and Curl, Qualitative understanding of surfation	tive), Tunneling 5 hours antum ons of 6 hours its significance, eshold gain 6 hours ace and volume
Effect (Quali Module:3 Introduction confinement, nanotechnolo Module:4 Laser Charac Population in coefficient, C laser, Nd-YA Module:5 Physics of integral, M	itative) (Nanop to Nano , Quantu ogy in in Laser Applic cteristics nversion Compone AG, He-N Electro applic	(Eigen Value and Eigen Function), 3-D Analysis (Qualitation AB 205), Scanning Tunneling Microscope (STM). hysics -materials, Moore's law, Properties of Nano-materials, Quertation Nano-tubes (CNT), Application dustry. Principles and Engineering cation , Spatial and Temporal Coherence, Einstein Coefficient & Two, three & four level systems, Pumping schemes, Three ents of Ne, CO2 and Dye laser and their engineering applications. omagnetic Theory and its ation nce, Gradient and Curl, Qualitative understanding of surfa Equations (Qualitative), Wave Equation (Derivation), EM	tive), Tunneling 5 hours antum ons of 6 hours its significance, eshold gain 6 hours ace and volume
Effect (Quali Module:3 Introduction confinement, nanotechnolo Module:4 Laser Charac Population in coefficient, C laser, Nd-YA Module:5 Physics of integral, M	itative) (Nanop to Nano , Quantu ogy in in Laser Applic Cteristics nversion Compone AG, He-N Electre applic Diverge faxwell 1 Group ve	(Eigen Value and Eigen Function), 3-D Analysis (Qualitat AB 205), Scanning Tunneling Microscope (STM). hysics -materials, Moore's law, Properties of Nano-materials, Qu m well, wire & dot, Carbon Nano-tubes (CNT), Application dustry. Principles and Engineering cation , Spatial and Temporal Coherence, Einstein Coefficient & Two, three & four level systems, Pumping schemes, Three ents of Ne, CO2 and Dye laser and their engineering applications. omagnetic Theory and its ation nce, Gradient and Curl, Qualitative understanding of surfation	tive), Tunneling 5 hours antum ons of 6 hours its significance, eshold gain 6 hours ace and volume

Light propagation through fibers, Acceptance angle, Numerical Aperture, Types of fibers - step index,

graded index, single mode & multimode, Attenuation, Dispersion-intermodal and intramodal.

Module:7Optoelectronic Devices & Applications of Optical9 hoursfibers

Sources-LED & Laser Diode, Detectors-Photodetectors- PN & PIN - Applications of fiber optics in communication- Endoscopy.

Special Theory of Relativity:

Frame of reference, Galilean relativity, Postulate of special theory of relativity, Simultaneity, length contraction and time dilation.

Module:8 Contemporary issues:

Lecture by Industry Experts

Total Lecture Hours

45 hours

2 hours

Text Book(s)

- Arthur Beiser et al., Concepts of Modern Physics, 2013, Sixth Edition, Tata McGraw Hill.
 William Silfvast, Laser Fundamentals, 2008, Cambridge University Press.
- 3. D. J. Griffith, Introduction to Electrodynamics, 2014, 4th Edition, Pearson.
- 4. Djafar K. Mynbaev and Lowell L.Scheiner, Fiber Optic Communication Technology, 2011, Pearson.

Reference Books

- 1. Raymond A. Serway, Clement J. Mosses, Curt A. Moyer Modern Physics, 2010, 3rd Indian EditionCengage learning.
- 2. John R. Taylor, Chris D. Zafiratos and Michael A. Dubson, Modern Physics for Scientists and Engineers, 2011, PHI Learning Private Ltd.
- 3. Kenneth Krane Modern Physics, 2010, Wiley Indian Edition
- 4. Nityanand Choudhary and Richa Verma, Laser Systems and Applications, 2011, PHI
- 5. Learning Private Ltd.
- 6. S. Nagabhushana and B. Sathyanarayana, Lasers and Optical Instrumentation, 2010, I.K. International Publishing House Pvt. Ltd.,
- 7. R. Shevgaonkar, Electromagnetic Waves, 2005, 1st Edition, Tata McGraw Hill
- 8. Principles of Electromagnetics, Matthew N.O. Sadiku, 2010, Fourth Edition, Oxford.
- 9. Ajoy Ghatak and K. Thyagaraja, Introduction to Fiber Optics, 2010, Cambridge University Press

Mode of Evaluation: Quizzes, Digital Assignments, CAT-I and II and FAT

List	of Challenging Experiments (Indicative)	
1.	Determination of Planck's constant using electroluminescence process (Module 1)	2 hours
2.	Electron diffraction (Module 1)	2 hours
3.	Determination of wavelength of laser source (He -Ne laser and diode lasers of different wavelengths) using diffraction technique (Module 4)	2 hours
4.	Dispersive power of prism (Module 6)	2 hours

5.	Optical Fiber communication (sou	urce + optical fibe	r + detector	r) (Modules	2 hours
-	7+8)		21		
6.	Determination of size of fine parti	Iodule 3)	2 hours		
7.	Determination of the track width	(periodicity) in a v	written CD	(Module 4)	2 hours
8.	PIN diode characteristics (Module	e 8)			2 hours
9.	Black body Radiation (Module 1+	-2)			2 hours
10.	Optical Fiber communication (sou + 8)	urce + optical fibe	r + detector	r) (Modules 7	2 hours
11.	Analysis of crystallite size and str diffraction (Module 3)	ain in a nano -cry	stalline film	n using X-ray	2 hours
12.	Numerical solutions of Schröding (Module 2) (can be given as an as		article in a	box problem)	2 hours
13.	Laser coherence length measurem	ent (Module 4)			2 hours
14.	Proof for transverse nature of E.M.	I. waves (Module	6)		2 hours
15.	Quantum confinement and Heiser	berg's uncertainty	, principle	(Module $1+3$)	2 hours
		Γ	'otal Labo	ratory Hours	30 hours
Mode	e of Evaluation: Quizzes and FAT				
Reco	mmended by Board of Studies	11/08/2017			
Appro	oved by Academic Council	46 th AC	Date	24/08/2017	

Introduction to Innovative Projects e-requisite Nil urse Objectives: is course is offered to the students in the 1 St Year of B.Tech. in order to cependent, systemic thinking and be innovative. To make students confident enough to handle the day to day issues. To develop the "Thinking Skill" of the students, especially Creative Thin To train the students to be innovative in all their activities To prepare a project report on a socially relevant theme as a solution to to pected Course Outcome: Students will be able to Understand the various types of thinking skills. Enhance the innovative and creative ideas. Find out a suitable solution for socially relevant theme as pound to have support in the society, Creating a big picture of being an innovator – writing a 100 tobiography of self – Topic "Mr X – the great innovator of 2015" and up urs) odule:1 B Thinking Skill inhing and Behaviour – Types of thinking – Concrete – Abstract, Conver analytical, Sequential and Holistic thinking – Chunking Triangle – Contex udy. roject : Meeting at least 50 people belonging to various strata of life and sits to identify a min of100 society related issues, problems for which the tegories them and upload along with details of people met and lessons leasures) odule:1 C Lateral Thinking Skill iooms Taxonomy – HOTS – Outof the box thinking – deBono lateral thin roject : Last weeks - incomplete portion to be done and uploaded odule:2 A	rient ther	ills	version v.1.0
Iterequisite Nil urse Objectives: is course is offered to the students in the 1 ST Year of B.Tech. in order to compendent, systemic thinking and be innovative. To make students confident enough to handle the day to day issues. To develop the "Thinking Skill" of the students, especially Creative Thin To train the students to be innovative in all their activities To prepare a project report on a socially relevant theme as a solution to the peted Course Outcome: Students will be able to Understand the various types of thinking skills. Enhance the innovative and creative ideas. Find out a suitable solution for socially relevant issues- J component odule:1 A Self Confidence nderstanding self – Johari Window –SWOT Analysis – Self Esteem – Be udy roject : Exploring self, understanding surrounding, thinking about how si rot the society, Creating a big picture of being an innovator – writing a 100 tobiography of self – Topic "Mr X – the great innovator of 2015" and up urs) odule:1 B Thinking Skill	rient ther	m towards	version v.1.0
Iterequisite Nil urse Objectives: is course is offered to the students in the 1 ST Year of B.Tech. in order to compendent, systemic thinking and be innovative. To make students confident enough to handle the day to day issues. To develop the "Thinking Skill" of the students, especially Creative Thin To train the students to be innovative in all their activities To prepare a project report on a socially relevant theme as a solution to the peted Course Outcome: Students will be able to Understand the various types of thinking skills. Enhance the innovative and creative ideas. Find out a suitable solution for socially relevant issues- J component odule:1 A Self Confidence nderstanding self – Johari Window –SWOT Analysis – Self Esteem – Be udy roject : Exploring self, understanding surrounding, thinking about how si rot the society, Creating a big picture of being an innovator – writing a 100 tobiography of self – Topic "Mr X – the great innovator of 2015" and up urs) odule:1 B Thinking Skill	rient ther	m towards	v.1.0
urse Objectives: is course is offered to the students in the 1 ST Year of B.Tech. in order to a ependent, systemic thinking and be innovative. To make students confident enough to handle the day to day issues. To develop the "Thinking Skill" of the students, especially Creative Thin To train the students to be innovative in all their activities To prepare a project report on a socially relevant theme as a solution to the pected Course Outcome: Students will be able to Understand the various types of thinking skills. Enhance the innovative and creative ideas. Find out a suitable solution for socially relevant issues- J component odule:1 A Self Confidence inderstanding self – Johari Window –SWOT Analysis – Self Esteem – Be udy roject : Exploring self, understanding surrounding, thinking about how si ro the society, Creating a big picture of being an innovator – writing a 100 tobiography of self – Topic "Mr X – the great innovator of 2015" and up urs) Dule:1 B Thinking Skill	king Skil	ills	
is course is offered to the students in the 1 st Year of B.Tech. in order to a ependent, systemic thinking and be innovative. To make students confident enough to handle the day to day issues. To develop the "Thinking Skill" of the students, especially Creative Thin To train the students to be innovative in all their activities To prepare a project report on a socially relevant theme as a solution to the second course Outcome: Students will be able to Understand the various types of thinking skills. Enhance the innovative and creative ideas. Find out a suitable solution for socially relevant issues- J component odule:1 A Self Confidence Inderstanding self – Johari Window –SWOT Analysis – Self Esteem – Be ady roject : Exploring self, understanding surrounding, thinking about how su or the society, Creating a big picture of being an innovator – writing a 100 tobiography of self – Topic "Mr X – the great innovator of 2015" and up urs) odule:1 B Thinking Skill iniking and Behaviour – Types of thinking – Concrete – Abstract, Convert nalytical, Sequential and Holistic thinking – Chunking Triangle – Contex udy. roject : Meeting at least 50 people belonging to various strata of life and sits to identify a min of 100 society related issues, problems for which the tegories them and upload along with details of people met and lessons less purs) dule:1 C Lateral Thinking Skill looms Taxonomy – HOTS – Outof the box thinking – deBono lateral thin roject : Last weeks - incomplete portion to be done and uploaded odule:2 A Creativity reativity Models – Walla – Barrons – Koberg & Begnall – Examples roject : Selecting 5 out of 100 issues identified for future work. Cri r prioritisation, use of statistical tools & upload . (4 non- contact how	king Skil	ills	8
ependent, systemic thinking and be innovative. To make students confident enough to handle the day to day issues. To develop the "Thinking Skill" of the students, especially Creative Thin To train the students to be innovative in all their activities To prepare a project report on a socially relevant theme as a solution to the pected Course Outcome: Students will be able to Understand the various types of thinking skills. Enhance the innovative and creative ideas. Find out a suitable solution for socially relevant issues- J component odule:1 A Self Confidence Inderstanding self – Johari Window –SWOT Analysis – Self Esteem – Be ady roject : Exploring self, understanding surrounding, thinking about how so r the society, Creating a big picture of being an innovator – writing a 100 tobbiography of self – Topic "Mr X – the great innovator of 2015" and up urs) odule:1 B Thinking Skill iniking and Behaviour – Types of thinking – Concrete – Abstract, Conver nalytical, Sequential and Holistic thinking – Chunking Triangle – Contex udy. roject : Meeting at least 50 people belonging to various strata of life and sits to identify a min of100 society related issues, problems for which the tegories them and upload along with details of people met and lessons leavers) odule:1 C Lateral Thinking Skill tooms Taxonomy – HOTS – Outof the box thinking – deBono lateral thin roject : Last weeks - incomplete portion to be done and uploaded odule:2 A Creativity reativity Models – Walla – Barrons – Koberg & Begnall – Examples roject : Selecting 5 out of 100 issues identified for future work. Cri r prioritisation, use of statistical tools & upload . (4 non-contact hour r prioritisation, use of statistical tools & upload . (4 non-contact hour r prioritisation, use of statistical tools & upload . (4 non-contact hour r prioritisation and ploadel a supload . (4 non-contact hour r prioritisation and ploadel a supload . (4 non-contact hour r prioritisation and ploadel a supload . (4 non-contact hour r priorit	king Skil	ills	5
To make students confident enough to handle the day to day issues. To develop the "Thinking Skill" of the students, especially Creative Thin To train the students to be innovative in all their activities To prepare a project report on a socially relevant theme as a solution to the students the various types of thinking skills. Enhance the innovative and creative ideas. Find out a suitable solution for socially relevant issues- J component odule:1 A Self Confidence Inderstanding self – Johari Window –SWOT Analysis – Self Esteem – Be udy roject : Exploring self, understanding surrounding, thinking about how set roject : Exploring self, understanding surrounding, thinking about how set rot exociety, Creating a big picture of being an innovator – writing a 100 ttobiography of self – Topic "Mr X – the great innovator of 2015" and up minking and Behaviour – Types of thinking – Concrete – Abstract, Conver nalytical, Sequential and Holistic thinking – Chunking Triangle – Contex udy. roject : Meeting at least 50 people belonging to various strata of life and sits to identify a min of100 society related issues, problems for which the tegories them and upload along with details of people met and lessons le Durst Indext and ploaded Odule:1 C Lateral Thinking Skill lo	-		
To develop the "Thinking Skill" of the students, especially Creative Thin To train the students to be innovative in all their activities To prepare a project report on a socially relevant theme as a solution to to pected Course Outcome: Students will be able to Understand the various types of thinking skills. Enhance the innovative and creative ideas. Find out a suitable solution for socially relevant issues- J component odule:1 A Self Confidence Inderstanding self – Johari Window –SWOT Analysis – Self Esteem – Be ady roject : Exploring self, understanding surrounding, thinking about how say ro the society, Creating a big picture of being an innovator – writing a 100 tobiography of self – Topic "Mr X – the great innovator of 2015" and up urs) odule:1 B Thinking Skill iniking and Behaviour – Types of thinking – Concrete – Abstract, Conver nalytical, Sequential and Holistic thinking – Chunking Triangle – Contex udy. roject : Meeting at least 50 people belonging to various strata of life and sits to identify a min of100 society related issues, problems for which the tegories them and upload along with details of people met and lessons less ours) odule:1 C Lateral Thinking Skill looms Taxonomy – HOTS – Outof the box thinking – deBono lateral thin roject : Last weeks - incomplete portion to be done and uploaded odule:2 A Creativity reativity Models – Walla – Barrons – Koberg & Begnall – Examples roject : Selecting 5 out of 100 issues identified for future work. Cri r prioritisation, use of statistical tools & upload. (4 non- contact hour state of statistical tools & upload. (4 non- contact hour roject : Selecting 5 out of 100 issues identified for future work. Cri	-		
To train the students to be innovative in all their activities To prepare a project report on a socially relevant theme as a solution to t pected Course Outcome: Students will be able to Understand the various types of thinking skills. Enhance the innovative and creative ideas. Find out a suitable solution for socially relevant issues- J component dule:1 A Self Confidence nderstanding self – Johari Window –SWOT Analysis – Self Esteem – Be ndy roject : Exploring self, understanding surrounding, thinking about how self r the society, Creating a big picture of being an innovator – writing a 100 ttobiography of self – Topic "Mr X – the great innovator of 2015" and up urs) dule:1 B Thinking Skill ninking and Behaviour – Types of thinking – Concrete – Abstract, Conver nalytical, Sequential and Holistic thinking – Chunking Triangle – Contex udy. roject : Meeting at least 50 people belonging to various strata of life and sits to identify a min of 100 society related issues, problems for which the tegories them and upload along with details of people met and lessons leas burs) dule:1 C Lateral Thinking Skill fooms Taxonomy – HOTS – Outof the box thinking – deBono lateral thin roject : Last weeks - incomplete portion to be done and uploaded bule:2 A Creativity reativity Models – Walla – Barrons – Koberg & Begnall – Examples roject : Selecting 5 out of 100 issues identified for future work. Cri r prioritisation, use of statistical tools & upload. (4 non- contact hour	-		
To prepare a project report on a socially relevant theme as a solution to to pected Course Outcome: Students will be able to Understand the various types of thinking skills. Enhance the innovative and creative ideas. Find out a suitable solution for socially relevant issues- J component odule:1 A Self Confidence nderstanding self – Johari Window –SWOT Analysis – Self Esteem – Be tudy roject : Exploring self, understanding surrounding, thinking about how self r the society, Creating a big picture of being an innovator – writing a 100 ttobiography of self – Topic "Mr X – the great innovator of 2015" and up urs) odule:1 B Thinking Skill ininking and Behaviour – Types of thinking – Concrete – Abstract, Conver nalytical, Sequential and Holistic thinking – Chunking Triangle – Contex udy. roject : Meeting at least 50 people belonging to various strata of life and sits to identify a min of100 society related issues, problems for which the tegories them and upload along with details of people met and lessons leas burs) odule:1 C Lateral Thinking Skill [looms Taxonomy – HOTS – Outof the box thinking – deBono lateral thin roject : Last weeks - incomplete portion to be done and uploaded odule:2 A Creativity reativity Models – Walla – Barrons – Koberg & Begnall – Examples roject : Selecting 5 out of 100 issues identified for future work. Cri r prioritisation, use of statistical tools & upload .(4 non- contact hour	ne existin	ng issues	
pected Course Outcome: Students will be able to Understand the various types of thinking skills. Enhance the innovative and creative ideas. Find out a suitable solution for socially relevant issues- J component odule:1 A Self Confidence Inderstanding self – Johari Window –SWOT Analysis – Self Esteem – Be udy roject : Exploring self, understanding surrounding, thinking about how ss roject : Exploring self, understanding surrounding, thinking about how ss rothe society, Creating a big picture of being an innovator – writing a 100 nototiography of self – Topic "Mr X – the great innovator of 2015" and up urs) odule:1 B Thinking Skill ninking and Behaviour – Types of thinking– Concrete – Abstract, Convernalytical, Sequential and Holistic thinking – Chunking Triangle – Contex udy. roject : Meeting at least 50 people belonging to various strata of life and sits to identify a min of 100 society related issues, problems for which the tegories them and upload along with details of people met and lessons lease ours) odule:1 C Lateral Thinking Skill looms Taxonomy – HOTS – Outof the box thinking – deBono lateral thin roject : Last weeks - incomplete portion to be done and uploaded odule:2 A Creativity reativity Models – Walla – Barrons – Koberg & Begnall – Examples roject : Selecting 5 out of 100 issues		ing issues	
Understand the various types of thinking skills. Enhance the innovative and creative ideas. Find out a suitable solution for socially relevant issues- J component dule:1 A Self Confidence Inderstanding self – Johari Window –SWOT Analysis – Self Esteem – Be rudy roject : Exploring self, understanding surrounding, thinking about how sign r the society, Creating a big picture of being an innovator – writing a 100 tobiography of self – Topic "Mr X – the great innovator of 2015" and up urs) dule:1 B Thinking Skill ninking and Behaviour – Types of thinking – Concrete – Abstract, Conver nalytical, Sequential and Holistic thinking – Chunking Triangle – Contex udy. roject : Meeting at least 50 people belonging to various strata of life and sits to identify a min of 100 society related issues, problems for which the tegories them and upload along with details of people met and lessons less bule:1 C Lateral Thinking Skill looms Taxonomy – HOTS – Outof the box thinking – deBono lateral thin roject : Last weeks - incomplete portion to be done and uploaded bule:2 A Creativity reativity Models – Walla – Barrons – Koberg & Begnall – Examples roject : Selecting 5 out of 100 issues identified for future work. Cri r prioritisation, use of statistical tools & upload . (4 non- contact hour			
Enhance the innovative and creative ideas. Find out a suitable solution for socially relevant issues- J component odule:1 A Self Confidence Inderstanding self – Johari Window –SWOT Analysis – Self Esteem – Be rudy roject : Exploring self, understanding surrounding, thinking about how so roject : Exploring self, understanding surrounding, thinking about how so rote society, Creating a big picture of being an innovator – writing a 100 tobiography of self – Topic "Mr X – the great innovator of 2015" and up urs) odule:1 B Thinking Skill ninking and Behaviour – Types of thinking – Concrete – Abstract, Conver nalytical, Sequential and Holistic thinking – Chunking Triangle – Contex udy. roject : Meeting at least 50 people belonging to various strata of life and sits to identify a min of100 society related issues, problems for which the tegories them and upload along with details of people met and lessons less ours) odule:1 C Lateral Thinking Skill looms Taxonomy – HOTS – Outof the box thinking – deBono lateral thin roject : Last weeks - incomplete portion to be done and uploaded odule:2 A Creativity reativity Models – Walla – Barrons – Koberg & Begnall – Examples roject : Selecting 5 out of 100 issues identified for future work. Cri r prioritisation, use of statistical tools & upload . (4 non- contact hour			
Find out a suitable solution for socially relevant issues- J component odule:1 A Self Confidence Inderstanding self – Johari Window –SWOT Analysis – Self Esteem – Be rudy roject : Exploring self, understanding surrounding, thinking about how so rotiography of self – Topic "Mr X – the great innovator – writing a 100 tobiography of self – Topic "Mr X – the great innovator of 2015" and up outle:1 B Thinking Skill minking and Behaviour – Types of thinking – Concrete – Abstract, Conver nalytical, Sequential and Holistic thinking – Chunking Triangle – Contex udy. roject : Meeting at least 50 people belonging to various strata of life and sits to identify a min of100 society related issues, problems for which the tegories them and upload along with details of people met and lessons leasons ours) odule:1 C Lateral Thinking Skill looms Taxonomy – HOTS – Outof the box thinking – deBono lateral thin roject : Last weeks - incomplete portion to be done and uploaded odule:2 A Creativity reativity Models – Walla – Barrons – Koberg & Begnall – Examples roject : Selecting 5 out of 100 issues identified for future work. Cri r prioritisation, use of statistical tools & upload . (4 non- contact hour			
Dule:1 A Self Confidence Inderstanding self – Johari Window –SWOT Analysis – Self Esteem – Be rudy roject : Exploring self, understanding surrounding, thinking about how so or the society, Creating a big picture of being an innovator – writing a 100 tobiography of self – Topic "Mr X – the great innovator of 2015" and up urs) odule:1 B Thinking Skill ninking and Behaviour – Types of thinking – Concrete – Abstract, Conver nalytical, Sequential and Holistic thinking – Chunking Triangle – Contex udy. roject : Meeting at least 50 people belonging to various strata of life and sits to identify a min of100 society related issues, problems for which the tegories them and upload along with details of people met and lessons lease ours) odule:1 C Lateral Thinking Skill looms Taxonomy – HOTS – Outof the box thinking – deBono lateral thin roject : Last weeks - incomplete portion to be done and uploaded odule:2 A Creativity reativity Models – Walla – Barrons – Koberg & Begnall – Examples roject : Selecting 5 out of 100 issues identified for future work. Cri r prioritisation, use of statistical tools & upload . (4 non- contact hou			
nderstanding self – Johari Window –SWOT Analysis – Self Esteem – Be nudy roject : Exploring self, understanding surrounding, thinking about how set or the society, Creating a big picture of being an innovator – writing a 100 tobiography of self – Topic "Mr X – the great innovator of 2015" and up orters) odule:1 B Thinking Skill ninking and Behaviour – Types of thinking – Concrete – Abstract, Conver nalytical, Sequential and Holistic thinking – Chunking Triangle – Contex udy. roject : Meeting at least 50 people belonging to various strata of life and sits to identify a min of100 society related issues, problems for which the tegories them and upload along with details of people met and lessons lease ours) odule:1 C Lateral Thinking Skill looms Taxonomy – HOTS – Outof the box thinking – deBono lateral thin roject : Last weeks - incomplete portion to be done and uploaded odule:2 A Creativity reativity Models – Walla – Barrons – Koberg & Begnall – Examples roject : Selecting 5 out of 100 issues identified for future work. Cri r prioritisation, use of statistical tools & upload . (4 non- contact how			
nderstanding self – Johari Window –SWOT Analysis – Self Esteem – Be nudy roject : Exploring self, understanding surrounding, thinking about how set or the society, Creating a big picture of being an innovator – writing a 100 tobiography of self – Topic "Mr X – the great innovator of 2015" and up orters) odule:1 B Thinking Skill ninking and Behaviour – Types of thinking – Concrete – Abstract, Conver nalytical, Sequential and Holistic thinking – Chunking Triangle – Contex udy. roject : Meeting at least 50 people belonging to various strata of life and sits to identify a min of100 society related issues, problems for which the tegories them and upload along with details of people met and lessons lease ours) odule:1 C Lateral Thinking Skill looms Taxonomy – HOTS – Outof the box thinking – deBono lateral thin roject : Last weeks - incomplete portion to be done and uploaded odule:2 A Creativity reativity Models – Walla – Barrons – Koberg & Begnall – Examples roject : Selecting 5 out of 100 issues identified for future work. Cri r prioritisation, use of statistical tools & upload . (4 non- contact how			
nderstanding self – Johari Window –SWOT Analysis – Self Esteem – Be nudy roject : Exploring self, understanding surrounding, thinking about how set or the society, Creating a big picture of being an innovator – writing a 100 tobiography of self – Topic "Mr X – the great innovator of 2015" and up orters) odule:1 B Thinking Skill ninking and Behaviour – Types of thinking – Concrete – Abstract, Conver nalytical, Sequential and Holistic thinking – Chunking Triangle – Contex udy. roject : Meeting at least 50 people belonging to various strata of life and sits to identify a min of100 society related issues, problems for which the tegories them and upload along with details of people met and lessons lease ours) odule:1 C Lateral Thinking Skill looms Taxonomy – HOTS – Outof the box thinking – deBono lateral thin roject : Last weeks - incomplete portion to be done and uploaded odule:2 A Creativity reativity Models – Walla – Barrons – Koberg & Begnall – Examples roject : Selecting 5 out of 100 issues identified for future work. Cri r prioritisation, use of statistical tools & upload . (4 non- contact how	1 hou		
audy roject : Exploring self, understanding surrounding, thinking about how set the society, Creating a big picture of being an innovator – writing a 100 tobiography of self – Topic "Mr X – the great innovator of 2015" and up urs) odule:1 B Thinking Skill minking and Behaviour – Types of thinking – Concrete – Abstract, Convert nalytical, Sequential and Holistic thinking – Chunking Triangle – Contex udy. roject : Meeting at least 50 people belonging to various strata of life and sits to identify a min of100 society related issues, problems for which the tegories them and upload along with details of people met and lessons leases ours) odule:1 C Lateral Thinking Skill looms Taxonomy – HOTS – Outof the box thinking – deBono lateral thin roject : Last weeks - incomplete portion to be done and uploaded odule:2 A Creativity reativity Models – Walla – Barrons – Koberg & Begnall – Examples roject : Selecting 5 out of 100 issues identified for future work. Cri r prioritisation, use of statistical tools & upload . (4 non- contact hou			Case
roject : Exploring self, understanding surrounding, thinking about how service of being an innovator – writing a 100 stobiography of self – Topic "Mr X – the great innovator of 2015" and up urs) rdule:1 B Thinking Skill ninking and Behaviour – Types of thinking– Concrete – Abstract, Convert nalytical, Sequential and Holistic thinking – Chunking Triangle – Contex udy. roject : Meeting at least 50 people belonging to various strata of life and sits to identify a min of100 society related issues, problems for which the tegories them and upload along with details of people met and lessons leases on the second strate of the box thinking – deBono lateral thin roject : Last weeks - incomplete portion to be done and uploaded roject : Selecting 5 out of 100 issues identified for future work. Crit r prioritisation, use of statistical tools & upload . (4 non- contact hou	ing a com	linoutor	Cuse
r the society, Creating a big picture of being an innovator – writing a 100 tobiography of self – Topic "Mr X – the great innovator of 2015" and up ars) odule:1 B Thinking Skill minking and Behaviour – Types of thinking– Concrete – Abstract, Conver nalytical, Sequential and Holistic thinking – Chunking Triangle – Contex udy. roject : Meeting at least 50 people belonging to various strata of life and sits to identify a min of 100 society related issues, problems for which the tegories them and upload along with details of people met and lessons leave odule:1 C Lateral Thinking Skill looms Taxonomy – HOTS – Outof the box thinking – deBono lateral thinking roject : Last weeks - incomplete portion to be done and uploaded odule:2 A Creativity reativity Models – Walla – Barrons – Koberg & Begnall – Examples roject : Selecting 5 out of 100 issues identified for future work. Cri r prioritisation, use of statistical tools & upload . (4 non- contact hour	he) can h	be a contr	ibutor
tobiography of self – Topic "Mr X – the great innovator of 2015" and up oule:1 B Thinking Skill ninking and Behaviour – Types of thinking– Concrete – Abstract, Conver nalytical, Sequential and Holistic thinking – Chunking Triangle – Contex udy. roject : Meeting at least 50 people belonging to various strata of life and sits to identify a min of100 society related issues, problems for which the tegories them and upload along with details of people met and lessons lease ours) odule:1 C Lateral Thinking Skill looms Taxonomy – HOTS – Outof the box thinking – deBono lateral thin roject : Last weeks - incomplete portion to be done and uploaded odule:2 A Creativity reativity Models – Walla – Barrons – Koberg & Begnall – Examples roject : Selecting 5 out of 100 issues identified for future work. Cri r prioritisation, use of statistical tools & upload . (4 non- contact hou			
Image: statistical tools & upload . Image: statistical tools & upload . (4) (4)			
Dedule:1 B Thinking Skill ninking and Behaviour – Types of thinking– Concrete – Abstract, Conver nalytical, Sequential and Holistic thinking – Chunking Triangle – Contex udy. roject : Meeting at least 50 people belonging to various strata of life and sits to identify a min of100 society related issues, problems for which the tegories them and upload along with details of people met and lessons lease Durs) Dule:1 C Lateral Thinking Skill looms Taxonomy – HOTS – Outof the box thinking – deBono lateral thin roject : Last weeks - incomplete portion to be done and uploaded Dule:2 A Creativity reativity Models – Walla – Barrons – Koberg & Begnall – Examples roject : Selecting 5 out of 100 issues identified for future work. Cri r prioritisation, use of statistical tools & upload . (4 non- contact hou	044. (11		act
ninking and Behaviour – Types of thinking– Concrete – Abstract, Conver nalytical, Sequential and Holistic thinking – Chunking Triangle – Contex udy. roject : Meeting at least 50 people belonging to various strata of life and sits to identify a min of100 society related issues, problems for which the tegories them and upload along with details of people met and lessons leas ours) odule:1 C Lateral Thinking Skill looms Taxonomy – HOTS – Outof the box thinking – deBono lateral thin roject : Last weeks - incomplete portion to be done and uploaded odule:2 A Creativity reativity Models – Walla – Barrons – Koberg & Begnall – Examples roject : Selecting 5 out of 100 issues identified for future work. Cri r prioritisation, use of statistical tools & upload . (4 non- contact hou	1 hou	ur	
nalytical, Sequential and Holistic thinking – Chunking Triangle – Contex udy. roject : Meeting at least 50 people belonging to various strata of life and sits to identify a min of100 society related issues, problems for which the tegories them and upload along with details of people met and lessons leave ours) odule:1 C Lateral Thinking Skill looms Taxonomy – HOTS – Outof the box thinking – deBono lateral thin roject : Last weeks - incomplete portion to be done and uploaded odule:2 A Creativity reativity Models – Walla – Barrons – Koberg & Begnall – Examples roject : Selecting 5 out of 100 issues identified for future work. Cri r prioritisation, use of statistical tools & upload . (4 non- contact hou	gent, Div	vergent, C	reative,
udy. roject : Meeting at least 50 people belonging to various strata of life and sits to identify a min of100 society related issues, problems for which the tegories them and upload along with details of people met and lessons leaders) odule:1 C Lateral Thinking Skill looms Taxonomy – HOTS – Outof the box thinking – deBono lateral thin roject : Last weeks - incomplete portion to be done and uploaded odule:2 A Creativity reativity Models – Walla – Barrons – Koberg & Begnall – Examples roject : Selecting 5 out of 100 issues identified for future work. Cring prioritisation, use of statistical tools & upload . (4 non- contact hour)			
roject : Meeting at least 50 people belonging to various strata of life and sits to identify a min of 100 society related issues, problems for which the tegories them and upload along with details of people met and lessons leaders) odule:1 C Lateral Thinking Skill looms Taxonomy – HOTS – Outof the box thinking – deBono lateral thin roject : Last weeks - incomplete portion to be done and uploaded odule:2 A Creativity reativity Models – Walla – Barrons – Koberg & Begnall – Examples roject : Selecting 5 out of 100 issues identified for future work. Cri r prioritisation, use of statistical tools & upload . (4 non- contact hou		1	
sits to identify a min of 100 society related issues, problems for which the tegories them and upload along with details of people met and lessons leaders) Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures Dures <thdures< th=""> Dures</thdures<>	alk to the	em / make	e field
tegories them and upload along with details of people met and lessons leaders ours) odule:1 C Lateral Thinking Skill looms Taxonomy – HOTS – Outof the box thinking – deBono lateral thin roject : Last weeks - incomplete portion to be done and uploaded odule:2 A Creativity reativity Models – Walla – Barrons – Koberg & Begnall – Examples roject : Selecting 5 out of 100 issues identified for future work. Cring r prioritisation, use of statistical tools & upload . (4 non- contact hour			
Durs) Lateral Thinking Skill looms Taxonomy – HOTS – Outof the box thinking – deBono lateral thin roject : Last weeks - incomplete portion to be done and uploaded odule:2 A Creativity reativity Models – Walla – Barrons – Koberg & Begnall – Examples roject : Selecting 5 out of 100 issues identified for future work. Cri r prioritisation, use of statistical tools & upload . (4 non- contact hou			
looms Taxonomy – HOTS – Outof the box thinking – deBono lateral thinroject : Last weeks - incomplete portion to be done and uploadedodule:2 ACreativityreativity Models – Walla – Barrons – Koberg & Begnall – Examplesroject : Selecting 5 out of 100 issues identified for future work. Crirprioritisation, use of statistical tools & upload . (4 non- contact hou			
roject : Last weeks - incomplete portion to be done and uploadedodule:2 ACreativityodule:3 ACreativityreativity Models – Walla – Barrons – Koberg & Begnall – Examplesroject : Selecting 5 out of 100 issues identified for future work. Crirprioritisation, use of statistical tools & upload . (4 non- contact hou	1 hou	ur	
roject : Last weeks - incomplete portion to be done and uploadedodule:2 ACreativityodule:3 ACreativityreativity Models – Walla – Barrons – Koberg & Begnall – Examplesroject : Selecting 5 out of 100 issues identified for future work. Crirprioritisation, use of statistical tools & upload . (4 non- contact hou	king mod	del – Exai	mples
reativity Models – Walla – Barrons – Koberg & Begnall – Examples roject : Selecting 5 out of 100 issues identified for future work. Cri r prioritisation, use of statistical tools & upload. (4 non- contact hou	-		
roject : Selecting 5 out of 100 issues identified for future work. Cri <u>r prioritisation</u> , use of statistical tools & upload . (4 non- contact hou	1 hou	ur	
r prioritisation, use of statistical tools & upload . (4 non- contact hou			
	eria bas	sed appro	oach
dule ? R Brainstorming	rs)		
0	1 hou	ur	
brainstorming techniques and examples			
roject : Brainstorm and come out with as many solutions as possible for	the tare F	5 issues	
entified & upload . (4 non- contact hours)	the top 5		
odule:3 Mind Mapping	-	ur	
ind Mapping techniques and guidelines. Drawing a mind map	the top 5		
roject : Using Mind Maps get another set of solutions for he next 5 is	1 hou	ue 6 – 10)).(4
on- contact hours)	1 hou		

Module:4 A	Systems thinking	1 hour
	nking essentials – examples – Counter Intuitive co	ondemns
	Select 1 issue / problem for which the poss	
-	ms Thinking process and pick up one solution [
	le solutions have been left out]. Go back to the	
-	(4 non- contact hours)	1 7
Module:4 B	Design Thinking	1 hour
	ing process - Human element of design thinking	
	ply design thinking to the selected solution, apply	
•	e in "design week" celebrations upload the weeks	learning out come.
Module:5 A		1 hour
	etween Creativity and Innovation – Examples of	0
	literature searches on prototyping of your solution	n finalized. Prepare a prototype model
	d upload (4 non- contact hours)	
Module:5 B	Blocks for Innovation	1 hour
	cks for creativity and innovation - overcoming of	
v	Project presentation on problem identification	· · · · · · · · · · · · · · · · · · ·
results – Int	erim review with PPT presentation (4 non- con	ntact hours)
Module:5 C		1 hour
Steps for Inn	ovation – right climate for innovation	
Project: Re	fining the project, based on the review report and	d uploading the text (4 non- contact
hours)		
Module:6 A	Innovation in India	1 hour
Stories of 10	Indian innovations	
Project: Mak	ing the project better with add ons (4 non- cont	act hours)
Module:6 B	JUGAAD Innovation	1 hour
Frugal and	flexible approach to innovation - doing more w	vith less Indian Examples
Project: Fi	ne tuning the innovation project with JUGAAD	principles and uploading
(Credit fo	r JUGAAD implementation) . (4 non- contact	t hours)
Module:7 A	Innovation Project Proposal	1 hour
	Presentation	
	osal contents, economic input, ROI – Template	
*	esentation of the innovative project proposal and	• • • • • • • • • • • • • • • • • • •
Module:8 A	Contemporary issue in Innovation	1 hour
·	v issue in Innovation	
Project: Fina	al project Presentation, Viva voce Exam (4 non-	
	Total Lecture Hours	15 hours
Text Book(s)		
1. How to h	ave Creative Ideas, Edward debone, Vermilon pu	blication, UK, 2007
2. The Art of	of Innovation, Tom Kelley & Jonathan Littman, P	rofile Books Ltd, UK, 2008
Reference Bo	ooks	
	Confidence, Meribeth Bonct, Kogan Page India	Ltd, New Delhi, 2000
U	hinking Skills, Paul Sloane, Keogan Page India L	
	novators, Akhat Agrawal, Jaico Books, Mumbai,	
	O Innovation, Navi Radjou, Jaideep Prabhu, Simo	
Noida,20	5 1	ne i maju random nouse maiu,
uuuuuu		

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar							
Three reviews with weightage of 25 : 25 : 50 along with reports							
Recommended by Board of Studies 15/12/2015							
Approved by Academic Council							

	Electric circuits		L	Т	Р	J	С
			3	0	0	0	3
Pre-requisite	Nil			Sylla	ıbus	vers	ion
Anti-requisite	Nil					v.	1.0
Course Objective	es:						
	mathematical model of the electric circuits usin	g basic laws					
	network theorems to solve the electric circuits						
3. Compute and	analyze the steady state and transient responses	of DC and AC	circu	iits			
Expected Course	Quitcome:						
-	n of this course the student will be able to:						
-	equations of the electric circuits using basic law	/S					
	response of DC circuits using basic analysis me						
3. Compute the r	response of DC circuits using network theorems						
	ansient behavior of electric circuits with differen	nt types of sou	rce				
	lements of AC circuits and the phasor concept						
_	nce circuits, and solve three phase ac circuits						
7. Solve simple r	magnetic circuits						
Module:1 Fun	ndamentals of Electric Circuits				4	5 Ho	urs
Introduction to C	Fircuit Elements, Ohms Law and Kirchhoff's	Laws. Voltage	and	Curre	ent D	ivisi	on,
	Fircuit Elements, Ohms Law and Kirchhoff's Dormation and Source Transformation.	Laws. Voltage	and	Curre	ent D	ivisi	on,
		Laws. Voltage	and	Curre	ent D	ivisi	on,
Star-Delta Transfo		Laws. Voltage	and	Curre)ivisi	
Star-Delta Transformer Module:2 Line	ormation and Source Transformation.				5		
Star-Delta Transformed Module:2 Line	ear Circuit Analysis				5		
Star-Delta Transform Module:2 Ling Nodal and Mesh A	ear Circuit Analysis				5		ırs
Module:2 Lin Nodal and Mesh A Module:3 Net	ear Circuit Analysis Analysis of Linear Network with Independent ar	nd Dependent I	DC so	ources.	5	i Hou 7 Ho	ırs urs
Module:2 Lin Nodal and Mesh A Module:3 Net Thevenin's Theorem	ermation and Source Transformation. ear Circuit Analysis Analysis of Linear Network with Independent ar work Theorems	nd Dependent I	DC so	ources.	5	i Hou 7 Ho	ırs urs
Module:2 Lin Nodal and Mesh A Module:3 Net Theorem for circu Theorem for circu	ear Circuit Analysis Analysis of Linear Network with Independent ar work Theorems rem, Norton's Theorem, Maximum Power T its with independent and dependent sources.	nd Dependent I	DC so	ources.	5	i Hou 7 Ho	ırs urs
Module:2 Lin Nodal and Mesh A Module:3 Net Thevenin's Theorem for circu Module:4 Transaction	ear Circuit Analysis Analysis of Linear Network with Independent ar work Theorems rem, Norton's Theorem, Maximum Power T its with independent and dependent sources. msient Circuit Analysis	nd Dependent I Fransfer Theor	DC so	ources.	5 vper	7 Ho posit	urs urs urs
Module:2 Lin Nodal and Mesh A Module:3 Net Thevenin's Theorem for circu Module:4 Transaction	ear Circuit Analysis Analysis of Linear Network with Independent ar work Theorems rem, Norton's Theorem, Maximum Power T its with independent and dependent sources.	nd Dependent I Fransfer Theor	DC so	ources.	5 vper	7 Ho posit	urs urs urs
Module:2 Lin Module:2 Lin Nodal and Mesh A Module:3 Net Thevenin's Theorem for circut Module:4 Tra Dynamic Circuit	ear Circuit Analysis Analysis of Linear Network with Independent ar work Theorems rem, Norton's Theorem, Maximum Power T its with independent and dependent sources. msient Circuit Analysis	nd Dependent I Fransfer Theor	DC so	ources.	5 vper	7 Ho posit	urs urs urs
Star-Delta Transform Module:2 Ling Nodal and Mesh A Module:3 Net Thevenin's Theorem for circum Module:4 Transform Dynamic Circuit I Functions, Step Ro Module:5 Intra	ear Circuit Analysis Analysis of Linear Network with Independent ar work Theorems rem, Norton's Theorem, Maximum Power T its with independent and dependent sources. msient Circuit Analysis Elements – L and C. Analysis of Source Free F esponse of RC, RL and RLC Circuits. roduction to Phasors	Transfer Theor	DC sc rem a	and S	5 uper , Sin	7 Ho posit gula 7 Ho	urs ion urs rity urs
Module:2 Lin Module:2 Lin Nodal and Mesh A Module:3 Net Thevenin's Theorem Theorem for circu Module:4 Tra Dynamic Circuit I Functions, Step R Module:5 Intr	ear Circuit Analysis Analysis of Linear Network with Independent ar work Theorems rem, Norton's Theorem, Maximum Power Theorem, Maximum Power Theorem, Maximum Power Theorem, Maximum Power Theorem, Norton's Theorem, Nor	Transfer Theorem RC, RL and R ce with Phasor	DC sc rem a	and S ircuits	5 uper , Sin	7 Ho posit 7 Ho gula 7 Ho	urs ion urs rity urs MS
Module:2 Lin Module:2 Lin Nodal and Mesh A Module:3 Net Thevenin's Theorem Theorem for circu Module:4 Tra Dynamic Circuit I Functions, Step R Module:5 Intr	ear Circuit Analysis Analysis of Linear Network with Independent ar work Theorems rem, Norton's Theorem, Maximum Power T its with independent and dependent sources. msient Circuit Analysis Elements – L and C. Analysis of Source Free F esponse of RC, RL and RLC Circuits. roduction to Phasors	Transfer Theorem RC, RL and R ce with Phasor	DC sc rem a	and S ircuits	5 uper , Sin	7 Ho posit 7 Ho gula 7 Ho	urs ion urs rity urs MS
Star-Delta Transform Module:2 Lin Nodal and Mesh A Module:3 Net Module:3 Net Thevenin's Theorem for circum Module:4 Transform Dynamic Circuit I Functions, Step Ro Module:5 Intra Introduction to Simand Average Val	ear Circuit Analysis Analysis of Linear Network with Independent ar work Theorems rem, Norton's Theorem, Maximum Power Theorem, Maximum Power Theorem, Maximum Power Theorem, Maximum Power Theorem, Norton's Theorem, Nor	Transfer Theor RC, RL and R ee with Phasor Power, and G	DC sc rem a	and S ircuits	5 uper , Sin	7 Ho posit 7 Ho gula 7 Ho	urs ion urs rity urs MS
Star-Delta Transform Module:2 Lin Nodal and Mesh A Module:3 Net Module:3 Net Thevenin's Theorem for circuit Module:4 Transform Module:5 Intransform Module:5 Intransform Module:5 Val Power, Reactive F F	ear Circuit Analysis Analysis of Linear Network with Independent an work Theorems rem, Norton's Theorem, Maximum Power T its with independent and dependent sources. Insient Circuit Analysis Elements – L and C. Analysis of Source Free F esponse of RC, RL and RLC Circuits. roduction to Phasors nusoids and Phasors, Impedance and Admittance ues of Sinusoids, Instantaneous and Average Power and Apparent Power Calculations and Power	Transfer Theor RC, RL and R ee with Phasor Power, and G	DC sc rem a	and S ircuits	5 uper , Sin atior ower	Ho Ho posit 7 Ho gula 7 Ho h. R - R	urs ion urs rity urs MS ceal
Module:2 Lin Module:3 Net Module:3 Net Thevenin's Theorem Theorem for circu Tra Module:4 Tra Dynamic Circuit I Functions, Step R Module:5 Intr Introduction to Si and Average Val Power, Reactive F Module:6 AC	ear Circuit Analysis Analysis of Linear Network with Independent an work Theorems rem, Norton's Theorem, Maximum Power Theorem, Maximum Power Theorem, Maximum Power Theorem, Maximum Power Theorem, Norton's Theorem, Nor	Transfer Theory RC, RL and R ce with Phasor Power, and G wer Factor.	DC sc rem a LC C s Rep Comp	and S ircuits present lex P	5 uper , Sin zatior ower	Ho 7 Ho posit 7 Ho gula 7 Ho 7 Ho	urs ion urs rity urs deal urs

Circuits with R, L and C Combinations. Resonance in Series and Parallel RLC Circuits. Balanced						
Three Ph	ase Circuits, Power in a Balanced System, Three Phas	e Pow	er Measurement.			
Module:	7 Magnetic Circuits		Hours 5			
Magnetic	cally Coupled Circuits, Self and Mutual Inductance	, Dot	Convention, Energy in Coupled			
Circuits,	Mesh Analysis of Magnetically Coupled Circuits.					
Module:	8 Contemporary issues:		2 hours			
	Total Lecture Hour	s	45 Hours			
Text Bo	ok(s)	-				
1.	Charles K Alexander, Mathew N O Sadiku, 'Fundame	entals	of Electric Circuits, Tata McGraw			
	Hill, 2012.					
Referen	ce Books					
1.	Allan R. Hambley, 'Electrical Engineering-Principle	es &	Applications', Pearson Education			
	Limited, 7/e, 2017.					
2.	Robert L Boylestad, 'Introductory Circuit Analysis', P	earsor	n Education Limited, 13/e, 2016.			
3.	W. H. Hayt, J.E. Kemmerly and S. M. Durbin, 'Engi	neerin	g Circuit Analysis', McGraw Hill,			
	New York, 8/e, 2012.					
4.	Abhijit Chakrabarti, 'Circuit Theory : Analysis and	Synt	hesis', Dhanpat Rai & Co., New			
Delhi, 6/e, 2014						
5. Mahmood Nahvi; Joseph A Edminister, 'Electric Circuits', McGraw Hill Education, 6/e, 2015.						
Mode of	Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar					
Recomm	ended by Board of Studies 29/05/2015					
Approve	pproved by Academic Council 37 th AC Date 16/06/2015					

EEE1003		E	lectrical Worksl	nop		L	Т	Р	J	С
						0	0	2	0	1
Pre-requisite		Nil				S	Sylla	bus	vers	ion
Anti-requisit		Nil							v.	1.0
Course Obje	ctives:									
1. Apply the	. Apply the basic concepts of Electrical Engineering in the design and installation of Electrical									
Systems.										
Expected Co										
-		of this course the stude								
-		ict experiments, as we	-	interpret da	ata					
		Experiments (Indicated)								
		ction (i) Conventio								
		s, fuse, MCBs (ii)								
		and its testing of d								
	rical a	ppliances: kettle, fan	, iron box, reirig	gerator, gri	nder, water	neat	er (/1) U	P5 :	and
	able jo									
/	U	uit for a single lamp a	nd a fan with reg	ulator						
		iring circuit layout for								
		ring circuit with buzz		um <u>5</u> 5.						
1		iring circuit.	er und lumps.							
		lamp connections.								
		nt of single phase pov	ver and energy co	nsumed by	a given AC	load	1.			
		rthing and measureme								
		ation, soldering and te								
		yout for a residential			ware.					
		barallel wiring circuit.								
12 Meas	ureme	nt of three-phase pow	er using two watt	meter meth	nod.					
		nt of grounding resist								
14 Pract	ice to t	troubleshoot the electr	ical equipment.							
			Tot	tal Labora	tory Hours	30	hou	rs		
	Reference Books									
2. K. B										
Limi	Limited, 2010.									
^{3.} Indian Electricity rules 1956, Law publishers, Allahabad.										
4. Nati	4. National Electrical Code 2011-IS-732-1983, Code of practice for electrical wiring									
	installation, Indian standards.									
Mode of Evaluation: Assignment / FAT										
		0	29/05/2015							
Approved by	Acade		JI AU	Date	10/00/2013	3				

EEE1004	Engineering Electromagnetics		L	T	Р	J	С
			3	0	2	0	4
Pre-requisite	MAT1011	S	Sylla	abu	IS V	ver	sion
Anti-requisite	Nil					v.	1.10
Course Objectives							
1 00	• • • • • • • • • • • • • • • • • • • •	•	.1	•			•

1. To convey the basic physical concepts that lie behind all electrical engineering, the interactions between charged particles, whether stationary or in motion.

2. To examine the electric and magnetic forces between stationary and steadily moving charged particles.

3. To study the various electric & magnetic field concepts both in static and time varying condition.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Explore different coordinate systems related to magnetic fields.
- 2. Define the electric flux density, field intensity and different charge distributions.
- 3. Demonstrate the boundary conditions and method of images.
- 4. Compare the electric and magnetic boundary conditions, calculate the capacitance and inductance.
- 5. Analyze Maxwell equations.
- 6. Summarise the electric magnetic waves and wave propagation in different medium.
- 7. Apply the electric and magnetic field concepts
- 8. Design and Conduct experiments, as well as analyze and interpret data

Module:1 Review of Scalar and Vector Fields

Different Co-ordinate Systems: Cartesian, Cylindrical and Spherical –Differential elements in different coordinate systems – Del Operator: Divergence, Curl and Gradient, Divergence Theorem – Stoke's Theorem - Helmholtz's Decomposition.

Module:2 Electrostatics: Charges

Coulomb's law – Electric Field Intensity – Electric Flux – Gauss's Law – Potential due to Point, Line and Surface Charge Distributions.

Module:3 Electric Fields in Diele	ectrics and Conductors	8 Hours
-----------------------------------	------------------------	---------

Different current flow mechanisms – Continuity equation and relaxation time - Boundary conditions – Laplace and Poisson's equations - Solutions – Analytical Methods – Variables separable methods – Method of images – Numerical Techniques - Finite Difference Method – Electrostatic Energy – Capacitance Calculations

Module:4	Magneto statics	8 Hours		
Magnetic Fie	elds – Magnetic Flux – Biot Savart's Law – Am	pere's Law – Magnetic Torque and		
Moment – Forces due to Magnetic Fields – Vector Potential – Magnetic Boundary Conditions –				
Inductors and	I Inductances – Calculations - Magnetic Energy			

6 Hours

5 Hours

Mod	lule:5	Electromagnetic Fields	8 Hour		
Fara	day's lav	w – Lenz's Law – Maxwell's equations – Displacer	acement current - Maxwell's Equation		
in Fi	nal Forn	ns – Time Varying Fields - Relation between field th	eory and circuit the	eory	
Mod	lule:6	Electromagnetic Waves Generation	8 Hou		
Prop	agation	of waves in lossy dielectrics, conductors and free	e space – Skin e	effect – Complex	
Perm	nittivity-	Power and Poynting Vector.			
	lule: 7	Application		2 hours	
Sour	ces, Effe	ects and application of Electromagnetic fields			
7.7		Contomporery ignore		2.11	
Mod	lule:8	Contemporary issues:		2 Hours	
		Total Lecture hours		45 Hours	
		luation: CAT / Assignment / Quiz / FAT / Project / S	Seminar		
		enging Experiments (Indicative)			
1.		magnetic concepts using Matlab tool functions		2 hours	
2.		Representation ,Coordinate Systems and conversion		2 hours	
3.		e and surface integration (Vectorial)		2 hours	
4.		ining electric field distribution for an infinite sheet	charges and line	2 hours	
~	charge		1	2.1	
5.		ining voltage due to line charge or surface or volum	e charge	2 hours	
6.		stored in a region due to electric field		2 hours	
7. 8.	-	g dielectric $(\Box r1)$ - dielectric $(\Box r2)$ boundary condition		2 hours 2 hours	
0.	capacit	ination of electrical field and potential inside the	ne paraner plate	2 110018	
9.	-	nination of voltage and electric field distribution insid	de the co-avial	2 hours	
).		Laplace equation).	a inside the co-axiai 2 hours		
10.		ining and plotting the magnetic field due to infinite	sheet current	2 hours	
11.		ination of an inductance of a solenoid		2 hours	
12.		ination of the mutual inductance between an infinite	e line current and	2 hours	
		ngular coil			
13.	Electromagnetic wave propagation in good conductors.		2 hours		
14.		ination of Electric field and Voltage profile for a	single core cable	2 hours	
	which i	s ruptured by the presents of a needle inclusion on th	ne outer sheath.		
15.	Determ	ination of static magnetic field induced by the stat	or windings in a	2 hours	
	two pol	le electric motor.			
			aboratory Hours	30 hours	
		luation: Assignment / FAT			
	t Book(s				
1.		thew N. O. Sadiku & S. V. Kulkarni, 'Princip	ples of Electroma	agnetics', Oxford	
	Univ	versity Press, New York, Sixth Edition, 2015.			

Referen	Reference Books						
1.	Hart Hayt, John A. Buck, 'Engineering Electromagnetics', McGraw-Hill, Eighth Edition,						
	2012.						
2.	A. Edminister, 'Schaum's Outline of Electromagnetics', McGraw-Hill Professional, Fourth						
	Edition, 2013.						
3.	Karl E. Lonngren, Sava Savo	ov, Randy J. Jos	st, 'Funda	mental of Electomagnetic with			
	MATLAB', 2007.						
Recommended by Board of Studies 30/11/2015							
Approv	ved by Academic Council	39 th AC	Date	17/12/2015			

	(Deemed to be University under section 3 of UGC Act, 1956)						
EEE1005	Signals and Systems		L	Т	Р	J	С
			3	0	0	0	3
Pre-requisite	MAT2002	Sy	lla	bu	s ve	ersi	ion
Anti-requisite	Anti-requisite Nil		v. 1.0				
Course Objectives:							
1. To understand the mathematical representations of signals and systems in continuous and discrete							
domain.							
2. Analyse and perform various operations with the signals.							

- 3. Analyse the response of linear time invariant (LTI) systems in continuous and discrete domain.
- 4. Understand sampling theorem and represent signals in the frequency domain.

Expected Course Outcome:

On the completion of this course the student will be able to:

1. Define the term signals and systems, apply translation techniques and classify different types of systems based on their properties

- 2. Analyse LTI systems
- 3. Apply Fourier Series techniques for dealing with periodic continuous and discrete systems

4. Differentiate the behaviour of LTI systems as periodic and aperiodic signals using Fourier Transforms

5. Construct the original signal from samples.

6. Extend the analysis to unstable systems using the Laplace Transforms

7. Develop and formulate techniques of dealing with discrete systems using the z-transform.

Module:1	Fundamentals of Signals	5 Hours			
Representation of Continuous and Discrete-time Signals, Unit Step, Unit Ramp, Unit Impulse,					
Sinusoidal an	nd Complex Exponentials. Classification of signal	s – Periodic and Aperiodic Signal,			
Even and Odd Signal, Energy and Power Signal, Deterministic and Random signals. Transformation					
of Independent Variables – Time Shifting, Time Scaling and Time Reversal.					
_					

Module:2	Fundamentals of Systems	5 Hours
----------	-------------------------	---------

Representation of Continuous and Discrete Time Systems. Classification of systems - Static and Dynamic, Linear and Nonlinear, Time variant and Time Invariant, Causal and Non–Causal, Stable and unstable, Invertible and non- invertible systems. Block Diagram Representation and Interconnection of Systems

Module:3 Analysis of LTI System	6 Hours
---------------------------------	---------

Impulse Response of Continuous and Discrete Time LTI Systems. Convolution, Basic properties of systems using impulse response.

Module:4	Fourier Representation of Periodic Signals and LTI Systems	6 Hours
Fourier Serie	es Representation of Continuous Time and Discrete	-time periodic signals, Properties of
Fourier Serie	es, Parseval's relation, Response of LTI Systems to G	Complex Exponentials.

Module			
mouun	e:5	Fourier Representation of Aperiodic Signals	7 Hours
		and LTI Systems	
Continu	uous	Time and Discrete Time Fourier Transforms, P	roperties of Fourier Transforms,
-	•	sponse of LTI system. Applications: Modulation for	communications, Filtering, Time-
Frequer	ncy re	presentation and uncertainty principle.	
Module	e•6	Representation of Continuous time signals by	5 Hours
1110uun		its samples	c nouis
Sampli	ng Th	eorem, Effects of Sampling and Aliasing. Sampling	of Continuous Time Signals with
-	0	Hold, Reconstruction of Signal from Samples – Interp	6
1			
Module	e:7	Analysis of Continuous and Discrete LTI	9 Hours
		Systems with Laplace Transform and Z-	
		Transform	
Review	v of l	Laplace Transform, Region of Convergence, Char	acterization of LTI systems with
		nsforms, transfer functions. Mapping of s-plane to	z-plane, Review of Z-Transform,
U	of C_{i}		
		onvergence, Power series expansion, and partial frac-	ion expansion. Characterization of
LTI sys		onvergence, Power series expansion, and partial fracusing Z -Transforms.	ion expansion. Characterization of
	stems	using Z -Transforms.	-
LTI sys	stems	using Z -Transforms. Lecture by industry experts.	2 Hours
Module	e:8	using Z -Transforms. Lecture by industry experts. Total Lecture Hours	-
	e:8	using Z -Transforms. Lecture by industry experts. Total Lecture Hours	2 Hours 45 Hours
Module Text Be	e:8 ook(s Sigr	using Z -Transforms. Lecture by industry experts. Total Lecture Hours) aals and Systems by Alan V. Oppenhein, Alan S. Will	2 Hours 45 Hours
Module	e:8 ook(s Sigr	using Z -Transforms. Lecture by industry experts. Total Lecture Hours) aals and Systems by Alan V. Oppenhein, Alan S. Will	2 Hours 45 Hours
Module Text Bo	e:8 ook(s Sigr	using Z -Transforms. Lecture by industry experts. Total Lecture Hours) aals and Systems by Alan V. Oppenhein, Alan S. Will	2 Hours 45 Hours sky and S. Hamid, Pearson 2016.
Module Text Be 1. Referen 1.	e:8 ook(s Sigr nce B Sigr Fund	using Z -Transforms. Lecture by industry experts. Total Lecture Hours) als and Systems by Alan V. Oppenhein, Alan S. Will ooks als and systems by Simon Haykin, John Wiley, 2016 damentals of Signals and Systems Usin Web and MA	2 Hours 45 Hours sky and S. Hamid, Pearson 2016.
Module Text Bo 1. Referen	e:8 ook(s Sigr nce B Sigr Fund	using Z -Transforms. Lecture by industry experts. Total Lecture Hours) als and Systems by Alan V. Oppenhein, Alan S. Will ooks aals and systems by Simon Haykin, John Wiley, 2016	2 Hours 45 Hours sky and S. Hamid, Pearson 2016.
Module Text Bo 1. Referen 1. 2.	e:8 ook(s Sigr nce B Sigr Fund S. H	using Z -Transforms. Lecture by industry experts. Total Lecture Hours) als and Systems by Alan V. Oppenhein, Alan S. Will ooks als and systems by Simon Haykin, John Wiley, 2016 damentals of Signals and Systems Usin Web and MA	2 Hours 45 Hours sky and S. Hamid, Pearson 2016. TLAB, Edward W Kamen, Bonnie
Module Text Bo 1. Referen 1. 2. Mode o	e:8 ook(s Sigr nce B Sigr Fund S. H of Eva	Image: Section 2014 Lecture by industry experts. Total Lecture Hours Total Lecture Hours als and Systems by Alan V. Oppenhein, Alan S. Will ooks als and systems by Simon Haykin, John Wiley, 2016 damentals of Signals and Systems Usin Web and MA teck, Pearson, 2014.	2 Hours 45 Hours sky and S. Hamid, Pearson 2016. TLAB, Edward W Kamen, Bonnie

		Network theory	y	L T P J C
				3 0 0 0 3
Pre-requisit	e]	EEE1002, MAT1011		Syllabus version
Anti-requisi		Nil		v. 1.0
Course Obje				1
1. Analyse th	e steady	state response of circuits and discuss va	arious theorems and t	heir applications
-	-	sform and Fourier transform techniques		
response	:			
3. Design pas	ssive filte	rs and analyse its frequency response.		
Expected Co	ourse Ou	tcome:		
On the comp	letion of	this course the student will be able to:		
1. Apply nod	e voltage	and mesh current methods to analyse c	circuits in steady state	Э.
2. Apply Lap	lace tran	sform techniques for solving problems	and discuss the comp	olete response of
circuits.				
3. Derive the	transfer	function and identify its poles and zeros	8	
4. Analyse th	e harmoi	nics in nonsinusoidal inputs to circuits u	sing Fourier series.	
5. Apply Fou	rier trans	form to circuits with nonsinusoidal inp	uts	
6. Design pas	ssive filte	rs and analyse the frequency response.		
7. Evaluate a	nd relate	two-port network parameters.		
Module:1	Sinusoi	dal Steady State Analysis		6 Hours
		odal Analysis, Mesh Analysis, Theven		
Maximum Po	ower Tra	sfer Theorem and Superposition Theor	em for circuits with	independent and
dependent sin	lishioun	011#000		
appendent sh	lusoluul	sources		
•	ſ			
Module:2	Modeli	ng of Network in s-Domain		6 Hours
Module:2 Circuit Mode	Modeli els of R, 1	ng of Network in s-Domain L and C in s-Domain. Application of La	-	integro-differential
Module:2 Circuit Mode equations of	Modeli els of R, l RL, RC a	ng of Network in s-Domain and C in s-Domain. Application of La and RLC circuits. Transfer Function. In	npulse Response of F	integro-differential
Module:2 Circuit Mode equations of	Modeli els of R, l RL, RC a	ng of Network in s-Domain L and C in s-Domain. Application of La	npulse Response of F	integro-differential
Module:2 Circuit Mode equations of and Response	Modeli els of R, l RL, RC a e to any o	ng of Network in s-Domain and C in s-Domain. Application of La and RLC circuits. Transfer Function. In other sources using convolution integral	npulse Response of F	integro-differential RL and RC Circuits
Module:2 Circuit Mode equations of and Response Module:3	Modeli els of R, l RL, RC a e to any o Comple	ng of Network in s-Domain and C in s-Domain. Application of La and RLC circuits. Transfer Function. In other sources using convolution integral ete Response of Networks	npulse Response of F	integro-differential RL and RC Circuits 6 Hours
Module:2 Circuit Mode equations of and Response Module:3 Circuit Analy	Modeli els of R, l RL, RC a e to any o Comple	ng of Network in s-Domain and C in s-Domain. Application of La and RLC circuits. Transfer Function. In other sources using convolution integral	npulse Response of F	integro-differential RL and RC Circuits 6 Hours
Module:2 Circuit Mode equations of and Response Module:3 Circuit Analy Stability.	Modeli els of R, l RL, RC a e to any o Comple ysis with	ng of Network in s-Domain and C in s-Domain. Application of La and RLC circuits. Transfer Function. In other sources using convolution integral ete Response of Networks zero and non zero initial conditions in s	npulse Response of F	integro-differential RL and RC Circuits 6 Hours Maps. Network
Module:2 Circuit Mode equations of and Response Module:3 Circuit Analy	Modeli els of R, l RL, RC a e to any o Comple ysis with Networ	ng of Network in s-Domain and C in s-Domain. Application of La and RLC circuits. Transfer Function. In other sources using convolution integral ete Response of Networks zero and non zero initial conditions in s ks with Periodic Non-Sinuso	npulse Response of F	integro-differential RL and RC Circuits 6 Hours
Module:2 Circuit Mode equations of and Response Module:3 Circuit Analy Stability. Module:4	Modeli els of R, l RL, RC a e to any o Comple ysis with Networ Excitat	ng of Network in s-Domain and C in s-Domain. Application of La and RLC circuits. Transfer Function. In other sources using convolution integral ete Response of Networks zero and non zero initial conditions in s ks with Periodic Non-Sinuso ion	npulse Response of F	integro-differential RL and RC Circuits 6 Hours Maps. Network 7 Hours
Module:2 Circuit Mode equations of and Response Module:3 Circuit Analy Stability. Module:4	Modeli els of R, l RL, RC a e to any o Comple ysis with Networ Excitat c Fourie	ng of Network in s-Domain and C in s-Domain. Application of La and RLC circuits. Transfer Function. In other sources using convolution integral ete Response of Networks zero and non zero initial conditions in s ks with Periodic Non-Sinuso ion r Series for Non-Sinusoidal Functions	npulse Response of F 	integro-differential RL and RC Circuits 6 Hours Maps. Network 7 Hours
Module:2 Circuit Mode equations of and Response Module:3 Circuit Analy Stability. Module:4	Modeli els of R, l RL, RC a e to any o Comple ysis with Networ Excitat c Fourie	ng of Network in s-Domain and C in s-Domain. Application of La and RLC circuits. Transfer Function. In other sources using convolution integral ete Response of Networks zero and non zero initial conditions in s ks with Periodic Non-Sinuso ion	npulse Response of F 	integro-differential RL and RC Circuits 6 Hours Maps. Network 7 Hours
Module:2 Circuit Mode equations of and Response Module:3 Circuit Analy Stability. Module:4 Trigonometri RMS Values	Modeli els of R, l RL, RC a e to any o Comple ysis with Networ Excitat ic Fourie using Fo	ng of Network in s-Domain and C in s-Domain. Application of La and RLC circuits. Transfer Function. In other sources using convolution integral ete Response of Networks zero and non zero initial conditions in s ks with Periodic Non-Sinuso ion r Series for Non-Sinusoidal Functions urier Coefficients. Exponential Fourier	npulse Response of F 	integro-differential RL and RC Circuits 6 Hours Maps. Network 7 Hours Average Power and
Module:2 Circuit Mode equations of and Response Module:3 Circuit Analy Stability. Module:4 Trigonometri RMS Values Module:5	Modeli els of R, l RL, RC a e to any o Comple ysis with Networ Excitat ic Fourie using Fo	ng of Network in s-Domain and C in s-Domain. Application of La and RLC circuits. Transfer Function. In other sources using convolution integral ete Response of Networks zero and non zero initial conditions in s ks with Periodic Non-Sinuso ion r Series for Non-Sinusoidal Functions urier Coefficients. Exponential Fourier k Analysis using Fourier Transform	idal s. Circuit Analysis.	integro-differential RL and RC Circuits 6 Hours Maps. Network 7 Hours Average Power and 7 Hours
Module:2 Circuit Mode equations of and Response Module:3 Circuit Analy Stability. Module:4 Trigonometri RMS Values Module:5 Fourier Trans	Modeli els of R, l RL, RC a e to any o Comple ysis with Networ Excitat ic Fourie using Fo Networ sform for	ng of Network in s-Domain and C in s-Domain. Application of La and RLC circuits. Transfer Function. In other sources using convolution integral ete Response of Networks zero and non zero initial conditions in s ks with Periodic Non-Sinuso ion r Series for Non-Sinusoidal Functions urier Coefficients. Exponential Fourier k Analysis using Fourier Transform commonly used periodic and aperiodic	idal s. Circuit Analysis.	integro-differential RL and RC Circuits 6 Hours Maps. Network 7 Hours Average Power and 7 Hours
Module:2 Circuit Mode equations of and Response Module:3 Circuit Analy Stability. Module:4 Trigonometri RMS Values Module:5 Fourier Trans domain. Ener	Modeli els of R, l RL, RC a e to any o Comple ysis with Networ Excitat ic Fourie using Fo Networ sform for rgy in the	ng of Network in s-Domain and C in s-Domain. Application of La and RLC circuits. Transfer Function. In other sources using convolution integral ete Response of Networks zero and non zero initial conditions in s ks with Periodic Non-Sinuso ion r Series for Non-Sinusoidal Functions urier Coefficients. Exponential Fourier k Analysis using Fourier Transform commonly used periodic and aperiodic signal using Parseval's Theorem.	idal s. Circuit Analysis.	integro-differential RL and RC Circuits 6 Hours Maps. Network 7 Hours Average Power and 7 Hours Analysis in frequency
Module:2 Circuit Mode equations of and Response Module:3 Circuit Analy Stability. Module:4 Trigonometri RMS Values Module:5 Fourier Trans domain. Ener Module:6	Modeli els of R, 1 RL, RC a e to any o Comple ysis with Networ Excitat ic Fourie using Fo Networ sform for rgy in the Design	ng of Network in s-Domain and C in s-Domain. Application of La and RLC circuits. Transfer Function. In other sources using convolution integral ete Response of Networks zero and non zero initial conditions in s ks with Periodic Non-Sinuso ion r Series for Non-Sinusoidal Functions urier Coefficients. Exponential Fourier k Analysis using Fourier Transform commonly used periodic and aperiodic	idal c functions. Circuit A	integro-differential RL and RC Circuits 6 Hours 6 Hours 7 Hours Average Power and 7 Hours Analysis in frequency 4 Hours

Module	e:7	Two Port Networks			6 Hours
Introduc	ction	to Two-Port Networks - In	mpedance and A	dmittance	parameters, Transmission and
Hybrid	Paran	neters. Relationship between	parameter, Interco	onnection of	of Networks.
		*	*		
Module	e:8	Contemporary issues:			2 hours
			Total Lecture H	lours	45 Hours
Text Bo	ook(s)			·	
1.	Char	rles K Alexander, Mathew 1	N O Sadiku, "Fu	Indamental	s of Electric Circuits", Tata
	McC	Graw Hill, 2012.			
Referen	nce Bo	ooks			
1.	Alla	n R. Hambley, 'Electrical En	igineering-Princip	les & App	lications' Pearson Education,
	First	Impression, 6/e, 2013.			
2.	Robe	ert L Boylestad, 'Introductor	y Circuit Analysi	s' Pearson	Education Ltd, 12th Edition,
	2010).			
3.	H.]	Hayt, J.E. Kemmerly and S	. M. Durbin, 'Er	ngineering	Circuit Analysis', 6/e, Tata
	McC	Graw Hill, New Delhi, 2011.			
Mode o	f Eval	luation: CAT / Assignment /	Quiz / FAT / Proj	ect / Semir	nar
Recom	nende	ed by Board of Studies	29/05/2015		
		Academic Council	37 th AC	Date	16/06/2015

Γ

EEE2002	Semiconductor Devices and Circuits		L	T	P	J	С
			2	0	2	4	4
Pre-requisite	EEE1002	Sy	llab	ous	ve	rsi	on
Anti-requisite	Nil				,	v. 1	0.
Course Objective	es:						

1. To apply the knowledge of solid state devices principles to analyze electronic circuits.

2. To design amplifiers under different configurations and study their responses

3. To have hands on learning experience and software knowledge by doing practical exercises and projects.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Understand the behavior of semiconductor devices
- 2. Analyze diode circuits
- 3. Relate the characteristics of various transistors with DC sources
- 4. Compare the various configurations of BJT
- 5. Understand the various configurations of MOSFET
- 6. Analyze the high speed response of semiconducting devices.
- 7. Compare and contrast the negative and positive feedback in amplifiers
- 8. Design and conduct experiments, as well as analyze and interpret data
- 9. Design a component or a product applying all the relevant standards with realistic constraints.

Module:1	Semiconductor Device Physics	2 Hours
Semi-conduc	ctors, charge carriers, intrinsic and extrinsic ser	ni-conductors, carrier generation,
	on, injection of carriers, Drift and diffusion, carrier m	
Module:2	Diode Circuit Analysis	4 Hours
PN junction	diode - Formation of Junction, Junction Capacitance	e, characteristics, Diode equations,
Diode Circu	its - Clipper and Clamper, rectifiers with and wi	thout filters, other multiple diode
circuits, Reg	ulated power supplies.	
Module:3	Transistor DC Analysis	5 Hours
BJT Charact	eristics, current gains, h-parameters, MOSFET Char	acteristics. Load line and Operating
		····· · · · · · · · · · · · · · · · ·
	s, DC analysis and biasing of BJTs and MOSFETs.	,
	s, DC analysis and biasing of BJTs and MOSFETs.	
	s, DC analysis and biasing of BJTs and MOSFETs. BJT Amplifiers	5 Hours
point analysi Module:4	· · · · · · · · · · · · · · · · · · ·	5 Hours
point analysi Module:4 Small signa	BJT Amplifiers	5 Hours in, Input Impedance and Output
point analysi Module:4 Small signa	BJT Amplifiers l analysis of BJT amplifiers, Calculation of Ga	5 Hours in, Input Impedance and Output
point analysi Module:4 Small signa	BJT Amplifiers l analysis of BJT amplifiers, Calculation of Ga	5 Hours in, Input Impedance and Output
point analysi Module:4 Small signa Impedance. 1 Module:5	BJT Amplifiers l analysis of BJT amplifiers, Calculation of Ga Basic BJT amplifier Configurations (CE, CC and CB	5 Hours in, Input Impedance and Output). Power Amplifiers. 4 Hours

Mod	lule:6	Frequency response				5 Hours
	1	Frequency Response, System vith Circuit Capacitors, Frequency		· 1	v 1	
Tra	Insistor C	fircuits.				
	lule:7	Feedback Amplifiers and				3 Hours
	-	ts of feedback-Negative fee	0	• 1	0	nt Series/Shunt,
Posi	tive feed	back, Stability, Conditions f	or Oscillations RC	and LC c	oscillators.	
Mod	lule:8	Contemporary issues:				2 Hours
11100	uicio	r r j	Total Lecture ho	ours:		30 Hours
Tor	t Dools(a					
	t Book(s					
1.		A.S.Sedra, K.C. Smith, "N		rcuits: Tl	neory with Appl	ications", 6Ed,
D 4		Oxford University Press, 20	013.			
Refe	erence B	ooks				
1.		D.A. Neamen, Electronic C	Circuits – Analysis	and Desig	gn, 3Ed, McGrav	w Hill, 2011.
2.		David A. Bell, "Electronic	Devices and Circu	iits", 5ed,	Oxford Univers	ity Press, 2008.
3.		Behzad Razavi, Fundamen	tals of Microelectr	onics, 3E	d, Wiley, 2013.	
4.		Ben Streetman, Sanjay Ban	erjee, Solid State	Electronic	Devices, 7ED, 1	Pearson, 2014.
Mod	le of Eva	luation: CAT / Assignment /	/ Quiz / FAT / Proj	ect / Sem	inar	
List	of Chal	lenging Experiments (Indic	cative)			
1.		tion of logic gates using dio				2 hours
2.		line and load voltage regula		Zener dio	de	2 hours
3.	_	a capacitor for a rectifier cir	-			2 hours
4.	_	various clamping circuits us				2 hours
5.	-	various clipping circuits usi	-			2 hours
6.		the circuit using BJT as a s		system		2 hours
7.	Obtain	the h-parameters for diffe characteristics			using input –	2 hours
8.		the circuit for a verificatio	on of BJT as a sw	itch and	amplifier using	2 hours
	,	gton pair				
9.	Design	the circuit to perform DC a	nalysis of a BJT			2 hours
10.	Switch	ing characteristics of MOSF	ET			2 hours
11.	Design	the circuit for verifying UJT	as a triggering sw	vitch		2 hours
12.	Design	a RC coupled amplifier				2 hours
13.	Design	a common collector amplifi	er			2 hours
14.	Design	a common source FET amp	lifier			2 hours
				Fotal Lab	oratory Hours	30 hours
N/ 1	L C.T.					
		luation: Assignment /FAT	20/05/2015			
		ed by Board of Studies	29/05/2015		1 (10 (10 0 1 =	
App	roved by	Academic Council	37 th AC	Date	16/06/2015	

EEE2003	Electromechanical Energy Conversion	L	Т	P	J	С
		3	0	2	0	4
Pre-requisite	EEE1002/EEE1001		Sylla	abus		
Anti-requisite	Nil				V.	1.0
Course Objectives:						
	rinciples of DC Machines	1 ·				
	elations of electrical and mechanical parameters in AC Mac	chin	es			
3. Evaluate the character	stics and testing of AC Machines					
Expected Course Outco						
-	course the student will be able to:					
	ciples of electromechanical energy conversion					
	operation & characteristics of DC generator					
•	arting technologies and performance characteristics of DC M	Moto	or			
	concepts and analyze performance of transformers					
	e equations and analyze the starting methods of Induction N	Mot	or			
U I	circuit and circle diagram of Induction Motor					
•	hange in electrical and mechanical parameters of Synchrono	ous	Mac	hine		
8. Design and Conduct ex	speriments, as well as analyze and interpret data					
Module:1 Principle	of Electromechanical Energy Conversion				4 Ho	m
						CALL L
Magnetic circuits - Singl	y excited systems - doubly excited systems - Force and Torce	que.				
		que.			6 Ha	
Module:2 D.C. Gen	erator	•			6 Ho	
Module:2 D.C. Gen Construction –Windings-	erator Armature Reaction – Commutation-EMF Equation – Types	s of	Gen	erato		
Module:2 D.C. Gen Construction –Windings- Magnetization and load c	erator Armature Reaction – Commutation-EMF Equation – Types haracteristics - Voltage Regulation - Parallel operation - Ap	s of	Gen	erato ns.	ors-	ours
Module:2D.C. GenConstruction –Windings- Magnetization and load cModule:3D.C. Mot	erator Armature Reaction –Commutation-EMF Equation – Types haracteristics - Voltage Regulation - Parallel operation - Ap or	s of pplic	Gene	erato ns.	ors- 5 Ho	ours
Module:2D.C. GenConstruction –Windings- Magnetization and load cModule:3D.C. ModMethods of excitation – 1	erator Armature Reaction –Commutation-EMF Equation – Types haracteristics - Voltage Regulation - Parallel operation - Ap or Equivalent circuit - Torque equation - Performance charact	s of pplic	Gene	erato ns.	ors- 5 Ho	ours
Module:2D.C. GenConstruction –Windings- Magnetization and load cModule:3D.C. ModMethods of excitation – 1	erator Armature Reaction –Commutation-EMF Equation – Types haracteristics - Voltage Regulation - Parallel operation - Ap or	s of pplic	Gene	erato ns.	ors- 5 Ho	ours
Module:2 D.C. Gen Construction – Windings- Magnetization and load c Module:3 D.C. Mod Methods of excitation – I efficiency - Speed contro	erator Armature Reaction –Commutation-EMF Equation – Types haracteristics - Voltage Regulation - Parallel operation - Ap or Equivalent circuit - Torque equation - Performance charact l and starting techniques - Applications	s of pplic	Gene	erato ns. - Lo	ors- 5 Ho sses	ours ours and
Module:2D.C. GenConstruction – Windings- Magnetization and load cModule:3D.C. MotMethods of excitation - 1efficiency - Speed controModule:4Transfor	erator Armature Reaction –Commutation-EMF Equation – Types haracteristics - Voltage Regulation - Parallel operation - Ap or Equivalent circuit - Torque equation - Performance charact l and starting techniques - Applications mers	s of pplic teris	Generatio	erato ns. - Lo	ors- 5 Ho sses 7 Ho	ours ours and
Module:2D.C. GenConstruction – Windings- Magnetization and load cModule:3D.C. ModMethods of excitation - 1efficiency - Speed controModule:4TransforConstruction – types-EM	erator Armature Reaction –Commutation-EMF Equation – Types haracteristics - Voltage Regulation - Parallel operation - Ap or Equivalent circuit - Torque equation - Performance charact 1 and starting techniques - Applications mers IF Equation-Transformer on No load and load-phasor diag	s of pplic teris	Generatio	erato ns. - Lo fficie	ors- 5 Ha sses 7 Ha ency	ours ours and ours and
Module:2D.C. GenConstruction – Windings- Magnetization and load cModule:3D.C. ModMethods of excitation – I efficiency - Speed controModule:4TransforConstruction – types-EM Voltage Regulation – Tr	erator Armature Reaction –Commutation-EMF Equation – Types haracteristics - Voltage Regulation - Parallel operation - Ap or Equivalent circuit - Torque equation - Performance charact l and starting techniques - Applications mers IF Equation-Transformer on No load and load-phasor diag ansformer testing- Equivalent Circuit – predetermination	s of pplic teris	Generatio	erato ns. - Lo fficie	ors- 5 Ha sses 7 Ha ency	ours anc anc
Module:2 D.C. Gen Construction – Windings- Magnetization and load c Module:3 D.C. Mod Methods of excitation - 1 efficiency - Speed contro Module:4 Transfor Construction – types-EM Voltage Regulation – Tr Voltage Regulation – Paral	erator Armature Reaction –Commutation-EMF Equation – Types haracteristics - Voltage Regulation - Parallel operation - Ap or Equivalent circuit - Torque equation - Performance charact l and starting techniques - Applications mers IF Equation-Transformer on No load and load-phasor diag ansformer testing- Equivalent Circuit – predetermination lel Operation –3 Phase Transformers Applications.	s of pplic teris	Generatio	erato ns. - Lo fficie ficie	ors- 5 Ho sses 7 Ho ency ncy	ours ours and ours and and
Module:2D.C. GenConstruction – Windings- Magnetization and load of Module:3D.C. ModModule:3D.C. ModMethods of excitation – I efficiency - Speed controModule:4Transfor Construction – types-EM Voltage Regulation – Tr Voltage Regulation – Tr Voltage Regulation-ParaModule:5Induction	erator Armature Reaction – Commutation-EMF Equation – Types haracteristics - Voltage Regulation - Parallel operation - Application or Equivalent circuit - Torque equation - Performance charact 1 and starting techniques - Applications mers IF Equation-Transformer on No load and load-phasor diag ansformer testing- Equivalent Circuit – predetermination lel Operation –3 Phase Transformers Applications.	s of pplid teris gram	Generatio	erato ns. - Lo fficie ficie	5 Hasses 5 Hasses 7 Hasses	ours and and and
Module:2 D.C. Gen Construction – Windings- Magnetization and load of Module:3 D.C. Mod Methods of excitation – I efficiency - Speed contro Module:4 Transfor Construction – types-EM Voltage Regulation – Tr Voltage Regulation – Tar Module:5 Induction 3 phase induction motor	erator Armature Reaction – Commutation-EMF Equation – Types haracteristics - Voltage Regulation - Parallel operation - Ap or Equivalent circuit - Torque equation - Performance charact 1 and starting techniques - Applications mers IF Equation-Transformer on No load and load-phasor diag ansformer testing- Equivalent Circuit – predetermination lel Operation –3 Phase Transformers Applications. Motor : Construction Rotating Magnetic Field -Working principil	s of pplic teris gram n o	Gene catio stics n –Et f Ef	erato ns. - Lo fficie ficie	5 H sses 7 H ency ncy 6 H	ours and and and ours
Module:2D.C. GenConstruction – Windings- Magnetization and load cModule:3D.C. ModMethods of excitation - 1efficiency - Speed controModule:4TransforConstruction – types-ENVoltage Regulation – TrVoltage Regulation – TrVoltage Regulation – Tr3 phase induction motoracross air gap, Torque	erator Armature Reaction –Commutation-EMF Equation – Types haracteristics - Voltage Regulation - Parallel operation - Ap or Equivalent circuit - Torque equation - Performance charact l and starting techniques - Applications mers IF Equation-Transformer on No load and load-phasor diag ansformer testing- Equivalent Circuit – predetermination lel Operation –3 Phase Transformers Applications. Motor	s of pplic teris gram n o	Gene catio stics n –Et f Ef	erato ns. - Lo fficie ficie	5 H sses 7 H ency ncy 6 H	ours and and and and rred
Module:2 D.C. Gen Construction – Windings- Magnetization and load of Module:3 D.C. Mod Methods of excitation – I efficiency - Speed contro Module:4 Transfor Construction – types-EM Voltage Regulation – Tr Voltage Regulation – Tar Module:5 Induction 3 phase induction motor	erator Armature Reaction – Commutation-EMF Equation – Types haracteristics - Voltage Regulation - Parallel operation - Aportal operation - Aportal equivalent circuit - Torque equation - Performance character and starting techniques - Applications mers IF Equation-Transformer on No load and load-phasor diag ansformer testing- Equivalent Circuit – predetermination lel Operation –3 Phase Transformers Applications. Motor : Construction Rotating Magnetic Field -Working principil	s of pplic teris gram n o	Gene catio stics n –Et f Ef	erato ns. - Lo fficie ficie	5 H sses 7 H ency ncy 6 H	ours and and and ours
Module:2 D.C. Gen Construction – Windings- Magnetization and load c Module:3 D.C. Mod Methods of excitation - 1 efficiency - Speed contro Module:4 Transfor Construction – types-EM Voltage Regulation – Tr Voltage Regulation – Tr Voltage Regulation – Tr Applications.	erator Armature Reaction – Commutation-EMF Equation – Types haracteristics - Voltage Regulation - Parallel operation - Aportal operation - Aportal equivalent circuit - Torque equation - Performance character and starting techniques - Applications mers IF Equation-Transformer on No load and load-phasor diag ansformer testing- Equivalent Circuit – predetermination lel Operation –3 Phase Transformers Applications. Motor : Construction Rotating Magnetic Field -Working principil	s of pplic teris gram n o	Gene catio stics n –Et f Ef	erato ns. - Lo fficie ficie	5 H sses 7 H ency ncy 6 H	ours and and and curs rred
Module:2D.C. GenConstruction – Windings- Magnetization and load of Module:3D.C. ModModule:3D.C. ModMethods of excitation - I efficiency - Speed controModule:4Transfor Construction – types-EM Voltage Regulation – Tr Voltage Regulation – Tr Voltage Regulation – Tr Otage Regulation – Tr dotage Regulation – Tr of a phase induction motor across air gap, Torque Applications.Module:6Testing of	erator Armature Reaction – Commutation-EMF Equation – Types haracteristics - Voltage Regulation - Parallel operation - Application or Equivalent circuit - Torque equation - Performance charact 1 and starting techniques - Applications mers IF Equation-Transformer on No load and load-phasor diag ansformer testing- Equivalent Circuit – predetermination lel Operation –3 Phase Transformers Applications. n Motor : Construction Rotating Magnetic Field -Working principl and Power output-Starting methods - Single phase	s of pplic teris gram n o le-Po ind	Generatio	erato ns. - Lo fficie ficie	5 Ho sses 7 Ho ency ncy 6 Ho unsfe notor	ours and and ours and and crred rred
Module:2D.C. GenConstruction – Windings- Magnetization and load of Methods of excitation - I efficiency - Speed controModule:3D.C. ModMethods of excitation - I efficiency - Speed controModule:4Transfor Construction – types-EM Voltage Regulation – Tr Voltage Regulation – Tr Voltage Regulation – Tr of a phase induction motor across air gap, Torque Applications.Module:6Testing of	erator Armature Reaction – Commutation-EMF Equation – Types haracteristics - Voltage Regulation - Parallel operation - Ap or Equivalent circuit - Torque equation - Performance charact 1 and starting techniques - Applications mers IF Equation-Transformer on No load and load-phasor diag ansformer testing- Equivalent Circuit – predetermination lel Operation –3 Phase Transformers Applications. Motor : Construction Rotating Magnetic Field -Working principl and Power output-Starting methods - Single phase f Induction Machines lent Circuit parameters – performance characteristics Circle	s of pplic teris gram n o le-Po ind	Generatio	erato ns. - Lo fficie ficie	5 Ho sses 7 Ho ency ncy 6 Ho unsfe notor	ours and and ours and and cred s s
Module:2 D.C. Gen Construction – Windings- Magnetization and load of Module:3 D.C. Mod Methods of excitation - 1 efficiency - Speed contro Module:4 Transfor Construction – types-EM Voltage Regulation – Tr Voltage Regulation – Tr Voltage Regulation – Tr Andule:5 Induction 3 phase induction motor across air gap, Torque Applications. Module:6 Testing of Determination of Equival	erator Armature Reaction – Commutation-EMF Equation – Types haracteristics - Voltage Regulation - Parallel operation - Ap or Equivalent circuit - Torque equation - Performance charact 1 and starting techniques - Applications mers IF Equation-Transformer on No load and load-phasor diag ansformer testing- Equivalent Circuit – predetermination lel Operation –3 Phase Transformers Applications. Motor : Construction Rotating Magnetic Field -Working principl and Power output-Starting methods - Single phase f Induction Machines lent Circuit parameters – performance characteristics Circle	s of pplic teris gram n o le-Po ind	Generatio	erato ns. - Lo fficie ficie m – S	5 Ho sses 7 Ho ency ncy 6 Ho unsfe notor	ours and and ours and and crred
Module:2D.C. GenConstruction – Windings- Magnetization and load cModule:3D.C. ModMethods of excitation - 1efficiency - Speed controlModule:4TransforConstruction – types-EMVoltage Regulation – TrVoltage Regulation – TrVoltage Regulation – TrSphase induction motoracross air gap, TorqueApplications.Module:6Testing oDetermination of EquivalControl –Induction GeneModule:7Synchron	erator Armature Reaction –Commutation-EMF Equation – Types haracteristics - Voltage Regulation - Parallel operation - Applications or Equivalent circuit - Torque equation - Performance charact l and starting techniques - Applications mers IF Equation-Transformer on No load and load-phasor diag ansformer testing- Equivalent Circuit – predetermination lel Operation –3 Phase Transformers Applications. h Motor : Construction Rotating Magnetic Field -Working principl and Power output-Starting methods - Single phase f Induction Machines ent Circuit parameters – performance characteristics Circle rator Applications. Machines (Alternator): Construction-Induced EMF - Synchronous	s of pplic teris gram n o le-Pe ind	Gene catio stics stics n –Et f Ef ower uctic	erato ns. - Lo fficie ficie c Tra on n m –S	7 Ho sses 7 Ho ency ncy 6 Ho peed 9 Ho - Ph	ours anc anc anc anc anc anc anc anc anc anc
Module:2D.C. GenConstruction – Windings- Magnetization and load cModule:3D.C. ModMethods of excitation - 1efficiency - Speed controModule:4TransforConstruction – types-EMVoltage Regulation – TrVoltage Regulation – TrVoltage Regulation – TrSphase induction motoracross air gap, TorqueApplications.Module:6Testing oDetermination of EquivalControl –Induction GeneModule:7Synchron	erator Armature Reaction –Commutation-EMF Equation – Types haracteristics - Voltage Regulation - Parallel operation - Aportal operation - Aportal equivalent circuit - Torque equation - Performance charact and starting techniques - Applications emers IF Equation-Transformer on No load and load-phasor diag ansformer testing- Equivalent Circuit – predetermination lel Operation –3 Phase Transformers Applications. Motor : Construction Rotating Magnetic Field -Working principl and Power output-Starting methods - Single phase f Induction Machines ent Circuit parameters – performance characteristics Circle rator Applications.	s of pplic teris gram n o le-Pe ind	Gene catio stics stics n –Et f Ef ower uctic	erato ns. - Lo fficie ficie c Tra on n m –S	7 Ho sses 7 Ho ency ncy 6 Ho peed 9 Ho - Ph	ours and and and curs and curs and curs asor
Module:2D.C. GenConstruction – Windings- Magnetization and load of Methods of excitation - I efficiency - Speed controlModule:3D.C. ModMethods of excitation - I efficiency - Speed controlModule:4Transfor Construction - types-EM Voltage Regulation - Tr Voltage Regulation - Tr Voltage Regulation - Tr Voltage Regulation - Tr dotage Regulation - Tr of Lage Regulation - Tr of Lage Regulation - Tr of Lage Regulation - Tr of Lage Regulation - Tr dotage Regulation - Tr of Lage Regulation - Tr o	erator Armature Reaction –Commutation-EMF Equation – Types haracteristics - Voltage Regulation - Parallel operation - Applications or Equivalent circuit - Torque equation - Performance charact l and starting techniques - Applications mers IF Equation-Transformer on No load and load-phasor diag ansformer testing- Equivalent Circuit – predetermination lel Operation –3 Phase Transformers Applications. h Motor : Construction Rotating Magnetic Field -Working principl and Power output-Starting methods - Single phase f Induction Machines ent Circuit parameters – performance characteristics Circle rator Applications. Machines (Alternator): Construction-Induced EMF - Synchronous	s of pplic teris gram n o le-Po ind e Dia	Gend catio stics stics n –Ef f Ef ower uctio agrar	erato ns. - Lo fficie ficie c Tra on n m –S nce - of cl r -	5 Ho sses 7 Ho ency ncy 6 Ho notor 6 Ho peed 9 Ho hang Typo	ours and and ours and and cred s

Appli	ications.				
Mod	ule:8	Contemporary issues			2 hours
11200			r	Total Lecture Hours	45 Hours
Text	Book(s)				
1.	I. J. Na	grath and D. P. Kothari, "	Electric Machines" (S	Sigma Series), III editio	on,
		cGraw Hill 2010.			
Refe	rence Bo	oks			
1.	P. S. Bi	mbhra, "Electrical machin	nery", Seventh Editio	n, Khanna Publication	s, 2014.
2.	P.C.Ser	n, "Principles of Electric N	Machines and Power	Electronics", Wiley, 20)13.
3.		1 J.Chapman, "Electric M ion, 2012.	achinery Fundamenta	als', "McGraw Hill Int	l. Edition, New Delhi,
4.		Egune Fitzgerald; Charle w-Hill, 7 th Edition, 2014.	s Kingsley; Stephen	D Umans, "Electric m	achinery", New York:
Mode	e of Evalu	uation: CAT / Assignmen	t / Quiz / FAT / Proje	ect / Seminar	
1.	Speed of	control of DC shunt mo	tor and predetermina	ation of performance	2 hours
		eristics of DC shunt mach		•	
2.	Perform	nance characteristics of D	C traction motor. 10). Voltage Regulation	2 hours
		ee phase induction genera			
3.	Perform	nance characteristics of D	C motor used for roll	ing mills.	2 hours
4.	Magnet	ization and Load characte	eristics of DC shunt g	enerator.	2 hours
5.	Perform	nance test and connection	assessment of a 3 ph	ase transformer.	2 hours
6.	Open ci	rcuit and short circuit test	t on a 3 phase transfo	rmer.	2 hours
7.	Parallel	operation of transformers	S.		2 hours
8.	-	ent circuit and Performan	nce evaluation of 3 p	bhase industrial pump	2 hours
9.	motor.	st on 3 phase motor used	for lift applications		2 hours
9. 10.		st on single phase fan mo			2 hours
10.		Regulation of a three phase		or	2 hours
11.	•	rmination of Voltage Reg			2 hours
12.	MMF n	6 6	guiation in 5 phase al	iternator by ENTE and	
13.		onization of a 3 phase alte	rnator to the busbar.		2 hours
14.		nverted V curves of 3 pha		or.	2 hours
				al Laboratory Hours	30 hours
Mode	e of Evalu	ation: Assignment /FAT	1000		
		d by Board of Studies	30/11/2015		
		Academic Council	39 th AC	Date	17/12/2015

EEE2004 Measurement and Instrumentation			L	Т	P	J	С
			2	0	0	4	3
Pre-requisite	EEE1002	Sy	ylla	bu	s v	ers	ion
Anti-requisite	Nil					v.	1.0
Course Objective	5:						
-	ic understanding of electrical and electronic measurement syste				1		

- 2. To give a thorough knowledge of varieties of measuring instruments, its operating principles, and limitations.
- 3. To provide basic understanding of data acquisition systems and virtual instrumentation

Expected Course Outcome:

On the completion of each module the student will be able to:

- 1. Explain the functions of instrumental elements and evaluate the errors in the process
- 2. Design a meter for measurement of electrical variables like voltage, current and power
- 3. Design DC bridges for measurement of various level of resistances,
- 4. Design AC bridges for measurement of various levels of Inductance, capacitance and frequencies
- 5. Analyze and apply various transducers for measurement process based on the applications
- 6. Outline the importance and working of digital instruments
- 7. Develop a Virtual Instrumentation system through LabVIEW software.
- 8. Design a component or a product applying all the relevant standards with realistic constraints.

Module:1Introduction4 HoursFunctional elements of an instrument, Static and dynamic characteristics of zero and first order
instruments – sources of Errors in measurement, – Techniques for reducing error, – loading effect of

instruments, Statistical evaluation of measurement data.

Module:2 Electrical and Electronic Instruments

Classification of instruments,- Working Principle of potentiometer, Design of analog voltmeter, ammeter using PMMC and MI and its loading effect. – Principle of working power factor meter – Single phase wattmeter, analog energy meter, Use of Instrument transformers.

Module:3 D.C bridges

Design of deflection bridges – Wheatstone bridge, Kelvin bridge, Kelvin double bridge and their merits and demerits.

Module:4 A.C bridges

Maxwell bridge, Anderson bridge, Schering Bridge, Wien Bridge and their Merits and Demerits.

Module:5 Transducers and Display devices

Classification of transducers – Selection of transducers – Resistive, capacitive & inductive transducers – Piezoelectric and digital transducers. Working principle and specifications of the Analog CRO and digital CRO, LED and LCD.

Module:6 Digital Instruments:

Comparison of analog and digital techniques – digital voltmeter – millimeter's – Energy meter frequency counters – measurement of frequency and time interval – extension of frequency range – Automation in digital instruments, Automatic polarity indication, automatic ranging, automatic zeroing, fully automatic digital instruments, Computer controlled test systems, Virtual instruments.

Module:7Data acquisition using LabVIEW:4 Hours

4 Hours

4 Hours

4 Hours

4 Hours

4 Hours

Elements of digital data acquisition system– interfacing of transducers–multiplexing– data loggers – computer controlled instrumentation – IEEE 488 bus -DAQ cards and accessories, NI ELVIS, Data Acquisition with LabVIEW-Interfacing a sensor to LabVIEW-Interfacing an actuator to LabVIEW.

Modu	ule:8	Lecture by industry expe	erts.		2 hours
			Total Lecture ho	ours:	30 Hours
Text	Book(s)			
1.	E.O. D	oebelin, Measurement Syste	ems – Application	and Desig	gn", 5th /e, Tata McGraw Hill
		hing, 2012.			
Refer	rence B				
1.	D.V.S	Moorthy, Transducers & In	strumentation",2n	d/e, Prent	ice Hall of India Pvt Ltd, 2010.
2.	Gary	W. Johnson, Richard Jenr	ning, "LabVIEW	Graphica	l Programming", 4th /e, Tata
		w Hill, New York, 2006.			
3.			-		Electronic Instrumentation and
		rement Techniques, Pearson			
4.		-		ments and	d Measuring Instruments", Fifth
		n, AH Wheeler and Co., Nev			
5.	H.S. K	alsi, "Electronic Instrumenta	ation", 3rd /e, Tata	McGraw	Hill, 2015.
6.	James	W. Dally, William F. Riley	y, Kenneth G. Mc	Connell, I	Instrumentation for Engineering
		rements, 2nd Edition, John			
7.			ystems – Applic	ation and	l Design', Tata McGraw Hill
		ning company, 2012.			
8.			nent Instrumentati	ion and s	ensors handbook- Two volume
		RC press, 2014.			
9.		A. Bell, Electronic Instrum	entation and meas	urements,	Prentice Hall of India Pvt Ltd,
	2010.				
10.			ctrical and Electro	onic meas	urements and instrumentation",
	1	at Rai & Co 2001.			
Mode	e of Eva	luation: CAT / Assignment /	' Quiz / FAT / Proj	ect / Sem	inar
Reco	mmende	ed by Board of Studies	30/11/2015		
Appro	oved by	Academic Council	39 th AC	Date	17/12/2015

EEE2005	Digital Signal Processi	ng L T P J C
Pre-requisite	EEE1005	Syllabus version
Anti-requisite	Nil	v. 1.
Course Objective	25:	
1. To recognize Li	inear Time-Invariant (LTI) discrete-time syste	ms
2. To design IIR fi	ilters using impulse invariance & bilinear trans	sformation techniques
3. To design FIR f	filters using various window functions	
4. To obtain know	ledge and ability to use the appropriate tools l	ike digital signal processors to
build DSP sys	stems for real time problems	
Expected Course		
-	n of this course the student will be able to:	
	transform- domain signal and analyze the free	luency response
2. Analyze and dealers	0 0	
	blement IIR filtering operations with the real ti	me constraints
-	lter for specific digital signal applications.	
	ealize the structures of digital filters.	
	aptive filters for performance improvement.	account for an air coming prosting to
	hniques, skills and modern technical tools need	essary for engineering practice to
design and simular	•	must data
8. Design and Con	nduct experiments, as well as analyze and inter	
Module:1 Free	quency Analysis of Signals and Systems	6 Hour
	ete -time signals and systems – Classifi	
	analysis, DTFT- Frequency domain sampling	
	FT-FFT Algorithm-Radix-2 FFT algorithms-A	
		<u></u>
Module:2 The	ory and Design of Analog Filters	4 Hour
	s for analog low pass filter -Butterworth and	Chebyshev approximations, frequency
transformation, Pr	operties.	
I		
	ign of IIR Digital Filters	4 Hours
Ū.	ilinear and Impulse Invariant Transformation tech	niques - Spectral transformation of digital
filters.		
Module:4 Des	ign of FIR Digital Filters	4 Hour
FIR Filter Design	- Phase and group delay - Design characteria	stics of FIR filters with linear phase
	se of linear phase FIR filters – Design of FIR	
	and Blackmann window functions.	
	1	
	lization of Digital Filters	4 Hour
Direct Forms I and	d II, Cascade, Parallel and Lattice structures.	
Module:6 Filt		4 Hours

		(Deemed to be University under section 3 of UGC Act, 19 interference				
Op	timum F	ilter - The Wiener Filter, Adaptive filters and their ap	olications.			
4						
Mo	dule:7	Digital Signal Processors		2 Hours		
Gen	eral-purp	ose digital signal processors - Fixed point and float	ing point DSP - F	Finite word length		
		AC, filter operation in different DSP architectures	- typical implen	nentation of DSP		
algo	orithms.					
		Contempor				
Mo	dule:8	Contemporary issues:		2 Hours		
		Total Lecture Hours		30 Hours		
Tex	t Book(s)				
1.		John G. Proakis, D.G. Manolakis and D.Sharr		-		
2		Principles, Algorithms and Applications", 4th editio		on, 2012.		
2.		Sanjit K. Mitra, Digital Signal Processing, 4th edition	on, 1MH, 2013.			
Ref	erence B	ooks				
1.		Sophocles J. Orfanidis, "Introduction to Signal P	rocessing" 2nd ec	lition, Prentice		
		Hall, Inc, 2010		·		
2.		Oppenhiem V.A.V and Schaffer R.W, "Discrete – time Signal Processing", 3rd				
3.		edition, Pearson new international edition, 2014.Lawrence R Rabiner and Bernard Gold, "Theory and Application of Digital Signal				
5.		Processing", Pearson India Education Services, 2016.				
4.		Emmanuel C. Ifeachor, "Digital Signal Processin		Approach" 2nd		
		edition, Prentice Hall, 2011.				
Moo	de of Eva	luation: CAT / Assignment / Quiz / FAT / Project / Se	eminar			
1.	Analys	sis of continuous time and discrete time signals.		2 hours		
2.		er a symmetric square wave with frequency 100 Hz	2 hours			
		n and 25-term Fourier series approximations. C				
		approximations with the actual square wave. Observe the approximation				
3.		or at the points of discontinuity. a program to convolve two discrete time square pulse	aignala Obsamua	2 hours		
5.		ects of repeated convolution with a square pulse.	signals. Observe	2 110018		
4.		udy the effects of signal length and windowing on the spectrum of a signal				
	-	omputed with FFT.				
5.	Plot the frequency response and impulse response of an ideal discrete-		leal discrete-time	2 hours		
		low-pass filter.				
6.	Analyz	e the effect of the following window functions on	the magnitude of	2 hours		
		uency response: Rectangular, Hamming and Blackma		2 hours		
7.		Generate a sinusoidal signal which contains 50Hz, 70Hz, 100Hz and 120Hz				
	-	frequencies. Analyse the frequency components present in the signal with				
		thout AWGN for a SNR of 0.6. Obtain the plot and	comment on the			
	results.					
8.	Design	an IIR filter to filter out noise from the sinusoid	al signal for the	2 hours		
0.	0	ng specifications. Plot the spectra. Comment and infe	U	2 110u15		
	TOHOWI	ng specifications. I fot the spectra. Comment and mile	i your results.			

	Type of filter: Butterworth					
	Pass band frequency: 100 H					
	Pass band ripple: 0.1 dB; St					
9.	Design a FIR filter and estimate	the following	2 hours			
	specifications. Plot, comment and in					
	Type of filter: Band stop					
	Order of the filter: 10					
	Pass band frequency: 200 H	z; Stop band freq	uency: 300) Hz.		
10.	Design Chebyshev Type 1 and Typ	analog filters	2 hours			
	for the following specifications.					
	Passband ripple =0.04dB;					
	Stopband attenuation= 30dl					
	Passband frequency $= 400$ H					
	Sampling frequency $= 2000$					
	Plot their magnitude and phase char					
11.	Signal processing methods for Must	sor	2 hours			
12.	Signal processing mechanisms for H	essor	2 hours			
	30 hours					
Mode of Evaluation: Assignment /FAT						
Recommended by Board of Studies 05/03/2016						
Appr	Approved by Academic Council40th ACDate18/03/2016					

EEE3001 Control Systems L T P J						
LEESUUI		Control System	1115			
Pre-requisit	EFF2001 MA	T2002/EEE1001		Syllabus version		
Anti-requisi		12002/EEE1001		v. 1.0		
Course Obj				v. 1.0		
•	a clear exposition of	the classical methods	of control engineering	ng, physical system		
	id basic principles of fi					
0,	ne practical control syst	1 2	0 1			
	e knowledge of state					
design						
Expected Co	urse Outcome:					
	letion of this course the	e student will be able t	0:			
1 Formulata	the mathematical mode	al and transfor functio	n of physical systems			
	e system performance		1 0 0			
•	the stability of linear s		1 0			
	equency domain analys	•				
	e stability of linear sys					
•	npensators and control	1 1				
	analyze state space m					
8. Design and	l Conduct experiments	, as well as analyze an	d interpret data			
	^		•			
	Systems and their Re			6 hours		
	ts in control systems -		-			
electrical and	analogous systems. B	lock diagram reduction	n - signal flow graphs	•		
		<u> </u>				
	Time Response Analy		ndan avatana Tima dar	6 hours		
	signals, Time response error, error constants, g			nain specifications,		
Steady state	1101, error constants, g					
Module:3	Stability Analysis and	l Root Locus		6 hours		
	ncept and definition,		n – Location of pole	s – Routh Hurwitz		
•	ot locus techniques: co	-	1			
Module:4	Frequency Response	Analysis		6 hours		
Bode plot - F	olar plot - Correlation	between frequency do	main and time domain	n specifications		
Bode plot 1						
				(1		
Module:5	Stability in Frequency		alausia a far an	6 hours		
Module:5 Relative stab	ility, Gain margin, Pha	se margin, stability an	alysis using frequency			
Module:5 Relative stab		se margin, stability an	alysis using frequency			
Module:5 Relative stab methods, Ny	ility, Gain margin, Pha quist stability criterion.	se margin, stability an	alysis using frequency	y response		
Module:5 Relative stab methods, Ny Module:6	ility, Gain margin, Pha quist stability criterion. Compensator and Co	se margin, stability an ntroller		y response 7 hours		
Module:5 Relative stab methods, Ny Module:6 Realization of	ility, Gain margin, Pha quist stability criterion. Compensator and Co f basic compensators, o	se margin, stability an ntroller cascade compensation	in time domain and f	y response 7 hours requency domain,		
Module:5 Relative stab methods, Ny Module:6 Realization of feedback cor	ility, Gain margin, Pha quist stability criterion. Compensator and Co	se margin, stability an ntroller cascade compensation lag, lead, lag-lead seri	in time domain and f	y response 7 hours requency domain,		

Mo	dule:7	State Space Analysis	emed to be University under section			6 hours		
		f state variable and state r	nodel. Solution o	f state eq	uation. State s			
	1	version, Controllability, Ol	,	1	,	F ··· · · · · · · · · · · · · · · · · ·		
Module:8 Contemporary issues: 2								
				I				
						45 hours		
	Total Lecture hours:							
Tex	t Book(s)						
1.		n S. Nise, "Control System						
2.	Benjam	in C Kuo "Automatic Cont	rol System" John	Wiley & S	ons, 8 th Edition	n, 2007.		
Ref	erence l							
1.		ta, "Modern Control Engine						
2.	R.C. D	orf & R.H. Bishop, "Moder	n Control Systems	", Pearson	Education, 11	th Edition, 2008.		
3.	M Gor	al, "Control Systems-Princ	inlag And Dagion'	7 Toto Mo	Crow Hill 4th	Edition 2012		
5.	M. Gop	bal, Control Systems-Princ	iples And Design	, Tata Mic	Graw mili –4	Edition, 2012.		
4.	Grahan	n C. Goodwin, Stefan F. Gra	aebe, Mario E. Sag	gado, " Co	ntrol System D	esign", Prentice		
	Hall, 20				·			
_		1 116 14 0 14	~ ~ · ·			1 5 1 1 1		
5.		th and M.Gopal," Control S	System Engineerin	g", New A	Age Internationa	al Publishers,		
	4 th Edit	ion, 2006.						
Mod	le of Ev	aluation: CAT / Assignmen	t / Ouiz / FAT / Pi	roiect / Sei	ninar			
WIOC		ardaton. CAT / Assignmen			iiiiai			
List	of Cha	llenging Experiments (Ind	licative)					
1.	Block	Diagram Reduction				2 hours		
2.	Determination of Time Domain Specifications				2 hours			
3.		ty analysis of linear system				2 hours		
4.		ontroller Design using Bode				2 hours		
5.		ontroller Design using Root				2 hours		
6.	_	ensator Design in Frequency				2 hours		
7.		er Function to State Space	Conversion with C	Controllabi	lity and	2 hours		
		vability Tests						
8.						2 hours		
	applica			_				
9.	Pole placement controller design for inverted pendulum				2 hours			
10.						2 hours		
11.						2 hours		
12.						2 hours		
	13. Transfer function of Separately excited DC generator					2 hours		
14. Transfer function of Field Controlled DC Motor					2 hours			
15.	Study	of First and Second order sy				2 hours		
17	1 0		Т	otal Labo	ratory Hours	30 hours		
		aluation: CAM/ FAT	20/11/2015					
		led by Board of Studies	30/11/2015		18/10/2015			
App	proved b	y Academic Council	39 th AC	Date	17/12/2015			

EEE3002	Analog and Digital Circ	uits L T P J C				
Pre-requisit		Syllabus version				
Anti-requisi		v. 2.0				
Course Obj						
	ce the functional building blocks, characteristics ar					
	and different methods for design and implementati	•				
3. To introdu	ce the various applications of digital and analog IC	s				
Europeted C						
<u> </u>	burse Outcome: letion of this course the student will be able to:					
-	he performance characteristics of Op-Amp.					
•	b-Amp based circuits for engineering applications.					
0 1	e power supply requirements for electronic circuit a	applications				
•	asic logic circuit for arithmetic operations in comp					
-	mplex digital circuits for real time applications.	uters.				
-	sisters for memory applications in computers.					
	log/digital ICs for industrial control applications.					
	d Conduct experiments, as well as analyze and inter	rpret data				
o. Design an	1 Conduct experiments, as wen as analyze and me					
Module:1	Operational Amplifier	6 Hours				
DC Performa	nce - The operational amplifier, Input resistance, C	Dutput resistance, Open loop gain, Bias				
currents, Off	set currents, Offset voltage, Common mode rejection	on ratio. Negative feedback Amplifier,				
closed loop g	ain, Differential amplifier.					
AC Perform	ance - Frequency response, Transient response, Sta	ability, Compensation, Poles and zeros				
cancelation						
Module:2	Opamp Applications	7 Hours				
	cations of op-amp - summing, subtracting, ave					
	urrent to voltage converter, differentiator and					
-	Multivibrators, Schmitt Triggers, Precision Diode	e, Half wave and full wave rectifiers,				
Peak detecto	r, Wave form generators and Active Filters.					
Module:3	Timer And Power Supplies	5 Hours				
	and its applications, monostable multivibrator, A					
		6				
regulator, 78XX and 79XX family, 723 IC voltage regulator, Switching regulators.						
Module:4	Digital Techniques	6 Hours				
Number sys	tems - Binary, octal and hexadecimal numbers.	Binary codes, Logic Gates, Boolean				
•	nversion and operations. De Morgan's laws, Trut	•				
-	OP, POS, Synthesis of Boolean functions, Quine M					
	Combinational Circuit Design	6 Hours				

Module:5Combinational Circuit Design6 HoursArithmetic circuits, Parity generator, Seven-segment display, Analysis and Design Procedure -

Multiplexer, Decoder, Encoder, Design using programmable logic Devices.

Synchronous Sequential Circuit Design Module:6

6 Hours Flip Flops - SR, D, T and JK Flip-flops, Master slave Flip Flops, Counters, Registers. Design using State machines-Moore and Mealy machines, Design Examples.

Asynchronous Sequential Circuit Design Module:7

Design Procedure- Asynchronous Sequential Circuits-State Diagram-State assignment-implication table-Design examples. Applications: Temperature Indicator and Controller, Speed control of DC Motor using Analog/Digital ICs

Mod	lule:8	Contemporary issues:		2 Hours
		Total Lecture Hours		45 Hours
	t Book(s	·		
1.				
	India, New Delhi, 4th edition, 2002.			The second second
2.	Digital Design by M. Morris Mano and Mictael Ciletti, Pearson Educ Edition, 2013.			Education, 5 th
Rofe	erence B			
1.	er ence D	Operation Amplifiers & Linear Integrated Circuits	by Robert F. Court	hlin and Frederick
1.		F. Driscoll, Prentice Hall of India, New Delhi, 6 th E	•	
2.		Design with Operational Amplifiers & Analog Ir		by Sergio Franco
2.		Tata McGraw Hill Education, 4 rd Edition, 2015.	negrated circuits	by bergio Traileo,
3.	Digital Fundamentals by Floyd, Madrid Pearson Education, 11 th Edition, 2016.			
4.		Digital System Design using Verilog by Charles R		
		Cengage Learning, 1 st Edition, 2016.	,)	J B B
5.				w Hill Education,
		8 th Edition, 2016.		,
Mod	le of Eva	luation: CAT / Assignment / Quiz / FAT / Project / S	Seminar	
List	of Chal	lenging Experiments (Indicative)		
1.	Design	and implementation of inverting and non-inverting a	amplifier	2 hours
2.	Design	and implementation of precision rectifier using op-a	mp	2 hours
3.	Design	and implementation of low pass and high pass filter		2 hours
4.	Design	of implementation of integrator and differentiator us	sing op-amp	2 hours
5.	U	and implementation of triangular wave generator us		2 hours
6.	-	and implementation of summing and difference amp	olifier	2 hours
7.	Design	and implementation of astable multivibrator		2 hours
8.	Design and implementation of half and full adder circuit			2 hours
9.	0	and implementation of multiplexer		2 hours
10.	-	and implementation of magnitude comparator		2 hours
11.	-	and implementation of BCD to 7 segment display		2 hours
12.	Ŭ	and implementation of code converters		2 hours
13.	Design	and implementation of J,K and D flip flops		2 hours

6 Hours

14.	2 hours						
15.	2 hours						
	Total Laboratory Hours						
Mod							
Reco	Recommended by Board of Studies 05/03/2016						
App	roved by Academic Council	40 th AC	Date	18/03/2016			

EEE3003	Power System Engineering	L	Τ	Р	J	C
		3	0	2	0	4
Pre-requisite	EEE2001	Sylla	ıbu	s ve	ers	ion
Anti-requisite	Nil	v		V	7. 1	.10
Course Objective	25:					
suitable solution n	te knowledge on various aspects, issues related to power systems nethods. ncepts in solving practical power system problems.	s and ic	lent	ifyi	ing	5
Expected Course	Outcome:					
A	the course the student will be able to					
1	nsmission line parameters.					
	late voltage regulation and efficiency of transmission line.					
	ous components of transmission network and study the distributi	on syst	em			
	alent per unit model of three phase transmission line	5				
	bus techniques to solve power flow problems.					
	ssify various faults of power system network.					
	pact of stability issues in power systems.					
	duct experiments, as well as analyze and interpret data					
C						
	insmission Line parameters:					
Resistance, Induct	ance of transmission lines, Inductance of a single phase two w			duc	cta	nce
Resistance, Induct of three phase line	ance of transmission lines, Inductance of a single phase two wes with symmetrical and unsymmetrical spacing-Capacitance of	a sing	le p	duc	cta	nce
Resistance, Induct of three phase line	ance of transmission lines, Inductance of a single phase two w	a sing	le p	duc	cta	nce
Resistance, Induct of three phase line wire line-Capacita	ance of transmission lines, Inductance of a single phase two wes with symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical space.	a sing	le p	duc has	cta se 1	nce two
Resistance, Induct of three phase line wire line-Capacita Module:2 Mo	tance of transmission lines, Inductance of a single phase two we es with symmetrical and unsymmetrical spacing-Capacitance of ance of a three phase line with symmetrical and unsymmetrical s delling of Transmission lines:	a sing pacing.	le p	duc has 6 I	cta se 1 Ho	nce two
Resistance, Induct of three phase line wire line-Capacita Module:2 Mod Representation of	ance of transmission lines, Inductance of a single phase two wes with symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical space.	a sing pacing.	le p ge r	duc has 6 I egu	cta se 1 Ho ilat	nce two urs tion
Resistance, Induct of three phase line wire line-Capacita Module:2 Mod Representation of	tance of transmission lines, Inductance of a single phase two wes with symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical space of a three phase line with symmetrical and unsymmetrical space.	a sing pacing.	le p ge r	duc has 6 I egu	cta se 1 Ho ilat	two urs
Resistance, Induct of three phase line wire line-Capacita Module:2 Mod Representation of and transmission e	tance of transmission lines, Inductance of a single phase two wes with symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical space of a three phase line with symmetrical and unsymmetrical space.	a sing pacing.	le p ge r	duc has 6 I egu adi	tta se t Ho lat	nce two urs tion
Resistance, Induct of three phase line wire line-CapacitaModule:2Mod Representation of and transmission eModule:3Insu Types, Potential d	tance of transmission lines, Inductance of a single phase two wess with symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical symmetrical symmetrical and unsymmetrical symmetrical and unsymmetrical symmetrical and unsymmetrical symmetrical and unsymmetrical symmetrical symmetrical and unsymmetrical symmetrical symmetrical and unsymmetrical symmetrical symmetrical and unsymmetrical symmetrical symmetrical symmetrical and unsymmetrical symmetrical symmetris symmetrical symmetris symme	a sing pacing. Voltag pedanc	le p ge r e lo g ef	duc has 6 I egu adi 5 I	Eta se f Ilat Ilat Ho ien	urs ion urs
Resistance, Induct of three phase line wire line-Capacita Module:2 Mod Representation of and transmission e Module:3 Insu Types, Potential d Underground Cab	tance of transmission lines, Inductance of a single phase two wess with symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical space of a three phase line with symmetrical and unsymmetrical space. delling of Transmission lines: lines-Short –Medium lines, Equivalent Circuits, Calculation of efficiency- long transmission lines-Equivalent Circuit- Surge Implators and Cables: listribution over a string of suspension insulators- Improvement onles-Types- Grading in cables.	a sing pacing. Voltag pedanc	le p ge r e lo g ef	duc has 6 I egu adi 5 I	Eta se f Ilat Ilat Ho ien	urs ion urs
Resistance, Induct of three phase line wire line-Capacita Module:2 Mod Representation of and transmission e Module:3 Insu Types, Potential d Underground Cab	tance of transmission lines, Inductance of a single phase two wess with symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical symmetrical symmetrical and unsymmetrical symmetrical and unsymmetrical symmetrical and unsymmetrical symmetrical and unsymmetrical symmetrical symmetrical and unsymmetrical symmetrical symmetrical and unsymmetrical symmetrical symmetrical and unsymmetrical symmetrical symmetrical symmetrical and unsymmetrical symmetrical symmetris symmetrical symmetris symme	a sing pacing. Voltag pedanc	le p ge r e lo g ef	duc has 6 I egu adi 5 I	Eta se f Ilat Ilat Ho ien	urs ion urs
Resistance, Induct of three phase line wire line-CapacitaModule:2Mod Representation of and transmission eModule:3Insu Insu Types, Potential d Underground Cab connection schem	tance of transmission lines, Inductance of a single phase two wess with symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical space of a three phase line with symmetrical and unsymmetrical space. delling of Transmission lines: lines-Short –Medium lines, Equivalent Circuits, Calculation of efficiency- long transmission lines-Equivalent Circuit- Surge Implators and Cables: listribution over a string of suspension insulators- Improvement on the string in cables. Distribution Systems: A.C. des-radial and ring main –Interconnected System.	a sing pacing. Voltag pedanc	le p ge r e lo g ef	duc has 6 I egu adii 5 I ffici Sy	Ho Ho Ho Ho Ho Ho Sto	urs tion urs
Resistance, Induct of three phase line wire line-CapacitaModule:2Mod Representation of and transmission eModule:3Insu Types, Potential d Underground Cab connection schemModule:4Net	tance of transmission lines, Inductance of a single phase two were with symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical symmetrical and unsymmetrical symmetrical and unsymmetrical symmetrical and unsymmetrical symmetrical of Transmission lines : delling of Transmission lines: lines-Short –Medium lines, Equivalent Circuits, Calculation of transmission lines-Equivalent Circuit- Surge Implications and Cables: istribution over a string of suspension insulators- Improvement obles-Types- Grading in cables. Distribution Systems: A.C. des-radial and ring main –Interconnected System.	a sing pacing. Voltag pedanc of strin istribut	le p ge r e lo g ef	duc has 6 I egu adii 5 I fici Sy 7 I	Ho Ho Ho Ho Ho	urs
Resistance, Induct of three phase line wire line-Capacita Module:2 Mo Representation of and transmission of and transmissi and transmission of and transmission of	tance of transmission lines, Inductance of a single phase two were with symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical symmetrical symmetrical and unsymmetrical symmetrical symmetrical and ring main –Interconnected System. work Modelling:	a sing pacing. Voltag pedance of strin istribut	le p ge r e lo g ef ion an	duc has 6 I egu adi 5 I fici Sy 7 I alys	Ho ilat Ho isto Ho sis	urs iion urs icy- icy- icy- icy- icy- icy- icy- icy-
Resistance, Induct of three phase line wire line-Capacita Module:2 Mo Representation of and transmission e Module:3 Insu Types, Potential d Underground Cab connection schem Module:4 Net Need for system symmetrical three	tance of transmission lines, Inductance of a single phase two were with symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical symmetrical symmetrical and unsymmetrical symmetrical symmetrical and ring main – Interconnected System. work Modelling: studies in planning and operation of power system-Per phase system-per unit representation-Bus Admittance Matrix-E	a sing pacing. Voltag pedance of strin istribut phase Equival	le p ge r e lo g ef ion an; ent	duc has 6 I egu adii 5 I ffici Sy 7 I alys	Ho ilat Ho isis Ho sis cui	urs iion urs icy- em- urs of t of
Resistance, Induct of three phase line wire line-Capacita Module:2 Moo Representation of and transmission of and transmissi	tance of transmission lines, Inductance of a single phase two were with symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical symmetrical system. Interconnected System. work Modelling: studies in planning and operation of power system-Per phase system-per unit representation-Bus Admittance Matrix-E off nominal tap ratio- Modeling of generator, load, shunt capacital system.	a sing pacing. Voltag pedance of strin istribut phase Equival	le p ge r e lo g ef ion an; ent	duc has 6 I egu adii 5 I ffici Sy 7 I alys	Ho ilat Ho isis Ho sis cui	urs iion urs icy- em- urs of t of
Resistance, Induct of three phase line wire line-Capacita Module:2 Moo Representation of and transmission of and transmissi	tance of transmission lines, Inductance of a single phase two were with symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical symmetrical symmetrical and unsymmetrical symmetrical symmetrical and ring main – Interconnected System. work Modelling: studies in planning and operation of power system-Per phase system-per unit representation-Bus Admittance Matrix-E	a sing pacing. Voltag pedance of strin istribut phase Equival	le p ge r e lo g ef ion an; ent	duc has 6 I egu adii 5 I ffici Sy 7 I alys	Ho ilat Ho isis Ho sis cui	urs icy- em- urs of t of
Resistance, Induct of three phase line wire line-CapacitaModule:2Mod Representation of and transmission of and transmission of Module:3Module:3Insu Types, Potential d Underground Cab connection schemModule:4Net Need for system symmetrical three transformer with line, shunt reactor	tance of transmission lines, Inductance of a single phase two were with symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical symmetrical system. Interconnected System. work Modelling: studies in planning and operation of power system-Per phase system-per unit representation-Bus Admittance Matrix-E off nominal tap ratio- Modeling of generator, load, shunt capacital system.	a sing pacing. Voltag pedance of strin istribut phase Equival	le p ge r e lo g ef ion an; ent	duc has 6 I egu adi 5 I fici Sy 7 I alys circusm	Ho Ho Ho Ho Sis Cui iiss	urs ion urs ion urs of t of sion
Resistance, Induct of three phase line wire line-CapacitaModule:2Module:2Module:3Insu Insu Types, Potential d Underground Cab connection schemModule:4Net Need for system symmetrical three transformer with line, shunt reactorModule:5Pow	ance of transmission lines, Inductance of a single phase two w es with symmetrical and unsymmetrical spacing-Capacitance of ince of a three phase line with symmetrical and unsymmetrical sp delling of Transmission lines: lines-Short –Medium lines, Equivalent Circuits, Calculation of efficiency- long transmission lines-Equivalent Circuit- Surge Imp ilators and Cables: istribution over a string of suspension insulators- Improvement oles-Types- Grading in cables. Distribution Systems: A.C. d es-radial and ring main –Interconnected System. work Modelling: studies in planning and operation of power system-Per phase system-per unit representation-Bus Admittance Matrix-E off nominal tap ratio- Modeling of generator, load, shunt capa for power flow and short circuit studies.	a sing pacing. Voltag pedanc of strin istribut phase Equival acitor,	le p ge r e lo g ef ion ana ent trar	duc has 6 I egu adi 5 I fici Sy 7 I alys circ ism 7 I	Ho Ho Ho Ho Ho Ho Ho	urs ion urs ion urs of t of sion urs
Resistance, Induct of three phase line wire line-CapacitaModule:2Module:2Module:3Insu Insu Types, Potential d Underground Cab connection schemModule:4Net Need for system symmetrical three transformer with line, shunt reactorModule:5Pow	ance of transmission lines, Inductance of a single phase two were swith symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical spacing-Capacitance of a three phase system lines. Equivalent Circuits, Calculation of power system-Per phase system-per unit representation-Bus Admittance Matrix-E off nominal tap ratio- Modeling of generator, load, shunt capa for power flow and short circuit studies.	a sing pacing. Voltag pedanc of strin istribut phase Equival acitor,	le p ge r e lo g ef ion ana ent trar	duc has 6 I egu adi 5 I fici Sy 7 I alys circ ism 7 I	Ho Ho Ho Ho Ho Ho Ho	urs ion urs ion urs of t of sion urs
Resistance, Induct of three phase line wire line-CapacitaModule:2Module:2Module:3Insu r and transmission of and transmission of and transmission of underground Cab connection schemModule:3Insu r types, Potential d Underground Cab connection schemModule:4Net Need for system symmetrical three transformer with line, shunt reactorModule:5Pow The power Flow I and FDPF method	ance of transmission lines, Inductance of a single phase two were swith symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical spacing-Capacitance of a three phase line with symmetrical and unsymmetrical spacing-Capacitance of a three phase system lines. Equivalent Circuits, Calculation of power system-Per phase system-per unit representation-Bus Admittance Matrix-E off nominal tap ratio- Modeling of generator, load, shunt capa for power flow and short circuit studies.	a sing pacing. Voltag pedanc of strin istribut phase Equival acitor,	le p ge r e lo g ef ion ana ent trar	duc has 6 I egu adi 5 I fici Sy 7 I alys circusm 7 I Ra	Eta se 1 Ho llat ien /sto Ho sis cui iss Ho ph	urs ion urs ion urs of t of sion urs

			(Deemed to be University under see					
		lysis-Symmetrical Compon	ent Transformation	on- Zbus	in phase frame an	d sequence		
	-	mmetrical Fault Analysis.						
	ule:7	Power System Stability :				3 Hours		
		to different types of stabil		e Swing	Equation-Equal An	rea Criterion		
appli	application to a single machine infinite bus system.							
Mod	ule:8	Contemporary issues:				2 hours		
			Total Lecture H	ours		45 Hours		
Text	Book(s)							
1.		John J. Grainger and Willi		r "Power	System Analysis",	Mcgraw Hill		
-		International Editions, 2013						
2.		Hadi Saadat, "Power Syster	m Analysis", Tata	McGraw 1	Hill, 2015.			
Refe	rence B	ooks						
1.		D.P.Kothari and I.J. Nagra	th, "Modern Pow	er System	Analysis", Tata M	IcGraw Hill,		
		Fourth Edition, New Delhi,	, 2011.					
2.		C.L.Wadhwa, "Electrical l	Power Systems",	New Age	International, Seve	enth Edition,		
		2016.						
Mode	e of Eva	luation: CAT / Assignment /	Quiz / FAT / Proj	ject / Semi	nar			
List o	of Chall	enging Experiments (Indic	cative)					
1.	Determ	ining the voltage profile of a	a transmission line			2 Hours		
2.	Constru	ction of power circle diagra	m			2 Hours		
3.	Determ	ination of compensator ratin	g using power cire	cle diagrar	n	2 Hours		
4.	Determ	ination of Ybus with tap cha	inging transformer	•		2 Hours		
5.	Determ	ination of String efficiency				2 Hours		
6.	Determ	ining the size of a graded ca	ble			2 Hours		
7.	Power	flow solution with tap chang	ing transformer us	ing Gauss	-Seidel method	2 Hours		
8.		e in ring main distribution sy		nnection		2 Hours		
9. Symmetrical fault analysis using Thevenin's theorem						2 Hours		
10. Determining the critical clearing time using equal area criterion					2 Hours			
	Total Laboratory Hours 30 hours							
Mode of Evaluation: Assignment / FAT								
		ed by Board of Studies	05/03/2016					
	Approved by Academic Council40th ACDate18/03/5016							

EEE3004	Power Electronics and Dri	ves	L T P J C
			3 0 2 0 4
Pre-requisite	EEE2001,EEE2002		Syllabus version
Anti-requisite	Nil		v. 1.0
Course Objective	s:		
1. To explain basic	c concepts of Power semiconductor devices		
2. To analyze cor	verters its load and drive interaction		
3. To analyze spe	ed control concepts of ac and dc drives, speed r	eversal, regenera	ative braking aspects,
design method	ology		
Expected Course			
	tion of this course the student will be able to:		
	concepts of power semiconductor devices inclu-	uding operating	characteristics, firing
-	otection circuits.	1	
	esign DC-DC and AC-DC power converters ar	id estimate its pe	erformance as per the
	nd constraints specified.		
-	esign various DC-AC and AC-AC converters.	miaal and maaha	nical nonanatana
	basic concepts of electric drives including elect alyze power converter fed Separately Excited D		incal parameters.
	alyze power converter fed Induction Motor Driv		
-	alyze power converter fed Synchronous Motor I		
U	nduct experiments, as well as analyze and inter		
o. Design and Co	nadet experiments, us wen us unuryze une mer		
Module:1 Intr	oduction to Power Semiconductor Devices:		6 Hours
Structure, and ope	erating characteristics of power Diode SCR, po	ower BJT, MOS	FET and IGBT, SiC
devices, Switching	g characteristics, Snubber designs, firing and	protection circui	ts, basic concepts of
PWM control and	phase angle control.		
		1	
	DC & AC-DC Power Converter		7 Hours
	nd 6-pulse converters – performance parameters		
	source impedance and overlap- DC-DC cho	pper circuit usi	ng BJT and IGBT -
problems, design a	and operation, control strategies.		
Madular2 DC	AC & AC-AC Power Converter		6 U 01100
		ertora Multilau	6 Hours
	be phase Bridge inverters, Current source involtage controllers, AC chopper; single phase cy		er inverter concepts,
Single pluse AC V	onage controners, ree enopper, single phase cy		
Module:4 Fun	damental concepts of Drives:		6 Hours
	Drive dynamics- Power and Torque - Efficie	ency and losses	
	rsing - Torque Control - Dynamic brake opera	•	
	mal monitoring -Rating of the Frequency Co		-
-	- Control Range - Derating of Converters - R		-
1 7		<u> </u>	

Module:5Separately Excited DC Motor Drive:6 HoursSingle phase and three phase converter fed D.C motor drive. Chopper fed drives, input filter design.

Braking and speed reversal of DC motor drives using choppers.

Module:	6 Induction Motor Drives:	6 Hours
Speed C	Control Methods- variable voltage, V/f control, rotor r	esistance, pole changing, cascaded
induction	n machines, slip power recovery - voltage source and c	urrent source inverter fed induction
motor dr	rives	
Module:7		6 Hours
•	ous motor control - analysis with electronic commutati	on - concept of self-control - stator
current co	ontrol and marginal angle control	
Module:8	8 Contemporary issues:	2 Hours
	Total Lecture Hours	45 Hours
Text Boo	k(s)	
1. N	Muhammad H. Rashid, Power Electronics: Circuits,	Devices & Applications, Pearson
I	Education, 2013.	
2. I	on Boldea and Syed A. Nasar, Electric Drives, Third Edi	tion, CRC Press, 2016.
Referenc	e Books	
1. ľ	Ned mohan, Power electronics A first course, John Wil	ey & Sons Inc 2011
2. 7	Theodore Wildi Electrical Machines Drives and Deve	Systems (th Edition Desman Indi
/	Theodore Wildi, Electrical Machines, Drives and Power 2014.	Systems our Edition, Pearson India

Recommended by Board of Studies	05/03/ 2016		
Approved by Academic Council	40 th AC	Date	18/03/2016

Image: control instruction Image: control instruction <th< th=""><th>EEE/001</th><th>(Deemed to be University under section 3 of UGC Act, 19)</th><th></th><th>т</th><th>т</th><th>D.</th><th></th></th<>	EEE/001	(Deemed to be University under section 3 of UGC Act, 19)		т	т	D.	
Pre-requisite EEE3002 Syllabus version Anti-requisite Nil v. 2.0 Course Objectives: . . 1. To emphasis on the hardware functionality of Intel 8051 and ARM . . 2. To create the essential knowledge on operating modes of I/O ports ,Timers/Counters, control registers and various interfacing techniques. . Expected Course Outcome: . . . On the completion of this course the student will be able to: . . 1. Interpret the architecture of microprocessor and classify the different modes of ARM . . 2. Classify the instructions and differentiate the instruction under various categories . . 3. Solve real time problems using ARM 4. Develop a broad knowledge on the complete architecture of 8051 microcontroller . . . 6. Summarize various interrupts ad write programs to handle interrupts . . . 7. Design a microcontroller based embedded systems by interfacing external devices . . . 8. Design and Conduct experiments, as well as analyze and interpret data . . . <t< th=""><th>EEE4001</th><th>Microprocessor and Microcont</th><th>roller</th><th>L</th><th></th><th></th><th></th></t<>	EEE4001	Microprocessor and Microcont	roller	L			
Anti-requisite Nil v. 2.0 Course Objectives: . . 1. To emphasis on the hardware functionality of Intel 8051 and ARM . . 2. To create the essential knowledge on operating modes of I/O ports ,Timers/Counters, control registers and various types of interrupts. . 3. To analyse various interfacing techniques. . . Expected Course Outcome: . . On the completion of this course the student will be able to: . . . Interpret the architecture of microprocessor and classify the different modes of ARM . . . Classify the instructions and differentiate the instruction under various categories . . . Solve real time problems using ARM . . Develop a broad knowledge on the complete architecture of 8051 microcontroller 5. Analyse the instructions and write programs to handle interrupts . . . 7. Design a microcontroller based embedded systems by interfacing external devices . . 8. Design and Conduct experiments, as well as analyze and interpret data . . Module:1 Introduction to ARM Processor 4 Hours Introduction to RISC processor – Comparison between CISC and RISC - Overview of ARM architecture – Different mod	<u> </u>		T				
Course Objectives: 1. To emphasis on the hardware functionality of Intel 8051 and ARM 2. To create the essential knowledge on operating modes of I/O ports ,Timers/Counters, control registers and various types of interrupts. 3. To analyse various interfacing techniques. Expected Course Outcome: On the completion of this course the student will be able to: 1. Interpret the architecture of microprocessor and classify the different modes of ARM 2. Classify the instructions and differentiate the instruction under various categories 3. Solve real time problems using ARM 4. Develop a broad knowledge on the complete architecture of 8051 microcontroller 5. Analyse the instructions and write simple programs using 8051 microcontroller 6. Summarize various interrupts and write programs to handle interrupts 7. Design a microcontroller based embedded systems by interfacing external devices 8. Design and Conduct experiments, as well as analyze and interpret data Module:1 Introduction to ARM Processor ARM Instruction Set 3 Hours Data transfer instruction – Arithmetic instruction - Logical Instruction – Multiply instruction – Branch instruction – Load/Store instruction – Swap instruction. Module:3 Programming using ARM Processor 2 Hours Solving an simple equation – generation of square wave form – Memory operations 8051 Mic				Sylla	bus		
1. To emphasis on the hardware functionality of Intel 8051 and ARM 2. To create the essential knowledge on operating modes of I/O ports ,Timers/Counters, control registers and various types of interrupts. 3. To analyse various interfacing techniques. Expected Course Outcome: On the completion of this course the student will be able to: 1. Interpret the architecture of microprocessor and classify the different modes of ARM 2. Classify the instructions and differentiate the instruction under various categories 3. Solve real time problems using ARM 4. Develop a broad knowledge on the complete architecture of 8051 microcontroller 5. Analyse the instructions and write simple programs using 8051 microcontroller 6. Summarize various interrupts and write programs to handle interrupts 7. Design a microcontroller based embedded systems by interfacing external devices 8. Design and Conduct experiments, as well as analyze and interpret data Module:1 Introduction to ARM Processor 4 Hours Introduction - Different modes of ARM processor – Program status register 3 Hours Data transfer instruction – Arithmetic instruction - Logical Instruction – Multiply instruction – Branch instruction – Load/Store instruction – Swap instruction. Module:3 Programming using ARM Processor 2 Hours Solving an simple equation – generation of square wave form – Memory operations						V	2.0
2. To create the essential knowledge on operating modes of I/O ports ,Timers/Counters, control registers and various types of interrupts. 3. To analyse various interfacing techniques. Expected Course Outcome: On the completion of this course the student will be able to: 1. Interpret the architecture of microprocessor and classify the different modes of ARM 2. Classify the instructions and differentiate the instruction under various categories 3. Solve real time problems using ARM 4. Develop a broad knowledge on the complete architecture of 8051 microcontroller 5. Analyse the instructions and write programs using 8051 microcontroller 6. Summarize various interrupts and write programs to handle interrupts 7. Design a microcontroller based embedded systems by interfacing external devices 8. Design and Conduct experiments, as well as analyze and interpret data Module:1 Introduction to ARM Processor 4 Hours Introduction to RISC processor – Comparison between CISC and RISC - Overview of ARM architecture – Different modes of ARM processor – Program status register 3 Hours Data transfer instruction – Arithmetic instruction - Logical Instruction – Multiply instruction – Branch instruction – Load/Store instruction – Swap instruction. 4 Hours Module:3 Programming using ARM Processor 2 Hours Solving an simple equation – generation of square wave form – Memory	•						
registers and various types of interrupts. 3. To analyse various interfacing techniques. Expected Course Outcome: On the completion of this course the student will be able to: 1. Interpret the architecture of microprocessor and classify the different modes of ARM 2. Classify the instructions and differentiate the instruction under various categories 3. Solve real time problems using ARM 4. Develop a broad knowledge on the complete architecture of 8051 microcontroller 5. Analyse the instructions and write programs using 8051 microcontroller 6. Summarize various interrupts and write programs to handle interrupts 7. Design a microcontroller based embedded systems by interfacing external devices 8. Design and Conduct experiments, as well as analyze and interpret data Module:1 Introduction to ARM Processor 4 Hours Introduction to RISC processor – Comparison between CISC and RISC - Overview of ARM architecture – Different modes of ARM processor – Program status register Module:2 ARM Instruction Set 3 Hours Data transfer instruction – Arithmetic instruction - Logical Instruction – Multiply instruction – Branch instruction – generation of square wave form – Memory operations Module:3 Programming using ARM Processor 2 Hours Solving an simple equation – generation of square wave form – Memory operations Module:4 8051 Microcontroller – Program Status Register – Structure of Random Access Memory – Special Function Registers - Pin diagram of 8051 Microcontroller – Ports of 8051 microcontroller. Module:5 Instructions = Arithmetic and Logical Instructions = Boolean Instructions = Control transfer Instructions – Arithmetic and Logical Instruction = Boolean Instructions – Control transfer Instructions – Programming using 8051 microcontroller – Demonstration of HEX file generation and program execution.	-	-					
3. To analyse various interfacing techniques. Expected Course Outcome: On the completion of this course the student will be able to: 1. Interpret the architecture of microprocessor and classify the different modes of ARM 2. Classify the instructions and differentiate the instruction under various categories 3. Solve real time problems using ARM 4. Develop a broad knowledge on the complete architecture of 8051 microcontroller 5. Analyse the instructions and write simple programs to handle interrupts 7. Design a microcontroller based embedded systems by interfacing external devices 8. Design and Conduct experiments, as well as analyze and interpret data Module:1 Introduction to ARM Processor 4 Hours Introduction to RISC processor – Comparison between CISC and RISC - Overview of ARM architecture – Different modes of ARM processor – Program status register 3 Hours Data transfer instruction Set 3 Hours Data transfer instruction – Arithmetic instruction - Logical Instruction – Multiply instruction – Branch instruction – Load/Store instruction – Swap instruction. 4 Hours Module:3 Programming using ARM Processor 2 Hours Solving an simple equation – generation of square wave form – Memory operations 4 Hours Module:4 8051 Micro controller Architecture 4 Hours Modul	2. To create the e	ssential knowledge on operating modes of I/	O ports ,Timers	s/Coun	ters	, co	ntrol
Expected Course Outcome: On the completion of this course the student will be able to: 1. Interpret the architecture of microprocessor and classify the different modes of ARM 2. Classify the instructions and differentiate the instruction under various categories 3. Solve real time problems using ARM 4. Develop a broad knowledge on the complete architecture of 8051 microcontroller 5. Analyse the instructions and write simple programs using 8051 microcontroller 6. Summarize various interrupts and write programs to handle interrupts 7. Design a microcontroller based embedded systems by interfacing external devices 8. Design and Conduct experiments, as well as analyze and interpret data Module:1 Introduction to ARM Processor 4 Hours Introduction to RISC processor – Comparison between CISC and RISC - Overview of ARM architecture – Different modes of ARM processor – Program status register 3 Hours Data transfer instruction – Arithmetic instruction – Logical Instruction – Multiply instruction – Branch instruction – Load/Store instruction – Swap instruction. 4 Hours Module:3 Programming using ARM Processor 2 Hours Solving an simple equation – generation of square wave form – Memory operations 4 Hours Module:4 8051 Microcontroller Architecture 4 Hours Architecture of 8051 Micro controller – Program Status Register – Structu	-						
On the completion of this course the student will be able to: 1. Interpret the architecture of microprocessor and classify the different modes of ARM 2. Classify the instructions and differentiate the instruction under various categories 3. Solve real time problems using ARM 4. Develop a broad knowledge on the complete architecture of 8051 microcontroller 5. Analyse the instructions and write simple programs using 8051 microcontroller 6. Summarize various interrupts and write programs to handle interrupts 7. Design a microcontroller based embedded systems by interfacing external devices 8. Design and Conduct experiments, as well as analyze and interpret data Module:1 Introduction to ARM Processor 4 Hours Introduction to RISC processor – Comparison between CISC and RISC - Overview of ARM architecture – Different modes of ARM processor – Program status register 3 Hours Module:2 ARM Instruction Set 3 Hours Data transfer instruction – Arithmetic instruction – Logical Instruction – Multiply instruction – Branch instruction – Load/Store instruction – Swap instruction. 4 Hours Module:3 Programming using ARM Processor 2 Hours Solving an simple equation – generation of square wave form – Memory operations 4 Hours Module:4 8051 Microcontroller Architecture 4 Hours Module:5 Instruc	3. To analyse vario	us interfacing techniques.					
On the completion of this course the student will be able to: 1. Interpret the architecture of microprocessor and classify the different modes of ARM 2. Classify the instructions and differentiate the instruction under various categories 3. Solve real time problems using ARM 4. Develop a broad knowledge on the complete architecture of 8051 microcontroller 5. Analyse the instructions and write simple programs using 8051 microcontroller 6. Summarize various interrupts and write programs to handle interrupts 7. Design a microcontroller based embedded systems by interfacing external devices 8. Design and Conduct experiments, as well as analyze and interpret data Module:1 Introduction to ARM Processor 4 Hours Introduction to RISC processor – Comparison between CISC and RISC - Overview of ARM architecture – Different modes of ARM processor – Program status register 3 Hours Module:2 ARM Instruction Set 3 Hours Data transfer instruction – Arithmetic instruction – Logical Instruction – Multiply instruction – Branch instruction – Load/Store instruction – Swap instruction. 4 Hours Module:3 Programming using ARM Processor 2 Hours Solving an simple equation – generation of square wave form – Memory operations 4 Hours Module:4 8051 Microcontroller Architecture 4 Hours Module:5 Instruc							
1. Interpret the architecture of microprocessor and classify the different modes of ARM 2. Classify the instructions and differentiate the instruction under various categories 3. Solve real time problems using ARM 4. Develop a broad knowledge on the complete architecture of 8051 microcontroller 5. Analyse the instructions and write simple programs using 8051 microcontroller 6. Summarize various interrupts and write programs to handle interrupts 7. Design a microcontroller based embedded systems by interfacing external devices 8. Design and Conduct experiments, as well as analyze and interpret data Module:1 Introduction to ARM Processor 4 Hours Introduction to RISC processor – Comparison between CISC and RISC - Overview of ARM architecture – Different modes of ARM processor – Program status register Module:2 ARM Instruction Set 3 Hours Data transfer instruction – Arithmetic instruction - Logical Instruction – Multiply instruction – Branch instruction – Load/Store instruction – Swap instruction. 4 Hours Module:3 Programming using ARM Processor 2 Hours Solving an simple equation – generation of square wave form – Memory operations 4 Hours Module:4 8051 Microcontroller Architecture 4 Hours Module:5 Instruction set of 8051 microcontroller 9 Solving an Simple equation – generation of square	•						
2. Classify the instructions and differentiate the instruction under various categories 3. Solve real time problems using ARM 4. Develop a broad knowledge on the complete architecture of 8051 microcontroller 5. Analyse the instructions and write simple programs using 8051 microcontroller 6. Summarize various interrupts and write programs to handle interrupts 7. Design a microcontroller based embedded systems by interfacing external devices 8. Design and Conduct experiments, as well as analyze and interpret data Module:1 Introduction to ARM Processor 4 Hours Introduction to RISC processor – Comparison between CISC and RISC - Overview of ARM architecture – Different modes of ARM processor – Program status register 3 Hours Data transfer instruction – Arithmetic instruction - Logical Instruction – Multiply instruction – Branch instruction – Load/Store instruction – Swap instruction. 4 Hours Module:3 Programming using ARM Processor 2 Hours Solving an simple equation – generation of square wave form – Memory operations 4 Hours Module:4 8051 Microcontroller Architecture 4 Hours Architecture of 8051 Micro controller – Program Status Register – Structure of Random Access Memory – Special Function Registers - Pin diagram of 8051 Microcontroller – Ports of 8051 microcontroller. Module:5 Instruction set of 8051 microcontroller Boolan Instructions –	1						
3. Solve real time problems using ARM 4. Develop a broad knowledge on the complete architecture of 8051 microcontroller 5. Analyse the instructions and write simple programs to handle interrupts 7. Design a microcontroller based embedded systems by interfacing external devices 8. Design and Conduct experiments, as well as analyze and interpret data Module:1 Introduction to ARM Processor 4 Hours Introduction to RISC processor – Comparison between CISC and RISC - Overview of ARM architecture – Different modes of ARM processor – Program status register 3 Hours Module:2 ARM Instruction Set 3 Hours Data transfer instruction – Arithmetic instruction - Logical Instruction – Multiply instruction – Branch instruction – Load/Store instruction – Swap instruction. 2 Hours Solving an simple equation – generation of square wave form – Memory operations 4 Hours Module:4 8051 Microcontroller Architecture 4 Hours Memory – Special Function Registers - Pin diagram of 8051 Microcontroller – Ports of 8051 microcontroller – Programming using 8051 microcontroller – Demonstration of HEX file generation and program is 8051 microcontroller – Demonstration of HEX file generation and program execution.							
 4. Develop a broad knowledge on the complete architecture of 8051 microcontroller 5. Analyse the instructions and write simple programs using 8051 microcontroller 6. Summarize various interrupts and write programs to handle interrupts 7. Design a microcontroller based embedded systems by interfacing external devices 8. Design and Conduct experiments, as well as analyze and interpret data Module:1 Introduction to ARM Processor 4 Hours Introduction to RISC processor – Comparison between CISC and RISC - Overview of ARM architecture – Different modes of ARM processor – Program status register Module:2 ARM Instruction Set 3 Hours Data transfer instruction – Arithmetic instruction – Logical Instruction – Multiply instruction – Branch instruction – Load/Store instruction – Swap instruction. Module:3 Programming using ARM Processor 2 Hours Solving an simple equation – generation of square wave form – Memory operations Module:4 8051 Micro controller Architecture 4 Hours Architecture of 8051 Micro controller – Program Status Register – Structure of Random Access Memory – Special Function Registers - Pin diagram of 8051 Microcontroller – Ports of 8051 microcontroller. Module:5 Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Programming using 8051 microcontroller – Demonstration of HEX file generation and program execution.			arious categorie	S			
5. Analyse the instructions and write simple programs using 8051 microcontroller 6. Summarize various interrupts and write programs to handle interrupts 7. Design a microcontroller based embedded systems by interfacing external devices 8. Design and Conduct experiments, as well as analyze and interpret data Module:1 Introduction to ARM Processor 4 Hours Introduction to RISC processor – Comparison between CISC and RISC - Overview of ARM architecture – Different modes of ARM processor – Program status register 3 Hours Module:2 ARM Instruction Set 3 Hours Data transfer instruction – Arithmetic instruction - Logical Instruction – Multiply instruction – Branch instruction – Load/Store instruction – Swap instruction. 2 Hours Module:3 Programming using ARM Processor 2 Hours Solving an simple equation – generation of square wave form – Memory operations 4 Hours Memory – Special Function Registers - Pin diagram of 8051 Microcontroller – Ports of 8051 microcontroller – Program Status Register – Structure of Random Access Memory – Special Function Registers - Pin diagram of 8051 Microcontroller – Ports of 8051 microcontroller. 3 Hours Module:5 Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Programming using 8051 microcontroller – Demonstration of HEX file generation and program execution. 5 Hours<	1	e	1				
6. Summarize various interrupts and write programs to handle interrupts 7. Design a microcontroller based embedded systems by interfacing external devices 8. Design and Conduct experiments, as well as analyze and interpret data Module:1 Introduction to ARM Processor 4 Hours Introduction to RISC processor – Comparison between CISC and RISC - Overview of ARM architecture – Different modes of ARM processor – Program status register 3 Hours Module:2 ARM Instruction Set 3 Hours Data transfer instruction – Arithmetic instruction - Logical Instruction – Multiply instruction – Branch instruction – Load/Store instruction – Swap instruction. 4 Hours Module:3 Programming using ARM Processor 2 Hours Solving an simple equation – generation of square wave form – Memory operations 4 Hours Module:4 8051 Micro controller Architecture 4 Hours Architecture of 8051 Micro controller – Program Status Register – Structure of Random Access 8051 Micro controller – Program of 8051 Microcontroller – Ports of 8051 microcontroller – Ports of 8051 microcontroller – Structions – Boolean Instructions – Control transfer Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Arithmetic and Logical Instructions – Demonstration of HEX file generation and program execution.	1	0 1		er			
7. Design a microcontroller based embedded systems by interfacing external devices 8. Design and Conduct experiments, as well as analyze and interpret data Module:1 Introduction to ARM Processor 4 Hours Introduction to RISC processor – Comparison between CISC and RISC - Overview of ARM architecture – Different modes of ARM processor – Program status register 4 Hours Module:2 ARM Instruction Set 3 Hours Data transfer instruction – Arithmetic instruction - Logical Instruction – Multiply instruction – Branch instruction – Load/Store instruction – Swap instruction. 4 Hours Module:3 Programming using ARM Processor 2 Hours Solving an simple equation – generation of square wave form – Memory operations 4 Hours Module:4 8051 Microcontroller Architecture 4 Hours Architecture of 8051 Micro controller – Program Status Register – Structure of Random Access 8051 microcontroller – Program of 8051 Microcontroller – Ports of 8051 microcontroller – Ports of 8051 microcontroller – Store of 8051 Micro Controller – Program of 8051 Microcontroller – Ports of 8051 microcontroller – Store of 8051 microcontroller – Store of 8051 microcontroller – Control Transfer Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Programming using 8051 microcontroller – Demonstration of HEX file generation and program execution. Module:5 8051 Microc							
8. Design and Conduct experiments, as well as analyze and interpret data Module:1 Introduction to ARM Processor 4 Hours Introduction to RISC processor – Comparison between CISC and RISC - Overview of ARM architecture – Different modes of ARM processor – Program status register 3 Hours Module:2 ARM Instruction Set 3 Hours Data transfer instruction – Arithmetic instruction - Logical Instruction – Multiply instruction – Branch instruction – Load/Store instruction – Swap instruction. 9 Hours Module:3 Programming using ARM Processor 2 Hours Solving an simple equation – generation of square wave form – Memory operations 9 Hours Module:4 8051 Microcontroller Architecture 4 Hours Architecture of 8051 Micro controller – Program Status Register – Structure of Random Access 9 Hours Module:5 Instruction set of 8051 microcontroller 9 Hours Module:5 Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Programming using 8051 microcontroller – Demonstration of HEX file generation and program execution. 9 Hours				e c			
Module:1 Introduction to ARM Processor 4 Hours Introduction to RISC processor – Comparison between CISC and RISC - Overview of ARM architecture – Different modes of ARM processor – Program status register 3 Hours Module:2 ARM Instruction Set 3 Hours Data transfer instruction – Arithmetic instruction - Logical Instruction – Multiply instruction – Branch instruction – Load/Store instruction – Swap instruction. Module:3 Programming using ARM Processor 2 Hours Solving an simple equation – generation of square wave form – Memory operations 4 Hours Module:4 8051 Microcontroller Architecture 4 Hours Architecture of 8051 Micro controller – Program Status Register – Structure of Random Access 8051 microcontroller – Program Status Register – Structure of 8051 microcontroller – Ports of 8051 microcontroller – Different – Brody and Status Register – Structure of Random Access Module:5 Instruction set of 8051 microcontroller 3 Hours Data transfer Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Programming using 8051 microcontroller – Demonstration of HEX file generation and program execution. 5 Hours	U	5 5	0	65			
Introduction to RISC processor – Comparison between CISC and RISC - Overview of ARM architecture – Different modes of ARM processor – Program status register 3 Hours Module:2 ARM Instruction Set 3 Hours Data transfer instruction – Arithmetic instruction – Logical Instruction – Multiply instruction – Branch instruction – Load/Store instruction – Swap instruction. 9 Hours Module:3 Programming using ARM Processor 2 Hours Solving an simple equation – generation of square wave form – Memory operations 4 Hours Module:4 8051 Microcontroller Architecture 4 Hours Architecture of 8051 Micro controller – Program Status Register – Structure of Random Access 8051 Microcontroller – Program of 8051 Microcontroller – Ports of 8051 microcontroller. Module:5 Instruction set of 8051 microcontroller 3 Hours Data transfer Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Programming using 8051 microcontroller – Demonstration of HEX file generation and program execution. 5 Hours	0. Design and Cone	auer experiments, as wen as anaryze and interpr	et data				
Introduction to RISC processor – Comparison between CISC and RISC - Overview of ARM architecture – Different modes of ARM processor – Program status register Module:2 ARM Instruction Set 3 Hours Data transfer instruction – Arithmetic instruction - Logical Instruction – Multiply instruction – Branch instruction – Load/Store instruction – Swap instruction. 4 Hours Module:3 Programming using ARM Processor 2 Hours Solving an simple equation – generation of square wave form – Memory operations 4 Hours Module:4 8051 Microcontroller Architecture 4 Hours Architecture of 8051 Micro controller – Program Status Register – Structure of Random Access 8051 Microcontroller – Program of 8051 Microcontroller – Ports of 8051 microcontroller – Program status – Boolean Instructions – Control transfer Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Programming using 8051 microcontroller – Demonstration of HEX file generation and program execution. Module:6 8051 Microcontroller Programming 5 Hours							
Introduction to RISC processor – Comparison between CISC and RISC - Overview of ARM architecture – Different modes of ARM processor – Program status register Module:2 ARM Instruction Set 3 Hours Module:2 ARM Instruction Set 3 Hours Data transfer instruction – Arithmetic instruction - Logical Instruction – Multiply instruction – Branch instruction – Load/Store instruction – Swap instruction. Module:3 Programming using ARM Processor 2 Hours Solving an simple equation – generation of square wave form – Memory operations 4 Hours Module:4 8051 Microcontroller Architecture 4 Hours Architecture of 8051 Micro controller – Program Status Register – Structure of Random Access 8051 Microcontroller – Program of 8051 Microcontroller – Ports of 8051 microcontroller – Program status – Boolean Instructions – Control transfer Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Programming using 8051 microcontroller – Demonstration of HEX file generation and program execution. Module:6 8051 Microcontroller Programming 5 Hours	Module:1 Intro	oduction to ARM Processor				4 H	ours
architecture – Different modes of ARM processor – Program status register Module:2 ARM Instruction Set 3 Hours Data transfer instruction – Arithmetic instruction - Logical Instruction – Multiply instruction – Branch instruction – Load/Store instruction – Swap instruction. Multiply instruction – Multiply instruction – Branch instruction – Load/Store instruction – Swap instruction. Module:3 Programming using ARM Processor 2 Hours Solving an simple equation – generation of square wave form – Memory operations 4 Hours Module:4 8051 Microcontroller Architecture 4 Hours Architecture of 8051 Micro controller – Program Status Register – Structure of Random Access 8051 Micro controller – Program of 8051 Microcontroller – Ports of 8051 microcontroller. Module:5 Instruction set of 8051 microcontroller 3 Hours Data transfer Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Programming using 8051 microcontroller – Demonstration of HEX file generation and program execution. 5 Hours	Introduction to RI	SC processor – Comparison between CISC	and RISC - C	Vervie	W	of A	RM
Module:2 ARM Instruction Set 3 Hours Data transfer instruction – Arithmetic instruction – Logical Instruction – Multiply instruction – Branch instruction – Load/Store instruction – Swap instruction. Module:3 Programming using ARM Processor 2 Hours Solving an simple equation – generation of square wave form – Memory operations 4 Hours Module:4 8051 Microcontroller Architecture 4 Hours Architecture of 8051 Micro controller – Program Status Register – Structure of Random Access 8051 Microcontroller - Program of 8051 Microcontroller – Ports of 8051 microcontroller. Module:5 Instruction set of 8051 microcontroller 3 Hours Data transfer Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Programming using 8051 microcontroller – Demonstration of HEX file generation and program execution. 5 Hours							
Data transfer instruction – Arithmetic instruction – Logical Instruction – Multiply instruction – Branch instruction – Load/Store instruction – Swap instruction. Module:3 Programming using ARM Processor 2 Hours Solving an simple equation – generation of square wave form – Memory operations 4 Hours Module:4 8051 Microcontroller Architecture 4 Hours Architecture of 8051 Micro controller – Program Status Register – Structure of Random Access Memory – Special Function Registers - Pin diagram of 8051 Microcontroller – Ports of 8051 microcontroller. Module:5 Instruction set of 8051 microcontroller 3 Hours Data transfer Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Programming using 8051 microcontroller – Demonstration of HEX file generation and program execution. 5 Hours		F	8				
Branch instruction – Load/Store instruction – Swap instruction. 2 Hours Module:3 Programming using ARM Processor 2 Hours Solving an simple equation – generation of square wave form – Memory operations 4 Hours Module:4 8051 Microcontroller Architecture 4 Hours Architecture of 8051 Micro controller – Program Status Register – Structure of Random Access Memory – Special Function Registers - Pin diagram of 8051 Microcontroller – Ports of 8051 microcontroller. Module:5 Instruction set of 8051 microcontroller 3 Hours Data transfer Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Programming using 8051 microcontroller – Demonstration of HEX file generation and program execution. 5 Hours	Module:2 ARM	1 Instruction Set				3 H	ours
Branch instruction – Load/Store instruction – Swap instruction. 2 Hours Module:3 Programming using ARM Processor 2 Hours Solving an simple equation – generation of square wave form – Memory operations 4 Hours Module:4 8051 Microcontroller Architecture 4 Hours Architecture of 8051 Micro controller – Program Status Register – Structure of Random Access Memory – Special Function Registers - Pin diagram of 8051 Microcontroller – Ports of 8051 microcontroller. 3 Hours Module:5 Instruction set of 8051 microcontroller 3 Hours Data transfer Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Programming using 8051 microcontroller – Demonstration of HEX file generation and program execution. 5 Hours	Data transfer instr	uction – Arithmetic instruction - Logical Inst	struction – Mul	tiply i	nstr	uctio	on –
Module:3 Programming using ARM Processor 2 Hours Solving an simple equation – generation of square wave form – Memory operations Memory operations Module:4 8051 Microcontroller Architecture 4 Hours Architecture of 8051 Micro controller – Program Status Register – Structure of Random Access Memory – Special Function Registers - Pin diagram of 8051 Microcontroller – Ports of 8051 microcontroller. 9051 Microcontroller – Ports of 8051 microcontroller Module:5 Instruction set of 8051 microcontroller 3 Hours Data transfer Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Programming using 8051 microcontroller – Demonstration of HEX file generation and program execution. 5 Hours				1 2			
Solving an simple equation – generation of square wave form – Memory operationsModule:48051 Microcontroller Architecture4 HoursArchitecture of 8051 Micro controller – Program Status Register – Structure of Random Access Memory – Special Function Registers - Pin diagram of 8051 Microcontroller – Ports of 8051 microcontroller.9051 Microcontroller – Ports of 8051 Microcontroller – Ports of 8051 Microcontroller.Module:5Instruction set of 8051 microcontroller3 HoursData transfer Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Programming using 8051 microcontroller – Demonstration of HEX file generation and program execution.5 Hours		1					
Solving an simple equation – generation of square wave form – Memory operationsModule:48051 Microcontroller Architecture4 HoursArchitecture of 8051 Micro controller – Program Status Register – Structure of Random Access Memory – Special Function Registers - Pin diagram of 8051 Microcontroller – Ports of 8051 microcontroller.9051 Microcontroller – Ports of 8051 Microcontroller – Ports of 8051 Microcontroller.Module:5Instruction set of 8051 microcontroller3 HoursData transfer Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Programming using 8051 microcontroller – Demonstration of HEX file generation and program execution.5 Hours	Module:3 Prog	ramming using ARM Processor				2 H	ours
Module:48051 Microcontroller Architecture4 HoursArchitecture of 8051 Micro controller – Program Status Register – Structure of Random Access Memory – Special Function Registers - Pin diagram of 8051 Microcontroller – Ports of 8051 microcontroller.9051 Microcontroller – Ports of 8051 Microcontroller – Ports of 8051 MicrocontrollerModule:5Instruction set of 8051 microcontroller Data transfer Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Programming using 8051 microcontroller – Demonstration of HEX file generation and program execution.Module:68051 Microcontroller Programming5 Hours	-		emory operation	S			
Architecture of 8051 Micro controller – Program Status Register – Structure of Random Access Memory – Special Function Registers - Pin diagram of 8051 Microcontroller – Ports of 8051 microcontroller.Module:5Instruction set of 8051 microcontroller3 HoursData transfer Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Programming using 8051 microcontroller – Demonstration of HEX file generation and program execution.5 Hours			J 1				
Architecture of 8051 Micro controller – Program Status Register – Structure of Random Access Memory – Special Function Registers - Pin diagram of 8051 Microcontroller – Ports of 8051 microcontroller.Module:5Instruction set of 8051 microcontroller3 HoursData transfer Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Programming using 8051 microcontroller – Demonstration of HEX file generation and program execution.5 Hours	Module:4 8051	Microcontroller Architecture				4 H	ours
Memory – Special Function Registers - Pin diagram of 8051 Microcontroller – Ports of 8051 Module:5 Instruction set of 8051 microcontroller 3 Hours Data transfer Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Programming using 8051 microcontroller – Demonstration of HEX file generation and program execution. Module:6 8051 Microcontroller Programming 5 Hours			er – Structure o	of Ran	don		
microcontroller.Module:5Instruction set of 8051 microcontroller3 HoursData transfer Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Programming using 8051 microcontroller – Demonstration of HEX file generation and program execution.Module:68051 Microcontroller Programming5 Hours		• •					
Module:5Instruction set of 8051 microcontroller3 HoursData transfer Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Control transfer Instructions – Programming using 8051 microcontroller – Demonstration of HEX file generation and program execution.Module:68051 Microcontroller Programming5 Hours							
Data transfer Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Controltransfer Instructions – Programming using 8051 microcontroller – Demonstration of HEX filegeneration and program execution.Module:68051 Microcontroller Programming5 Hours							
Data transfer Instructions – Arithmetic and Logical Instructions – Boolean Instructions – Controltransfer Instructions – Programming using 8051 microcontroller – Demonstration of HEX filegeneration and program execution.Module:68051 Microcontroller Programming5 Hours	Module:5 Inst	ruction set of 8051 microcontroller				3 H	ours
transfer Instructions – Programming using 8051 microcontroller – Demonstration of HEX file generation and program execution. Module:6 8051 Microcontroller Programming 5 Hours			– Boolean Inst	ruction	ns –		
generation and program execution. Module:6 8051 Microcontroller Programming 5 Hours		-					
Module:6 8051 Microcontroller Programming 5 Hours					-		
5 5	<u> </u>						
5 5	Module:6 8051	Microcontroller Programming				5 H	ours
The second second second second second and the second second second second second second second second second s		0 0	unters – Transfe	erring d	lata		

seri	ially – R	eceive o)		d Interrupt Hand		85	priorit	y
Mod	lule:7	Inter	facing Te	chnique	S					7 Hours
			0	-		– Digital to A	nalc	g Converter	– Se	nsor Interface –
Key	pad Inte	rface.D	isplay Int	terface: '	7 segmer	nt interface – L	CD	.Communicat	ion I	nterface: GSM -
Xbe	e – GPS	– Bluet	ooth.							
Mod	lule:8	Cont	temporar	y issues						2 Hours
-					Tota	al Lecture Hou	rs			30 Hours
	t Book(s		NL C1		· ·		1.			1 1 0 11
1.					-	-		-		eveloper's Guide:
		-	n, 2009.	Optim	zing Sys	stem Sonware	, -	viorgan Kau	mam	n Publishers, 1 st
2.									l Mic	procontroller and
			dded Syst	tems ", P	earson e	ducation, 2 nd Ed	litio	n, 2014.		
	erence B								- rd	
1.						ro controller", T				
2.			-			er 8051, Ox		-		
3.			-			ture System on	-		, Apre	ss, 2013.
Mod	le of Eva	luation	: CAT / A	Assignme	ent / Quiz	z / FAT / Project	t / S	eminar		
.			.		1	、				
	1		<u>, Experin</u>)				21
1.	-		arithmeti	-		•				2 hours
2.		1 0	um to solv + A2B +	U	-					2 hours
	,		$^{-}$ A2D $^{+}$ & C are		, ,	(+D+C)				
3.						g data transfer				2 hours
5.			M to RA		10110 10112	S data transfer				2 110415
			M to RA							
			TERNAI		ERNAL					
			M to EX							
4.	to solv		llowing E		expressio	n				2 hours
5.			m to perf		-					2 hours
		ption	0	1	2	3	9			
		ask	A + B	~B+1	A*B	$AB + \sim A \sim B$	~_	A +1		
	C	ption	4	5	6	7	8			
	Т	ask	A A to	55H	A ^ B	~A	~]	В		
			P1	to P1						
6.	Write a		-			g wave forms.				2 hours
	a.			square w	ave on P	0.0. use Timer	1 in	mode 1. Ass	ume	
	XTAL			2						
	b.		ite step w			00.51		11 1		
7.					D's with	n 8051 microco	ntro	ller also gene	erate	2 hours
	any pat	ttern us	ing LED'	s.						

8.	Write a program to generate 50 I	ormally. When	2 hours		
	INT1 is pressed, generate 100 Hz	square wave on	P1.1. Use ti	mer 0 in mode	
	1. Assume $XTAL = 11.0592 MHz$	Ζ.			
9.	Write a program to display the foll	owing sequence	in 7 segmen	t display.	2 hours
	0 - 2 - 4 - 6 - 8				
10. Write ARM processor program to solve the following expression.					2hours
	$Ab^2 + c^2d$ where, a,b,c,d are 16 bit	numbers.			
	30 hours				
Mod					
Recommended by Board of Studies 05/03/2016					
Approved by Academic Council40th ACDate18/03/2016					

MAT2002	Applications of Differential and Difference Equations			T	Р	J	С
			3	0	2	0	4
Pre-requisite	MAT1011	Syllabus Version			ersion		
Anti-requisite	Nil		1	v.1.()		

Course Objectives

The course is aimed at

1. Presenting the elementary notions of Fourier series, which is vital in practical harmonic analysis

2. Imparting the knowledge of eigenvalues and eigen vectors of matrices and the transform techniques to solve linear systems, that arise in sciences and engineering

3. Enriching the skills in solving initial and boundary value problems

4. Impart the knowledge and application of difference equations and the Z-transform in discrete systems, that are inherent in natural and physical processes

Course Outcome

At the end of the course the student should be able to

1. Employ the tools of Fourier series to find harmonics of periodic functions from the tabulated values

2. Apply the concepts of eigenvalues, eigen vectors and diagonalisation in linear systems

3. Know the techniques of solving differential equations

4. understand the series solution of differential equations and finding eigen values, eigen functions of Strum-Liouville's problem

5. Know the Z-transform and its application in population dynamics and digital signal processing

6. demonstrate MATLAB programming for engineering problems

6 hours Fourier series - Euler's formulae - Dirichlet's conditions - Change of interval - Half range series – RMS value – Parseval's identity – Computation of harmonics

Module:2 **Matrices:** 6 hours Eigenvalues and Eigen vectors - Properties of eigenvalues and eigen vectors - Cayley-

Hamilton theorem - Similarity of transformation - Orthogonal transformation and nature of quadratic form

Module:3 Solution of ordinary differential equations:

Linear second order ordinary differential equation with constant coefficients - Solutions of homogenous and non-homogenous equations - Method of undetermined coefficients method of variation of parameters - Solutions of Cauchy-Euler and Cauchy-Legendre differential equations

Module:4	Solution of differential equations through	8 hours				
	Laplace transform and matrix method					
Solution of	ODE's - Nonhomogeneous terms involving H	Heaviside function, Impulse				
function - Solving nonhomogeneous system using Laplace transform - Reduction of <i>n</i> th						
order differential equation to first order system - Solving nonhomogeneous system of first						

6 hours

		(Deemed to be Oniversity under section 5 of OGC Act,		
order	differe	ntial equations $(X' = AX + G)$ and $X'' = AX$		
Mod	ule:5	Strum Liouville's problems and power series Solutions:		6 hours
The	Strum-l	Liouville's Problem - Orthogonality of Eigen functi	ons - Serie	es solutions of
diffe	erential	equations about ordinary and regular singular point	s - Legendr	e differential
equa	ation - B	essel's differential equation		
Mod	ule:6	Z-Transform:		6 hours
Z-tr	ansform	-transforms of standard functions - Inverse Z-trans	form: by pa	artial fractions
and	convolu	tion method		
Mod	ule:7	Difference equations:		5 hours
		quation - First and second order difference equation	ns with con	
		sequence - Solution of difference equations -		
		tegral by the method of undetermined coefficient		
		uations using Z-transform	50.	ion of simple
annel	unce eq			
Mod	ule:8	Contemporary Issues	2 hours	
		ert Lecture		
maad	лу Елр			
		Total Lecture Hours		45 hours
Text	Book(s			
1.		ed Engineering Mathematics, Erwin Kreyszig, 10) th Editior	n, John Wiley
Refe	rence B	ooks		
1.]		Engineering Mathematics, B. S. Grewal, 43 rd Editio	on, Khanna	Publishers,
2.	Advance	ed Engineering Mathematics by Michael D. Greenb on, Indian edition, 2006	erg, 2 nd Ed	lition, Pearson
Mode	e of Eva	luation: Digital Assignments (Solutions by using so	oft skills), C	Continuous
1		Fests, Quiz, Final Assessment Test		2 h avera
1.		g Homogeneous differential equations arising in eng	gineering	2 hours
2.	probler Solving	g non-homogeneous differential equations and Cauc	hy	2 hours
∠.		re equations	y,	2 110u18
3.		ng the technique of Laplace transform to solve diffe	prontial	2 hours
э.	equatio		nontial	2 110u15
4.		ations of Second order differential equations to Mas	e enring	2 hours
4.		(damped, undamped, Forced oscillations), LCR cir	1 0	2 110u15
5.	•	zing Eigen value and Eigen vectors		2 hours
5. 6.		g system of differential equations arising in enginee	rina	2 hours
0.	applica		ing	2 110u15
7.		ng the Power series method to solve differential equ	lations	2 hours
1.		in engineering applications	lations	2 110u15
8.		ng the Frobenius method to solve differential equat	ions	2 hours
0.	· · · PPI yI	as are rissentus metrou to sorve unrerentiar equat	10115	

	arising in engineering applications						
9.	Visualising Bessel and Legendre po	olynomials			2 hours		
10.	Evaluating Fourier series-Harmonic	e series			2 hours		
11.	Applying Z-Transforms to functions	ing	2 hours				
12.	Solving Difference equations arising	ons	2 hours				
		Hours	24 hours				
Mod	Mode of Evaluation: Weekly Assessment, Final Assessment Test						
Recommended by Board of Studies 25/02/2017							
Approved by Academic Council47 th ACDate05/10/2017							

VIIT VIIT Vellore Institute of Technology (Deemed to be University under section 3 of UGC Act, 1956)

MAT-3003	Complex Variables and Partial Differential Equation	L	Γ		P J	C
Duo no seri-it-	MA T2002	3	2		0 0	4
Pre-requisite	MAT2002		упа	IDU	is vei	sion
Anti-requisite	Nil					v.1.1
Course Objecti						
	course is to present a comprehensive, compact and integrate)
	branches of applied mathematics for engineers and scientis					
functions of con	nplex variable and Partial differential equations in finite an	d infir	ite o	lor	nains	
Expected Cour	se Outcome:					
-	he course the student should be able to					
	ic functions and find complex potential of fluid flow and e	lectric	fie	ds		
	ge of straight lines by elementary transformations and					
	ss analytic functions in power series					
4. evaluate real	integrals using techniques of contour integration					
	l differential equations, and its applications, design the bou	ndary	valı	ie j	proble	ems
(one dimensiona	al heat and wave equations) and find Fourier series, Fourier	•				
transform techn	iques in their respective engineering problems.					
	alytic Functions	1				ours
	le-Analytic functions and Cauchy – Riemann equations - L					
	ions - Construction of Harmonic conjugate and analytic fun	ctions	- A	ppi	icatic	ons
of analytic func	ions to fluid-flow and Field problems.					
Module:2 Co	nformal and Bilinear transformations				5 h	ours
Conformal map	ping - Elementary transformations-translation, magnificati	on, rot	atio	n,		
inversion. Expo	nential and Square transformations (w = e^z , z^2) - Bili	near t	rans	for	matio	on -
Cross-ratio-Ima	ges of the regions bounded by straight lines under the above	e trans	forn	nat	ions.	
	•				4.1	
	wer series	1				ours
Functions given	by Power Series - Taylor and Laurent series -singularities -	- poles	<u>– K</u>	esi	aues	•
Module:4 Co	mplex Integration				5 h	ours
	complex function along a contour - Cauchy-Goursat theor	em- C	auc	hv		ours
0	a -Cauchy's residue theorem - Evaluation of real integra					ntour
integral.						
Module:5 Pa	rtial Differential equations of first order				6 h	ours
	solution of partial differential equation - General, Particula		-		nd	
0 0	als - Partial Differential equations of first order of the forms	· T	.),		
F(z,p,q)=0, F(x,	p)=G(y,q) and Clairaut's form - Lagrange's equation: Pp+Q	Qq = R	•			
					10 1	
-	plications of Partial Differential				10 h	ours
	uations fferential equations of higher order with constant coefficien	te So	ntic	<u>n /</u>	of	
-	ntial equation by separation of variables - Boundary Value I					
				111		

1			1						
dimensiona	l wave and heat equations- F	ourier series	solution	l .					
Module:7									
-	ourier transform and properti				•				
	- Fourier sine and cosine tra	unsforms – C	Convolu	tion Theor	rem and Parseval's				
identity.									
Module:8	Contemporary issues:				2 hours				
Industry Ex	pert Lecture								
		Tota	Lectu	re hours:	45 hours				
Tutorial	• A minimum of 10 p	problems to b	e worke	ed out by	30 hours				
	students inventory	Futorial Class							
	Another 5 problems	s per Tutorial	Class to	o be					
	given as home work	K							
Text Book									
1. Advar	ced Engineering Mathematic	es, Erwin Kre	yszig, 1	0 th Editio	n, John Wiley &				
Sons (Wiley student Edison) (2015))							
Reference									
1 Higher	Engineering Mathematics, E	B. S. Grewal,	43^{rd} E	Edition (20	19), Khanna				
Publish	ners, New Delhi								
2 A firs	t course in complex analysis	s with applic	ations,	G.Dennis	Zill, Patrick D. Shanahan,				
	ition, 2013, Jones and Bartle								
3 Advan	ced Engineering Mathematic	s, Michael, D	. Green	berg, 2 nd 1	Edition, Pearson				
Educat	ion (2006)								
4 Advan	ced Engineering Mathematic	s, Peter V. O	Neil, 7	th Edition	, Cengage Learning				
(2012)									
5 Comp	lex Analysis for Mathematic	s and Engine	ers, JH	Mathews,	R. W. Howell, 5 th				
Edition, Narosa Publishers (2013)									
Mode of Ev	aluation: Digital Assignmen	ts, Ouiz. Con	tinuous	Assessme	nts, Final Assessment				
Test.		, (,) on			,				
Recommen	ded by Board of Studies	25/02/2017							
	y Academic Council	47 th AC	Date	05/10/202	17				

	(Deemed to be University under section 3 of UGC Act, 1956)					
MAT-3005	Applied Numerical Methods	L	Τ	P	J	С
		3	2	0	0	4
Pre-requisite	MAT2002	Sylla	abus		rsio	n
Anti-requisite	Nil		v.1	.1		
Course Objective						
The aim of this co			_			_
	basic, important computer oriented numeric	al methods	for	ana	lyz	ing
	e in engineering and physical sciences.					
	as the primary computer language to obtain solut	tions to a fev	v pro	bler	ns t	hat
1	ective engineering courses.					
	analyse problems connected with data analysis,					
4.solve ordinary a	and partial differential equations numerically					
Exposted Course	Outcomo					
Expected Course	course the student should be able to					
	ference between exact solution and approximate	solution				
	rical techniques to find the solution of algebrai		and	SVS	tem	of
equations.	fear teeninques to find the solution of algeora	e equations	una	595	com	01
-	ing interpolation technique and spline methods.					
	n of ordinary differential equations, Heat and Wa	ave equation	num	eric	allv	
	s of variation techniques to extremize the	-			-	
	s solution to ordinary differential equations					
	braic and Transcendental Equations	5	hour	S		
_	method- rates of convergence- Secant method - N	Newton – Ra	aphsc	n m	eth	od-
	ear equations by Newton's method.		1			
Module:2 Syste	em of Linear Equations and Eigen Value	6	hour	S		
Prob	lems					
Gauss –Seidel	iteration method. Convergence analysis	of iterative	e m	etho	ds-l	LU
Decomposition -7	Fri diagonal system of equations-Thomas algo	orithm- Eig	en va	alue	s o	f a
matrix by Power a	and Jacobi methods.					
Module:3 Inter	polation	6	hour	S		
Finite difference	operators- Newton's forward-Newton's Back	ward- Cent	ral d	iffeı	enc	es-
Stirling's interpol	ation - Lagrange's interpolation - Inverse Inter	rpolation-Ne	wton	's c	livio	led
difference-Interpo	lation with cubic splines.					
	erical Differentiation and Integration		hour			
Numerical differe	ntiation with interpolation polynomials-maxima	a and minin	na foi	r tał	oula	ted
values-Trapezoida	ll rule, Simpsons 1/3 rd and 3/8 th rules. –Romberg	g's method.	Two	and	Th	ree
point Gaussian qu	adrature formula.					
_						
Module:5 Num	erical Solution of Ordinary Differential	8	hour	S		
	ations	-				
-	order differential equations - Fourth order Rung	ge – Kutta n	netho	d. A	Adar	ns-
	n predictor-corrector methods. Finite difference					
Bashforth-Moulto	II DIEDICIOI-CONTECION MELNOUS. FINILE AMERICA	C SUILIUI	101 1	\mathbf{nc}	SULL	

order ordina	ry differential equations.			
Module:6	Numerical Solution of Equations	e Partial	Different	tial 6 hours
Seidal meth	-	equation- S	Schmidt e	tions-Laplace equation –Gauss- explicit method-Crank-Nicolson ethod.
Module:7	Variational Methods			6 hours
variable and	1	nal involvir		functional of a single dependent order derivatives- Isoperimetric
Module:8	Contemporary Issues			2 hours
Industry Ex	· ·			·
Tutorial	A minimum of 10 probl		cture Ho	
R. K 2. App	nerical Methods for Scientif Jain, New Age Internation	er Tutorial ic and Engin al Ltd., 6 th E	neering, N dition, 20	I. K. Jain, S. R. K. Iyengar and
Reference l				
New 2. App J. M 3. Num Stev	Delhi, 2009. lied Numerical Methods Us orris, Wiley India Edn., 200 herical Methods for Engine en C. Chapra and Ra P. Can	ing MATLA 7. eers with P ale, 7 th Edit	AB, W.Y. rogrammi ion, Tata I	
4. Nun	nerical Analysis, R.L. Burder	n and J. D. H	Faires, 4 th I	Edition, Brooks Cole, 2012.
	nerical Methods: Principles, versity Press India, 2009.	Analysis and	d Algorith	ms, Srimanta Pal, Oxford
Mode of Ev				
Digital A	Assignments, Continuous As	ssessment Te	ests, Final	Assessment Test
Recommend	led by Board of Studies	25/02/2017	7	
	y Academic Council	47 th AC	Date	05/10/2017

Pre-requisite MAT1011 Anti-requisite Nil Course Objectives: Nil 1. Apply the design concepts of feengineering problems Select appropriate weight and learning 2. Select appropriate weight and learning Formulate and analyze the real time 3. Formulate and analyze the real time Formulate and analyze the real time On the completion of this course the studen 1. Design the mathematical model for Demonstrate the concepts of Recurrent at 3. Explore the concepts of Recurrent at Design the competitive learning neutrities 3. Explore the concepts of Recurrent at Design of fuzzy systems for non-lin 6. Design of fuzzy systems for non-lin Apply membership functions with inference system concepts to moder 8. Design a component or a product ap constraints Module:1 Introduction to Artificial Artificial neural networks and their biolo Topology – Characteristics of artificial neu Learning Laws: Learning methods – Erro XOR problem – Perceptron learning rule comportimation – Associative memory: auto Module:2 Feed Forward Networks Multilayer Perceptron – Delta Learning – I approximation – Associative memory – Hopfid Module:3 Recurrent Neura	etworks and Fuzzy Control	L T P J C
Anti-requisite Nil Course Objectives: I. Apply the design concepts of fe Engineering problems 2. Select appropriate weight and learning Select appropriate weight and learning 3. Formulate and analyze the real time Expected Course Outcome: On the completion of this course the studen 1. Design the mathematical model for 2. Demonstrate the concepts of feed f solution. 3. Explore the concepts of Recurrent a 4. Design the competitive learning neut 5. Estimate the performance of Self or 6. Design of fuzzy systems for non-lin 7. Apply membership functions with inference system concepts to moder 8. Design a component or a product ap constraints Module:1 Introduction to Artificial Artificial neural networks and their biolo Topology – Characteristics of artificial neu Learning Laws: Learning methods – Erro XOR problem – Perceptron learning rule co Module:2 Feed Forward Networks Multilayer Perceptron – Delta Learning – I approximation – Associative memory: auto Module:3 Recurrent Neural Networks Bi-directional associative memory – Hopfid Module:5		
Anti-requisite Nil Course Objectives: I. Apply the design concepts of feengineering problems 2. Select appropriate weight and learning Formulate and analyze the real time 3. Formulate and analyze the real time Expected Course Outcome: On the completion of this course the studen 1. Design the mathematical model for 2. Demonstrate the concepts of Recurrent a 3. Explore the concepts of Recurrent a 4. Design the competitive learning neutring Select appropriate weight and learning neutring 5. Estimate the performance of Self or 6. Design of fuzzy systems for non-lin 7. Apply membership functions with inference system concepts to moder 8. Design a component or a product approximations Module:1 Introduction to Artificial Artificial neural networks and their biology – Characteristics of artificial neural networks XOR problem – Perceptron learning rule component or a product approximation – Associative memory: automatical receptron – Delta Learning – I approximation – Associative memory = Hopfier Module:3 Recurrent Neural Networks Bi-directional associative memory – Hopfier Module:5 Self Organizing Networks Mathematical neural networks – Mathematica		Syllabus version
Course Objectives: 1. Apply the design concepts of feeen Engineering problems 2. Select appropriate weight and learning Select Bourse Outcome: On the completion of this course the studen 1. Design the mathematical model for 2. Demonstrate the concepts of Recurrent a 4. Design the competitive learning neuro 5. Estimate the performance of Self or 6. Design of fuzzy systems for non-lin 7. Apply membership functions with 10. fifterence system concepts to moder 8. Design a component or a product ap constraints Module:1 Introduction to Artificial Artificial neural networks and their biology Characteristics of artificial neu		v. 1.1
 Apply the design concepts of fe Engineering problems Select appropriate weight and learning Formulate and analyze the real time The completion of this course the studen Design the mathematical model for Demonstrate the concepts of feed f solution. Explore the concepts of Recurrent a Design the competitive learning neu Estimate the performance of Self or Design of fuzzy systems for non-lin Apply membership functions with inference system concepts to moder Design a component or a product ap constraints Module:1 Introduction to Artificial Artificial neural networks and their biolo Topology – Characteristics of artificial neu Learning Laws: Learning methods – Erro XOR problem – Perceptron learning rule co Module:2 Feed Forward Networks Multilayer Perceptron – Delta Learning – I approximation – Associative memory: auto Module:3 Recurrent Neural Networks Bi-directional associative memory – Hopfie Module:4 Unsupervised Learning Competitive learning neural networks – Ma 		
On the completion of this course the studen 1. Design the mathematical model for 2. Demonstrate the concepts of feed f solution. 3. Explore the concepts of Recurrent a 4. Design the competitive learning neu 5. Estimate the performance of Self or 6. Design of fuzzy systems for non-lin 7. Apply membership functions with inference system concepts to moder 8. Design a component or a product ar constraints Module:1 Introduction to Artificial Artificial neural networks and their biolo Topology – Characteristics of artificial neu Learning Laws: Learning methods – Error XOR problem – Perceptron learning rule co Module:2 Feed Forward Networks Multilayer Perceptron – Delta Learning – I approximation – Associative memory: auto Module:3 Recurrent Neural Networks Bi-directional associative memory – Hopfie Module:5 Self Organizing Networks Kohonen Self organizing Feature Map –	ed forward and feedback neural n ng constant values for every learning e system with the knowledge of fuzzy	-
 Design the mathematical model for Demonstrate the concepts of feed f solution. Explore the concepts of Recurrent a Design the competitive learning neu Estimate the performance of Self or Design of fuzzy systems for non-lin Apply membership functions with inference system concepts to moder Design a component or a product ap constraints Module:1 Introduction to Artificial Artificial neural networks and their biolo Topology – Characteristics of artificial neu Learning Laws: Learning methods – Errovice XOR problem – Perceptron learning rule constraints Module:2 Feed Forward Networks Multilayer Perceptron – Delta Learning – I approximation – Associative memory: auto Module:3 Recurrent Neural Networks Bi-directional associative memory – Hopfied Module:4 Unsupervised Learning Competitive learning neural networks – Matein Module:5 Self Organizing Networks Kohonen Self organizing Feature Map – 		
 2. Demonstrate the concepts of feed f solution. 3. Explore the concepts of Recurrent a 4. Design the competitive learning neu 5. Estimate the performance of Self or 6. Design of fuzzy systems for non-lin 7. Apply membership functions with inference system concepts to moder 8. Design a component or a product ap constraints Module:1 Introduction to Artificial Artificial neural networks and their biolor Topology – Characteristics of artificial neu Learning Laws: Learning methods – Error XOR problem – Perceptron learning rule component or a product approximation – Associative memory: auto Module:3 Recurrent Neural Networks Bi-directional associative memory – Hopfie Module:4 Unsupervised Learning Competitive learning neural networks – Ma Module:5 Self Organizing Networks Kohonen Self organizing Feature Map –	t will be able to:	
Multilayer Perceptron – Delta Learning – I approximation – Associative memory: auto Module:3 Recurrent Neural Networks Bi-directional associative memory – Hopfie Module:4 Unsupervised Learning Competitive learning neural networks – Ma Module:5 Self Organizing Networks Kohonen Self organizing Feature Map –	brward and re-current neural network nd feedback networks in multilayer n ral networks for solving the engineer ganizing networks. ear simulation with extension princip suitable Defuzzification method an n controllers. plying all the relevant standards with Neural Networks and Learning La gical motivation – Terminology – ral networks – Types of activation fur or correction learning – Hebbian lear	as to find the optimal eurons. ing problems. le. d apply neuro-fuzzy realistic aws 7 Hours Models of neuron – nctions. rning – Perceptron – aline.
approximation – Associative memory: auto Module:3 Recurrent Neural Networks Bi-directional associative memory – Hopfie Module:4 Unsupervised Learning Competitive learning neural networks – Ma Module:5 Self Organizing Networks Kohonen Self organizing Feature Map –		4 Hours
Bi-directional associative memory – Hopfie Module:4 Unsupervised Learning Competitive learning neural networks – Ma Module:5 Self Organizing Networks Kohonen Self organizing Feature Map –		– Universal function
Bi-directional associative memory – Hopfie Module:4 Unsupervised Learning Competitive learning neural networks – Ma Module:5 Self Organizing Networks Kohonen Self organizing Feature Map –		2 Hours
Competitive learning neural networks – Ma Module:5 Self Organizing Networks Kohonen Self organizing Feature Map –		
Module:5 Self Organizing Networks Kohonen Self organizing Feature Map –		3 Hours
Kohonen Self organizing Feature Map –	x net – Maxican Hat – Hamming net	
		5 Hours
Adaptive Resonance Theory – Concept networks in image processing, signal proce	of support vector machines - Ap	

Module:6	Fuzzy Sets and Fuzzy Relations	5 Hours
Introduction	n – Classical sets and fuzzy sets – Classical relations and fuzzy relations – Me	embership
functions - principle.	- Fuzzy to Crisp conversion, Fuzzy Arithmetic, numbers, vectors and	extension
Module:7	Fuzzy Decision Making	2 Hours
Fuzzy rule b methods.	ased systems – Fuzzy nonlinear simulation – Fuzzy control systems and Def	uzzification
Neuro Fuzz	y: Mathematical formulation of adaptive Neuro – Fuzzy inference systems.	
Module:8	Contemporary issues:	2 Hours
	Total Lecture Hours	30 hours

		Total Lecture Hours30 hours							
Text Book(s	Text Book(s)								
1.	Jacek. M. Zurada, "Intro	Jacek. M. Zurada, "Introduction to Artificial Neural Systems", Jaico Publishing							
	House, 2006.								
2.	Simon Haykin, Neural Net	tworks and learnir	ng Machine	es", Mac Millen Colle	ege Pubco.,				
	New York, 2016.								
Reference Be	Reference Books								
1.	Laurene Fausett, Fundame	entals of Neural I	Networks -	- Architectures, algo	rithms and				
	applications, Pearson Educ	cation Inc., 2004							
2.	Timothy J.Ross, Fuzzy L	ogic with Engine	ering App	lications, John Wiley	and sons,				
	2017.								
3.	J.S.R. Jang, C.T. Sun,	E. Mizutani, "N	eural Fuz	zy and Soft Compu	uting – A				
	computational Approach	to learning and M	Aachine Ir	ntelligence", Pearson	Education				
	Inc., 2010.	-		-					
Mode of Eval	Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar								
Recommende	ed by Board of Studies	05/03/2016							
Approved by	Academic Council	40 th AC	Date	18/03/2016					

EEE1008	Bio-Medical Instrumentation	L T P J C
Pre-requisite	e Nil	Syllabus version
Anti-requisi		v. 2.0
Course Obje		v. 2.0
÷	ve an understanding of the biological signals and signal acquisition	
0	ovide the design concepts of bioelectric amplifiers	
	In the principle and operation of various biomedical systems	
Expected Co	ourse Outcomes:	
On the comp	letion of this course the student will be able to:	
	ate and analyse the different physiological signals	
	e the knowledge to select appropriate medical instruments	
-	in the bio electric devices used for diagnostic equipment	
	lop and analyse the therapeutic devices.	
	rstand the procedure for blood analysis in medical laboratory	
	yze the process involved in blood cell counters and sensors rentiate the advanced diagnostic techniques.	
	in a component or a product applying all the relevant standards with re	alistic constraints
0. Desig	in a component of a product apprying an are relevant standards with re	
linear/nonline	Introduction to Biomedical Instrumentation and Measurement ioelectric potentials, cardiovascular system, Central nervous system, ear analysis of different physiological signals (ECG, EEG, EMG),	Muscular System, Electrode theory-
Sources of b linear/nonline mathematical electrode, Ele	ioelectric potentials, cardiovascular system, Central nervous system, ear analysis of different physiological signals (ECG, EEG, EMG), l analysis including Nernst equation, Goldman equation, Electric ectrodes for ECG, EEG &EMG.	, Electrode theory- al conductivity of
Sources of b linear/nonline mathematical electrode, Ele Module:2	ioelectric potentials, cardiovascular system, Central nervous system, ear analysis of different physiological signals (ECG, EEG, EMG), l analysis including Nernst equation, Goldman equation, Electric ectrodes for ECG, EEG &EMG. General Considerations of Medical Instruments	Muscular System, Electrode theory- al conductivity of 8 Hours
Sources of b linear/nonline mathematical electrode, Ele Module:2 Operational	ioelectric potentials, cardiovascular system, Central nervous system, ear analysis of different physiological signals (ECG, EEG, EMG), l analysis including Nernst equation, Goldman equation, Electric ectrodes for ECG, EEG &EMG. General Considerations of Medical Instruments Amplifiers, Bioelectric Amplifiers, Selection of biomedical amp	Muscular System, Electrode theory- al conductivity of 8 Hours Diffiers – Isolation
Sources of b linear/nonline mathematical electrode, Ele Module:2 Operational amplifiers, O	ioelectric potentials, cardiovascular system, Central nervous system, ear analysis of different physiological signals (ECG, EEG, EMG), l analysis including Nernst equation, Goldman equation, Electric ectrodes for ECG, EEG &EMG. General Considerations of Medical Instruments Amplifiers, Bioelectric Amplifiers, Selection of biomedical amp Charge amplifiers and Chopper amplifier. Characteristics of bi	Muscular System, Electrode theory- al conductivity of 8 Hours Difiers – Isolation omedical recorder
Sources of b linear/nonline mathematical electrode, Ele Module:2 Operational amplifiers, P	ioelectric potentials, cardiovascular system, Central nervous system, ear analysis of different physiological signals (ECG, EEG, EMG), l analysis including Nernst equation, Goldman equation, Electric ectrodes for ECG, EEG &EMG. General Considerations of Medical Instruments Amplifiers, Bioelectric Amplifiers, Selection of biomedical amp Charge amplifiers and Chopper amplifier. Characteristics of bi Physiological effects of electric currents, Electric shock hazards and	Muscular System, Electrode theory- al conductivity of 8 Hours Difiers – Isolation omedical recorder
Sources of b linear/nonline mathematical electrode, Ele Module:2 Operational amplifiers, C amplifiers, P Methods of a	ioelectric potentials, cardiovascular system, Central nervous system, ear analysis of different physiological signals (ECG, EEG, EMG), l analysis including Nernst equation, Goldman equation, Electric ectrodes for ECG, EEG &EMG. General Considerations of Medical Instruments Amplifiers, Bioelectric Amplifiers, Selection of biomedical amp Charge amplifiers and Chopper amplifier. Characteristics of bi Physiological effects of electric currents, Electric shock hazards and accident prevention.	Muscular System, Electrode theory- al conductivity of 8 Hours Difiers – Isolation omedical recorder d leakage currents,
Sources of b linear/nonline mathematical electrode, Ele Module:2 Operational amplifiers, C amplifiers, P Methods of a Module:3	 ioelectric potentials, cardiovascular system, Central nervous system, ear analysis of different physiological signals (ECG, EEG, EMG), l analysis including Nernst equation, Goldman equation, Electric ectrodes for ECG, EEG &EMG. General Considerations of Medical Instruments Amplifiers, Bioelectric Amplifiers, Selection of biomedical amp Charge amplifiers and Chopper amplifier. Characteristics of bi Physiological effects of electric currents, Electric shock hazards and ciccident prevention. Diagnostic Equipment 	Muscular System, Electrode theory- al conductivity of 8 Hours blifiers – Isolation omedical recorder d leakage currents, 7 Hour
Sources of b linear/nonline mathematical electrode, Ele Module:2 Operational amplifiers, P Methods of a Module:3 ECG Lead C	 ioelectric potentials, cardiovascular system, Central nervous system, ear analysis of different physiological signals (ECG, EEG, EMG), l analysis including Nernst equation, Goldman equation, Electric ectrodes for ECG, EEG &EMG. General Considerations of Medical Instruments Amplifiers, Bioelectric Amplifiers, Selection of biomedical amp Charge amplifiers and Chopper amplifier. Characteristics of bi Physiological effects of electric currents, Electric shock hazards and ciccident prevention. Diagnostic Equipment Configuration, Vector cardiograph, Phono-cardiograph, EEG and EMC 	Muscular System, Electrode theory- al conductivity of 8 Hours Diffiers – Isolation omedical recorder d leakage currents, 7 Hour G Electrode system,
Sources of b linear/nonline mathematical electrode, Ele Module:2 Operational amplifiers, C amplifiers, P Methods of a Module:3 ECG Lead C Recorders, M	 ioelectric potentials, cardiovascular system, Central nervous system, ear analysis of different physiological signals (ECG, EEG, EMG), analysis including Nernst equation, Goldman equation, Electric ectrodes for ECG, EEG &EMG. General Considerations of Medical Instruments Amplifiers, Bioelectric Amplifiers, Selection of biomedical amp Charge amplifiers and Chopper amplifier. Characteristics of bi Physiological effects of electric currents, Electric shock hazards and cicident prevention. Diagnostic Equipment Configuration, Vector cardiograph, Phono-cardiograph, EEG and EMC Measurement of various volumes/capacity of lungs, Spirometer. Measurement of various volumes/capacity of lungs, Spirometer. 	Muscular System, Electrode theory- al conductivity of 8 Hours Diffiers – Isolation omedical recorder d leakage currents, 7 Hour G Electrode system,
Sources of b linear/nonline mathematical electrode, Ele Module:2 Operational amplifiers, C amplifiers, P Methods of a Module:3 ECG Lead C Recorders, M output, blood	ioelectric potentials, cardiovascular system, Central nervous system, ear analysis of different physiological signals (ECG, EEG, EMG), l analysis including Nernst equation, Goldman equation, Electric ectrodes for ECG, EEG &EMG. General Considerations of Medical Instruments Amplifiers, Bioelectric Amplifiers, Selection of biomedical amp Charge amplifiers and Chopper amplifier. Characteristics of bi Physiological effects of electric currents, Electric shock hazards and ciccident prevention. Diagnostic Equipment Configuration, Vector cardiograph, Phono-cardiograph, EEG and EMC Measurement of various volumes/capacity of lungs, Spirometer. Meas I flow and blood pressure.	Muscular System, Electrode theory- al conductivity of 8 Hours Bifiers – Isolation omedical recorder d leakage currents, 7 Hour B Electrode system, surement of cardiac
Sources of b linear/nonline mathematical electrode, Ele Module:2 Operational amplifiers, C amplifiers, P Methods of a Module:3 ECG Lead C Recorders, M output, blood Module:4	ioelectric potentials, cardiovascular system, Central nervous system, ear analysis of different physiological signals (ECG, EEG, EMG), l analysis including Nernst equation, Goldman equation, Electric ectrodes for ECG, EEG &EMG. General Considerations of Medical Instruments Amplifiers, Bioelectric Amplifiers, Selection of biomedical amp Charge amplifiers and Chopper amplifier. Characteristics of bi Physiological effects of electric currents, Electric shock hazards and ccident prevention. Diagnostic Equipment Configuration, Vector cardiograph, Phono-cardiograph, EEG and EMC Measurement of various volumes/capacity of lungs, Spirometer. Meas I flow and blood pressure. Therapeutic Equipment	Muscular System, Electrode theory- al conductivity of 8 Hours Belifiers – Isolation omedical recorder d leakage currents, 7 Hour B Electrode system, surement of cardiac 6 Hours
Sources of b linear/nonline mathematical electrode, Ele Module:2 Operational amplifiers, C amplifiers, P Methods of a Module:3 ECG Lead C Recorders, N output, blood Module:4 Cardiac pace	ioelectric potentials, cardiovascular system, Central nervous system, ear analysis of different physiological signals (ECG, EEG, EMG), l analysis including Nernst equation, Goldman equation, Electric ectrodes for ECG, EEG &EMG. General Considerations of Medical Instruments Amplifiers, Bioelectric Amplifiers, Selection of biomedical amp Charge amplifiers and Chopper amplifier. Characteristics of bi Physiological effects of electric currents, Electric shock hazards and ciccident prevention. Diagnostic Equipment Configuration, Vector cardiograph, Phono-cardiograph, EEG and EMC Measurement of various volumes/capacity of lungs, Spirometer. Meas I flow and blood pressure.	Muscular System, Electrode theory- al conductivity of 8 Hours Bifiers – Isolation omedical recorder d leakage currents, 7 Hour G Electrode system, surement of cardiac 6 Hours
Sources of b linear/nonline mathematical electrode, Ele Module:2 Operational amplifiers, C amplifiers, P Methods of a Module:3 ECG Lead C Recorders, M output, blood Module:4	ioelectric potentials, cardiovascular system, Central nervous system, ear analysis of different physiological signals (ECG, EEG, EMG), l analysis including Nernst equation, Goldman equation, Electric ectrodes for ECG, EEG &EMG. General Considerations of Medical Instruments Amplifiers, Bioelectric Amplifiers, Selection of biomedical amp Charge amplifiers and Chopper amplifier. Characteristics of bi Physiological effects of electric currents, Electric shock hazards and ccident prevention. Diagnostic Equipment Configuration, Vector cardiograph, Phono-cardiograph, EEG and EMC Measurement of various volumes/capacity of lungs, Spirometer. Meas I flow and blood pressure. Therapeutic Equipment	Muscular System, Electrode theory- al conductivity of 8 Hours Belifiers – Isolation omedical recorder d leakage currents, 7 Hour B Electrode system, surement of cardiac 6 Hours
Sources of b linear/nonline mathematical electrode, Ele Module:2 Operational amplifiers, C amplifiers, P Methods of a Module:3 ECG Lead C Recorders, M output, blood Module:4 Cardiac pace Dialyzer.	 ioelectric potentials, cardiovascular system, Central nervous system, ear analysis of different physiological signals (ECG, EEG, EMG), 1 analysis including Nernst equation, Goldman equation, Electric ectrodes for ECG, EEG &EMG. General Considerations of Medical Instruments Amplifiers, Bioelectric Amplifiers, Selection of biomedical amp Charge amplifiers and Chopper amplifier. Characteristics of bi Physiological effects of electric currents, Electric shock hazards and eccident prevention. Diagnostic Equipment Configuration, Vector cardiograph, Phono-cardiograph, EEG and EMC Measurement of various volumes/capacity of lungs, Spirometer. Meas I flow and blood pressure. Therapeutic Equipment Conditional control of the stimulators, diathermy 	Muscular System, Electrode theory- al conductivity of 8 Hours Belifiers – Isolation omedical recorder d leakage currents, 7 Hour G Electrode system, surement of cardiac 6 Hours y-types, ventilators,
Sources of b linear/nonline mathematical electrode, Ele Module:2 Operational amplifiers, C amplifiers, P Methods of a Module:3 ECG Lead C Recorders, M output, blood Module:4 Cardiac pace Dialyzer.	ioelectric potentials, cardiovascular system, Central nervous system, ear analysis of different physiological signals (ECG, EEG, EMG), l analysis including Nernst equation, Goldman equation, Electric ectrodes for ECG, EEG &EMG. General Considerations of Medical Instruments Amplifiers, Bioelectric Amplifiers, Selection of biomedical amp Charge amplifiers and Chopper amplifier. Characteristics of bi Physiological effects of electric currents, Electric shock hazards and accident prevention. Diagnostic Equipment Configuration, Vector cardiograph, Phono-cardiograph, EEG and EMC Measurement of various volumes/capacity of lungs, Spirometer. Meas I flow and blood pressure. Therapeutic Equipment makers, cardiac defibrillators, nerve & muscle stimulators, diathermy Medical Laboratory Instrumentation	Muscular System, Electrode theory- al conductivity of 8 Hours blifiers – Isolation omedical recorder d leakage currents, 7 Hour 5 Electrode system, surement of cardiac 6 Hours y-types, ventilators, 5 Hours
Sources of b linear/nonline mathematical electrode, Ele Module:2 Operational amplifiers, C amplifiers, P Methods of a Module:3 ECG Lead C Recorders, M output, blood Module:4 Cardiac pace Dialyzer.	 ioelectric potentials, cardiovascular system, Central nervous system, ear analysis of different physiological signals (ECG, EEG, EMG), 1 analysis including Nernst equation, Goldman equation, Electric ectrodes for ECG, EEG &EMG. General Considerations of Medical Instruments Amplifiers, Bioelectric Amplifiers, Selection of biomedical amp Charge amplifiers and Chopper amplifier. Characteristics of bi Physiological effects of electric currents, Electric shock hazards and eccident prevention. Diagnostic Equipment Configuration, Vector cardiograph, Phono-cardiograph, EEG and EMC Measurement of various volumes/capacity of lungs, Spirometer. Meas I flow and blood pressure. Therapeutic Equipment Conditional content of the stimulators, diathermy 	Muscular System, Electrode theory- al conductivity of 8 Hours blifiers – Isolation omedical recorder d leakage currents, 7 Hour 5 Electrode system, surement of cardiac 6 Hours y-types, ventilators, 5 Hours
Sources of b linear/nonline mathematical electrode, Ele Module:2 Operational amplifiers, O amplifiers, P Methods of a Module:3 ECG Lead C Recorders, M output, blood Module:4 Cardiac pace Dialyzer. Module:5 Analysis of E Module:6	 ioelectric potentials, cardiovascular system, Central nervous system, ear analysis of different physiological signals (ECG, EEG, EMG), 1 analysis including Nernst equation, Goldman equation, Electric ectrodes for ECG, EEG &EMG. General Considerations of Medical Instruments Amplifiers, Bioelectric Amplifiers, Selection of biomedical amp Charge amplifiers and Chopper amplifier. Characteristics of bi Physiological effects of electric currents, Electric shock hazards and ciccident prevention. Diagnostic Equipment Configuration, Vector cardiograph, Phono-cardiograph, EEG and EMC Measurement of various volumes/capacity of lungs, Spirometer. Meas 1 flow and blood pressure. Therapeutic Equipment makers, cardiac defibrillators, nerve & muscle stimulators, diathermy Medical Laboratory Instrumentation Blood-Measurement of pH, pO2 and pCO2 value of blood using pH/ga 	Muscular System, Electrode theory- al conductivity of 8 Hours blifiers – Isolation omedical recorder d leakage currents, 7 Hour 5 Electrode system, surement of cardiac 6 Hours y-types, ventilators, 5 Hours s analyzers 4 Hours
Sources of b linear/nonline mathematical electrode, Ele Module:2 Operational amplifiers, O amplifiers, P Methods of a Module:3 ECG Lead C Recorders, M output, blood Module:4 Cardiac pace Dialyzer. Module:5 Analysis of E Module:6 Photometers,	 ioelectric potentials, cardiovascular system, Central nervous system, ear analysis of different physiological signals (ECG, EEG, EMG), l analysis including Nernst equation, Goldman equation, Electric ectrodes for ECG, EEG &EMG. General Considerations of Medical Instruments Amplifiers, Bioelectric Amplifiers, Selection of biomedical amp Charge amplifiers and Chopper amplifier. Characteristics of bi Physiological effects of electric currents, Electric shock hazards and cicident prevention. Diagnostic Equipment Configuration, Vector cardiograph, Phono-cardiograph, EEG and EMC Measurement of various volumes/capacity of lungs, Spirometer. Meas I flow and blood pressure. Therapeutic Equipment makers, cardiac defibrillators, nerve & muscle stimulators, diathermy Medical Laboratory Instrumentation Blood-Measurement of pH, pO2 and pCO2 value of blood using pH/ga 	Muscular System, Electrode theory- al conductivity of 8 Hours blifiers – Isolation omedical recorder d leakage currents, 7 Hour 5 Electrode system, surement of cardiac 6 Hours y-types, ventilators, 5 Hours s analyzers 4 Hours

Module:7Advanced Diagnostic Techniques5 Hours2D, 3D Analysis and Visualization (X-Ray, MRI, CT), Biomedical Spectroscopy, Optical coherence
tomography, Fluorescence based Bio-detection & Bio-imaging- Case study: Telemedicine based
health care monitoring system.

Module	e:8	Contemp	orary issues:		2 hours				
			Total Lecture Hours 45 hour						
Text Bo	ook(s)							
1.			· · · · ·		P Feiffer,	'Biomedical Instru	umentation and		
1.	Me	easurements ²	', 2 nd Edition, PI	HI, 2011.					
2.				luction to biomed	ical Equip	ment Technology'	, Prentice Hall,		
2.	4^{th}	Edition, 201	11.						
Refer	ence	Books							
1.	R.	S. Khandp	ur, 'Handbook	of Biomedical In	nstrumenta	tion', Tata Mc-G	braw Hill, 2nd		
1.	edi	ition, 2014.							
2.	Jol	nn.E. Hall, (Guyton and Hal	l, Textbook of M	ledical Phy	ysiology, Saunders	s; 13 th Edition,		
۷.	20	15.							
3.	Ra	ngaraj M. Ra	angayyan, 'Bion	nedical Signal An	alysis', A	Case-Study Appro	ach, Wiley, 2 nd		
5.	Edition, 2015.								
Mode o	le of Evaluation: CAT I & II – 30%, DA I & II – 20%, Quiz – 10%, FAT – 40%					6			
Recomm	nende	ed by Board	of Studies	30/11/2015					
Approv	ed by	Academic C	Council	39 th AC	Date	17/12/2015			

EEE1011		Automated Test Engineering	g L T P J C
Pre-requisite	e e	EEE3002	Syllabus version
Anti-requisite		Nil	v. 1.10
Course Object			
	o provi	le knowledge about the testing of IC's using auto	omated Testing Equipment
(ATE).			
		ds-on in Simulation software's used to simulate t	
		wledge imparted on LabVIEW usage in PCBA to	testing for its full functional
behavi	101		
Expected Cou	urse O	utcome:	
On the comple	etion o	f this course the student will be able to:	
1. Discov	ver the	possible component faults that can occur in elect	tronic manufacturing.
	•	aults that occur in PCBs.	
•		develop practical skills involved in troubleshoot	ing.
		ous parameters involved in ATE	
		he board functional testing. nalyze the board functional Testing.	
-		he Boundary Scan and Board Testing to understa	and the equipment used in
automa			and the equipment used in
		onduct the experiments, as well as analyze and in	nterpret data
		* * *	*
		luction to PCB Assemblies:	3 Hours
		rd (PCB)-types of PCB-multilayer PCBs-Plat I	
		hnology (SMT) – Ball Grid Array (BGA)	
-		ess – Bare board testing– PCB Inspection meth	hods – Visual, Optical and X-ray
Inspection sys	stems-	Electrical tests in PCBs	
Module:2	PCBA	Troubleshoot Methods:	2 Hours
		leshoot – locating faults & Manual troubleshoot	
Fault types an	nd cau	ses in circuits – Tools and instruments for usag	ge – DMM(Digital Multimeter) –
• •		Oscilloscope) - Logic probes – Logic pulser – Lo	
Module:3	PCBA	Troubleshoot Methods:	2 Hours
Automated Te	esting of	of PCBs – Out-circuit & In-circuit test methods	- VI Trace Technique - signature
•		nctional Testing Techniques- Boundary Scan Te	
		utomated Testing – PCB diagnostic testers – Dia	<u> </u>
		nated Test Techniques:	5 Hours
Automated T	Post To	chniques – Various parameters – AC – DC	
Identify and	troub	eshoot the failures of parameters- Environ	
Identify and Requirements	troub for IC	eshoot the failures of parameters– Environ C testing – In-circuit Testing methodologies –	- Back Driving - functional test-
Identify and Requirements Digital, Analo	troub for IC og and	eshoot the failures of parameters– Environ C testing – In-circuit Testing methodologies – Mixed Signal ICs– Guarding Technique – VI	- Back Driving – functional test– Trace Technique of components –
Identify and Requirements Digital, Analo Boundary Sca	troub for IC og and an Tes	eshoot the failures of parameters– Environ C testing – In-circuit Testing methodologies – Mixed Signal ICs– Guarding Technique – VI t for components on board – In-circuit measu	- Back Driving – functional test– Trace Technique of components – arement of passive components –
Identify and Requirements Digital, Analo Boundary Sca Kelvin measur	troub for IC og and an Tes	eshoot the failures of parameters– Environ C testing – In-circuit Testing methodologies – Mixed Signal ICs– Guarding Technique – VI 7 t for components on board – In-circuit measu t – Test Fixtures – Types of Test Fixtures – Be	- Back Driving – functional test– Trace Technique of components – arement of passive components – ted of Nails Fixtures – Card Edge
Identify and Requirements Digital, Analo Boundary Sca Kelvin measur	troub for IC og and an Tes	eshoot the failures of parameters– Environ C testing – In-circuit Testing methodologies – Mixed Signal ICs– Guarding Technique – VI t for components on board – In-circuit measu	- Back Driving – functional test– Trace Technique of components – arement of passive components – ted of Nails Fixtures – Card Edge

Board Functional Test (BFT) techniques – Go-No-go Test – Cluster Test – Guided Probe Backtracking Technique – Simulators – Online and Offline Simulation - Fault Simulation– Comprehensiveness of Board program – Fault Dictionary– Analysis – BS and Non-BS device testing– BCSS– Interface adaptor or personality adaptor(Pod) - Sample board programming and testing – External Instrumentation used for board testing – PXI Instrumentation – Integration of PXI instruments.

Module:6 DFT:

Design for testability (DFT)- test issues – Fault Models — Boundary Scan Test– Self Test design – ATE for test.

Module:7 DFM:

Design for manufacturability (DFM) - Manufacturing phases in industry oriented Production process – strategies – new strategy for DFM – benefits of new strategies – ATE for manufacturing – Various applications.

Mod	lule:8	Contemp	orary issues:				2 Hours	
			-	Total Lecture Ho	ours	30 Hou		
Text	Book(s)						
1.		Sabapathi, ion, 2011.	"Test Engineer	ring for Electronic	Hardwar	re", Tata McGi	raw Hill, First	
Refe	erence B	ooks						
1.	Gor	don Rogers a	and Yon Mayhee	q , "Engineering Th	nermodyn	amics", Pearson	,2009	
2.	Floy 200	-	ndamentals of D	igital Semiconduct	or Testing	;", Pearson Edu	cation India, Sep-	
List	of Chal	lenging Exp	eriments (Indic	cative)				
1.	Function	onal Test Usi	ing Boundary Sc	can Tester			2hours	
2.	Cluster	• Test Using	Boundary Scan	Tester			2 hours	
3.	Out Ci	rcuit Functio	onal Test				2 hours	
4.	In Circ	uit Function	al Test				2 hours	
5.	QSMV	I Signature	Гest				2 hours	
6.	Scan C	hain Test					2 hours	
7.	Contin	uity Test Usi	ing Short Locate	er			2 hours	
8.	Analog	Test Using	ATE				2 hours	
9.	Parametric Testing DC and AC parameters 2 hours					2 hours		
10.	VLSI high speed Testing using ATE 2 hours					2 hours		
				Т	otal Labo	oratory Hours	20 hours	
Mod	e of Eva	luation:	CAT I & II – 3	0%, DA I & II – 20)%, Quiz	-10%, FAT -4	0%	
Reco	ommend	ed by Board	of Studies	05/03/2016				
App	roved by	Academic (Council	40 th AC	Date	18/03/2016		

4 Hours

6 Hours

EEE1018	Nano Technology Fundamentals and its Applicatio	ns L T P J C
		3 0 0 0 3
Pre-requisit	e PHY1001/PHY1701	Syllabus version
Anti-requisi		v. 1.0
Course Obj		
*	nderstand the basic concepts involved in Nanoscience	
	ain knowledge about various methods of synthesis, characterization	on and applications in
-	otechnology.	
-	ourse Outcomes: Deletion of this course the student will be able to:	
-	erstand the fundamental aspects of nanoscience	
	ify various types of nanomaterials, their properties and application	18
	pare the different nano fabrication processes	
	nesize and understand the properties & application of Carbon Nand	otubes
	acterize nanoscale particles using various characterization technique	
	erstand the limitations of current technology and advancements of	nanoscale electronic
devic		
7. Appl	y nanotechnology in photonic devices	
Module:1	Basic Concepts	8 Hours
Basic prope	rties of Conductors, Insulators and Semiconductors; Band dia	
		gram concept of typical
semiconduct	ors; Basic Chemistry Concepts; Physical aspects, Bonding,	Wave-particle duality,
semiconduct Heisenberg V		Wave-particle duality,
semiconduct Heisenberg V	ors; Basic Chemistry Concepts; Physical aspects, Bonding, Uncertainty Principle, Schrödinger wave equation, Quantum conf	Wave-particle duality,
semiconduct Heisenberg V	ors; Basic Chemistry Concepts; Physical aspects, Bonding, Uncertainty Principle, Schrödinger wave equation, Quantum conf	Wave-particle duality, Finement in 1-D, 2-D and
semiconduct Heisenberg U 3-D; Effects Module:2 Basic Types	ors; Basic Chemistry Concepts; Physical aspects, Bonding, Uncertainty Principle, Schrödinger wave equation, Quantum conf of the nanometer length scale- Change in properties. Nanomaterials of Nanostructures- Quantum wells, Quantum Wires-Carbon Nano	Wave-particle duality, Sinement in 1-D, 2-D and <u>6 Hours</u> Stubes, Nanowires;
semiconduct Heisenberg U 3-D; Effects Module:2 Basic Types	ors; Basic Chemistry Concepts; Physical aspects, Bonding, Uncertainty Principle, Schrödinger wave equation, Quantum conf of the nanometer length scale- Change in properties.	Wave-particle duality, Sinement in 1-D, 2-D and <u>6 Hours</u> Stubes, Nanowires;
semiconduct Heisenberg V 3-D; Effects Module:2 Basic Types Quantum Do	ors; Basic Chemistry Concepts; Physical aspects, Bonding, Uncertainty Principle, Schrödinger wave equation, Quantum conf of the nanometer length scale- Change in properties. Nanomaterials of Nanostructures- Quantum wells, Quantum Wires-Carbon Nano ots, Nanoclusters; Nanoparticles- Colloidal nanoparticle crystals, F	Wave-particle duality, Finement in 1-D, 2-D and 6 Hours otubes, Nanowires;
semiconduct Heisenberg V 3-D; Effects Module:2 Basic Types Quantum Do nanoparticles	ors; Basic Chemistry Concepts; Physical aspects, Bonding, Uncertainty Principle, Schrödinger wave equation, Quantum conf of the nanometer length scale- Change in properties. Nanomaterials of Nanostructures- Quantum wells, Quantum Wires-Carbon Nano ots, Nanoclusters; Nanoparticles- Colloidal nanoparticle crystals, F	Wave-particle duality, Enement in 1-D, 2-D and <u>6 Hours</u> Stubes, Nanowires; Functionalized
semiconduct Heisenberg V 3-D; Effects Module:2 Basic Types Quantum Do nanoparticles Module:3	ors; Basic Chemistry Concepts; Physical aspects, Bonding, Uncertainty Principle, Schrödinger wave equation, Quantum conf of the nanometer length scale- Change in properties. Nanomaterials of Nanostructures- Quantum wells, Quantum Wires-Carbon Nano ots, Nanoclusters; Nanoparticles- Colloidal nanoparticle crystals, F s Fabrication Methods	Wave-particle duality, Einement in 1-D, 2-D and 6 Hours otubes, Nanowires; Functionalized 5 Hours
semiconduct Heisenberg U 3-D; Effects Module:2 Basic Types Quantum Do nanoparticles Module:3 Top-down pr	ors; Basic Chemistry Concepts; Physical aspects, Bonding, Uncertainty Principle, Schrödinger wave equation, Quantum conf of the nanometer length scale- Change in properties. Nanomaterials of Nanostructures- Quantum wells, Quantum Wires-Carbon Nano ots, Nanoclusters; Nanoparticles- Colloidal nanoparticle crystals, F s Fabrication Methods rocesses, Bottom-up processes, Nanolithography techniques, Arc	Wave-particle duality, Einement in 1-D, 2-D and 6 Hours otubes, Nanowires; Functionalized 5 Hours
semiconduct Heisenberg U 3-D; Effects Module:2 Basic Types Quantum Do nanoparticles Module:3 Top-down pr	ors; Basic Chemistry Concepts; Physical aspects, Bonding, Uncertainty Principle, Schrödinger wave equation, Quantum conf of the nanometer length scale- Change in properties. Nanomaterials of Nanostructures- Quantum wells, Quantum Wires-Carbon Nano ots, Nanoclusters; Nanoparticles- Colloidal nanoparticle crystals, F s Fabrication Methods	Wave-particle duality, Einement in 1-D, 2-D and 6 Hours otubes, Nanowires; Functionalized 5 Hours
semiconduct Heisenberg U 3-D; Effects Module:2 Basic Types Quantum Do nanoparticles Module:3 Top-down pr Ablaton met	ors; Basic Chemistry Concepts; Physical aspects, Bonding, Uncertainty Principle, Schrödinger wave equation, Quantum conf of the nanometer length scale- Change in properties. Nanomaterials of Nanostructures- Quantum wells, Quantum Wires-Carbon Nano ots, Nanoclusters; Nanoparticles- Colloidal nanoparticle crystals, F s Fabrication Methods rocesses, Bottom-up processes, Nanolithography techniques, Arc hod, Ion Implantation, Chemical Vapour deposition.	Wave-particle duality, Finement in 1-D, 2-D and 6 Hours otubes, Nanowires; Functionalized 5 Hours discharge method, Laser
semiconduct Heisenberg V 3-D; Effects Module:2 Basic Types Quantum Do nanoparticles Module:3 Top-down pr Ablaton met	ors; Basic Chemistry Concepts; Physical aspects, Bonding, Uncertainty Principle, Schrödinger wave equation, Quantum conf of the nanometer length scale- Change in properties. Nanomaterials of Nanostructures- Quantum wells, Quantum Wires-Carbon Nano ots, Nanoclusters; Nanoparticles- Colloidal nanoparticle crystals, F s Fabrication Methods rocesses, Bottom-up processes, Nanolithography techniques, Arc hod, Ion Implantation, Chemical Vapour deposition. Carbon Nanotubes & its applications	Wave-particle duality, Einement in 1-D, 2-D and 6 Hours otubes, Nanowires; Functionalized 5 Hours discharge method, Laser 6 Hours
semiconduct Heisenberg U 3-D; Effects Module:2 Basic Types Quantum Do nanoparticles Module:3 Top-down pr Ablaton met Module:4 Synthesis of	ors; Basic Chemistry Concepts; Physical aspects, Bonding, Uncertainty Principle, Schrödinger wave equation, Quantum conf of the nanometer length scale- Change in properties. Nanomaterials of Nanostructures- Quantum wells, Quantum Wires-Carbon Nano ots, Nanoclusters; Nanoparticles- Colloidal nanoparticle crystals, F s Fabrication Methods rocesses, Bottom-up processes, Nanolithography techniques, Arc hod, Ion Implantation, Chemical Vapour deposition. Carbon Nanotubes & its applications CNTs, Electronic properties, Mechanical properties; Applications	Wave-particle duality, Einement in 1-D, 2-D and 6 Hours otubes, Nanowires; Functionalized 5 Hours discharge method, Laser 6 Hours
semiconduct Heisenberg U 3-D; Effects Module:2 Basic Types Quantum Do nanoparticles Module:3 Top-down pr Ablaton met Module:4 Synthesis of	ors; Basic Chemistry Concepts; Physical aspects, Bonding, Uncertainty Principle, Schrödinger wave equation, Quantum conf of the nanometer length scale- Change in properties. Nanomaterials of Nanostructures- Quantum wells, Quantum Wires-Carbon Nano ots, Nanoclusters; Nanoparticles- Colloidal nanoparticle crystals, F s Fabrication Methods rocesses, Bottom-up processes, Nanolithography techniques, Arc hod, Ion Implantation, Chemical Vapour deposition. Carbon Nanotubes & its applications	Wave-particle duality, Einement in 1-D, 2-D and 6 Hours otubes, Nanowires; Functionalized 5 Hours discharge method, Laser 6 Hours
semiconduct Heisenberg U 3-D; Effects Module:2 Basic Types Quantum Do nanoparticles Module:3 Top-down pr Ablaton met Module:4 Synthesis of	ors; Basic Chemistry Concepts; Physical aspects, Bonding, Uncertainty Principle, Schrödinger wave equation, Quantum conf of the nanometer length scale- Change in properties. Nanomaterials of Nanostructures- Quantum wells, Quantum Wires-Carbon Nano ots, Nanoclusters; Nanoparticles- Colloidal nanoparticle crystals, F s Fabrication Methods rocesses, Bottom-up processes, Nanolithography techniques, Arc hod, Ion Implantation, Chemical Vapour deposition. Carbon Nanotubes & its applications CNTs, Electronic properties, Mechanical properties; Applications	Wave-particle duality, Finement in 1-D, 2-D and 6 Hours otubes, Nanowires; Functionalized 5 Hours discharge method, Laser 6 Hours s- CNTs as interconnects,
semiconduct Heisenberg U 3-D; Effects Module:2 Basic Types Quantum Do nanoparticles Module:3 Top-down pr Ablaton met Module:4 Synthesis of CNTFETs, C Module:5	ors; Basic Chemistry Concepts; Physical aspects, Bonding, Uncertainty Principle, Schrödinger wave equation, Quantum conf of the nanometer length scale- Change in properties. Nanomaterials	Wave-particle duality, Einement in 1-D, 2-D and 6 Hours otubes, Nanowires; Functionalized 5 Hours discharge method, Laser 6 Hours s- CNTs as interconnects, 8 Hours
semiconduct Heisenberg U 3-D; Effects Module:2 Basic Types Quantum Do nanoparticles Module:3 Top-down pr Ablaton met Module:4 Synthesis of CNTFETs, C Module:5 Classificatio	ors; Basic Chemistry Concepts; Physical aspects, Bonding, Uncertainty Principle, Schrödinger wave equation, Quantum conf of the nanometer length scale- Change in properties. Nanomaterials	Wave-particle duality, Finement in 1-D, 2-D and 6 Hours Monthes, Nanowires; Functionalized 5 Hours discharge method, Laser 6 Hours s- CNTs as interconnects, 8 Hours iques-Light Microscopy,
semiconduct Heisenberg U 3-D; Effects Module:2 Basic Types Quantum Do nanoparticles Module:3 Top-down pr Ablaton met Module:4 Synthesis of CNTFETs, C Module:5 Classificatio Principle &	ors; Basic Chemistry Concepts; Physical aspects, Bonding, Uncertainty Principle, Schrödinger wave equation, Quantum conf of the nanometer length scale- Change in properties. Nanomaterials of Of Nanostructures- Quantum wells, Quantum Wires-Carbon Nano ots, Nanoclusters; Nanoparticles- Colloidal nanoparticle crystals, F S Fabrication Methods rocesses, Bottom-up processes, Nanolithography techniques, Arc hod, Ion Implantation, Chemical Vapour deposition. Carbon Nanotubes & its applications CNTs, Electronic properties, Mechanical properties; Applications CNTs for solar cell and energy storage applications n of characterization methods, Different Microscopy techni	Wave-particle duality, Einement in 1-D, 2-D and 6 Hours otubes, Nanowires; Functionalized 5 Hours discharge method, Laser 6 Hours s- CNTs as interconnects, s- CNTs as interconnects, gques-Light Microscopy, opy (SEM), Principle &
semiconduct Heisenberg V 3-D; Effects Module:2 Basic Types Quantum Do nanoparticles Module:3 Top-down pt Ablaton meth Module:4 Synthesis of CNTFETs, C Module:5 Classificatio Principle & Resolution,	ors; Basic Chemistry Concepts; Physical aspects, Bonding, Uncertainty Principle, Schrödinger wave equation, Quantum conf of the nanometer length scale- Change in properties. Nanomaterials of of Nanostructures- Quantum wells, Quantum Wires-Carbon Nano ots, Nanoclusters; Nanoparticles- Colloidal nanoparticle crystals, F s Fabrication Methods rocesses, Bottom-up processes, Nanolithography techniques, Arc hod, Ion Implantation, Chemical Vapour deposition. Carbon Nanotubes & its applications CNTs, Electronic properties, Mechanical properties; Applications CNTs for solar cell and energy storage applications n of characterization methods, Different Microscopy techni Resolution, Electron Microscopy- Scanning Electron Microscopy	Wave-particle duality, Einement in 1-D, 2-D and 6 Hours otubes, Nanowires; Functionalized 5 Hours discharge method, Laser 6 Hours s- CNTs as interconnects, s- CNTs as interconnects, gques-Light Microscopy, opy (SEM), Principle &

Mod	lule:6	Nanoelectronics			5 Ho	urs
Si T	echnolog	gy and its limitations, N	Vanoscale De	vices, Single	Electron Devices, Organic Field-eff	fect
trans	sistors, S	pintronics.				
Mod	lule:7	Nanophotonics			8 Ho	urs
Phot	tonic Cry	stals and their application	ons, Plasmoni	cs, Near field	optics, Q-Dot Lasers	
Mod	lule:8	Contemporary issue	s:		2 Ho	urs
			Total Le	cture Hours	45 Ho	urs
Text	t Book(s))				
1	Jeremy	J. Ramsden, Nanotechn	ology-An Inti	oduction, Sec	ond Edition, Elseiver, 2016	
2	Amreta	shis Sengupta, Chandan	Kumar Sarka	ur (Eds.) "Intro	duction to Nano-Basics to	
	Nanosc	ience and Nanotechnolo	gy", Springer	, 2015		
Refe	erence B					
1	Chri	s Binns, "Introduction t	to Nanoscienc	e and Nanoted	chnology", Wiley, 2010	
Mod	le of Eva	luation: CAT / Assignm	ent / Quiz / F	AT / Project /	Seminar	
Reco	ommende	ed by Board of Studies		05/03/2016		
App	roved by	Academic Council	47 th AC	Date	05/10/2017	

EEE1020		Engineering Optimization	L	T P	J	С
			2	2 0	4	4
Pre-requisit	e	Nil	Syl	labu	s ve	rsion
Anti-requisi		Nil			V	7. 1.1
Course Obj						
		and learning of engineering optimization concepts applied acrongineering curriculum	oss the	spe	ctrur	n of
Expected Co	ourse C	utcome:				
On the comp	oletion o	f each module the student will be able to:				
		he basic concepts of engineering optimization				
		1- D search methods in optimization				
		ent based optimization method for various algorithms and analyze systems using conjugate direction methods				
		analyze dynamic optimization techniques				
		matics and science in engineering applications				
		genetic algorithm and PSO algorithm				
8. Desig	gn a con	ponent or a product applying all the relevant standards with re-	alistic	cons	train	its
Module:1	Class	cal Optimization basics			7 H	ours
		le-variable optimization, Multivariable optimization without a	nd with	n eai		
		s, Definitness of matrices, Sylvester's criterion, Convex progra				
1 2				21		
Module:2	1 D			1	– T1	
110uult.2	1-D S	earch methods			5 H	lours
		ch, Fibonacci Search, Inexact line search.			5 H	ours
	ion Sea	ch, Fibonacci Search, Inexact line search.		 		lours
Golden Secti Module:3	ion Sear		g-Mar	quai	7 H	
Golden Secti Module:3	ion Sear	ch, Fibonacci Search, Inexact line search. ent based optimization	g-Mar	quai	7 H	
Golden Secti Module:3 Gradient des algorithm.	Gradi	ch, Fibonacci Search, Inexact line search. ent based optimization thod, method of steepest descent, Newton's Method, Levenber	g-Mar	quai	7 H dt	ours
Golden Secti Module:3 Gradient des algorithm. Module:4	Gradi Gradi cent me	ch, Fibonacci Search, Inexact line search. ent based optimization thod, method of steepest descent, Newton's Method, Levenber gate Direction Methods:			7 H dt 7 H	ours
Golden Secti Module:3 Gradient des algorithm. Module:4 Conjugate di	Gradi Gradi cent me Conju rections	ch, Fibonacci Search, Inexact line search. ent based optimization thod, method of steepest descent, Newton's Method, Levenber			7 H dt 7 H	ours
Golden Secti Module:3 Gradient des algorithm. Module:4	Gradi Gradi cent me Conju rections hms.	ch, Fibonacci Search, Inexact line search. ent based optimization thod, method of steepest descent, Newton's Method, Levenber gate Direction Methods:			7 H dt 7 H naly	ours
Golden Secti Module:3 Gradient des algorithm. Module:4 Conjugate di of all algorith Module:5	Gradi cent me Conju rections hms. Misce	ch, Fibonacci Search, Inexact line search. ent based optimization thod, method of steepest descent, Newton's Method, Levenber gate Direction Methods: and conjugate gradient method, Fletcher-Reeves formula. Con	verger	nce a	7 H odt 7 H analy 6 H	ours ours sis ours
Golden Secti Module:3 Gradient des algorithm. Module:4 Conjugate di of all algorith Module:5	Gradi cent me Conju rections hms. Misce	ch, Fibonacci Search, Inexact line search. ent based optimization thod, method of steepest descent, Newton's Method, Levenber gate Direction Methods: and conjugate gradient method, Fletcher-Reeves formula. Con llaneous topics ing. Dynamic optimization. Sample applications of gradient bas	verger	nce a	7 H odt 7 H analy 6 H	ours ours sis
Golden Secti Module:3 Gradient des algorithm. Module:4 Conjugate di of all algorith Module:5 Dynamic pro- free methods	Gradi cent me Conju rections hms. Misce ogramm s in engi	ch, Fibonacci Search, Inexact line search. ent based optimization thod, method of steepest descent, Newton's Method, Levenber gate Direction Methods: and conjugate gradient method, Fletcher-Reeves formula. Con llaneous topics ing. Dynamic optimization. Sample applications of gradient bas neering.	verger	nce a	7 H odt 7 H analy 6 H dien	ours ours sis ours t
Golden Secti Module:3 Gradient des algorithm. Module:4 Conjugate di of all algorith Module:5 Dynamic pro free methods Module:6	Gradi cent me Conju rections hms. Misce ogramm s in engi	ch, Fibonacci Search, Inexact line search. ent based optimization thod, method of steepest descent, Newton's Method, Levenber gate Direction Methods: and conjugate gradient method, Fletcher-Reeves formula. Con llaneous topics ing. Dynamic optimization. Sample applications of gradient bas neering. cation of optimization methods to neural networks	verger	nce a	7 H dt 7 H naly 6 H dien	ours ours sis ours
Golden Secti Module:3 Gradient des algorithm. Module:4 Conjugate di of all algorith Module:5 Dynamic pro free methods Module:6 NN basics, c	Gradi cent me Conju rections hms. Misce ogramm s in engi apabilit	ch, Fibonacci Search, Inexact line search. ent based optimization thod, method of steepest descent, Newton's Method, Levenber gate Direction Methods: and conjugate gradient method, Fletcher-Reeves formula. Con llaneous topics ing. Dynamic optimization. Sample applications of gradient bas neering. cation of optimization methods to neural networks ies and limitations of single perceptron, multilayer perceptron.	verger	nce a	7 H dt 7 H naly 6 H dien	ours ours sis ours t
Golden Secti Module:3 Gradient des algorithm. Module:4 Conjugate di of all algorith Module:5 Dynamic pro free methods Module:6 NN basics, c	Gradi cent me Conju rections hms. Misce ogramm s in engi apabilit	ch, Fibonacci Search, Inexact line search. ent based optimization thod, method of steepest descent, Newton's Method, Levenber gate Direction Methods: and conjugate gradient method, Fletcher-Reeves formula. Con llaneous topics ing. Dynamic optimization. Sample applications of gradient bas neering. cation of optimization methods to neural networks	verger	nce a	7 H dt 7 H naly 6 H dien	ours ours sis ours t
Golden Secti Module:3 Gradient des algorithm. Module:4 Conjugate di of all algorith Module:5 Dynamic pro free methods Module:6 NN basics, c	Gradi cent me Conju rections hms. Misce ogramm s in engi apabilit ed and g	ch, Fibonacci Search, Inexact line search. ent based optimization thod, method of steepest descent, Newton's Method, Levenber gate Direction Methods: and conjugate gradient method, Fletcher-Reeves formula. Con llaneous topics ing. Dynamic optimization. Sample applications of gradient bas neering. cation of optimization methods to neural networks ies and limitations of single perceptron, multilayer perceptron.	verger	nce a	7 H rdt 7 H maly 6 H dien 5 H	ours ours sis ours t
Golden Secti Module:3 Gradient des algorithm. Module:4 Conjugate di of all algorith Module:5 Dynamic pro free methods Module:6 NN basics, c gradient base	Gradi cent me Conju rections hms. Misce ogramm s in engi apabilit ed and g Gradi	ch, Fibonacci Search, Inexact line search. ent based optimization thod, method of steepest descent, Newton's Method, Levenber gate Direction Methods: and conjugate gradient method, Fletcher-Reeves formula. Con llaneous topics ing. Dynamic optimization. Sample applications of gradient bas neering. cation of optimization methods to neural networks ies and limitations of single perceptron, multilayer perceptron. ' radient free methods.	verger sed and	nce a a a a a a a a a a a a a a a a a a a	7 H odt 7 H inaly 6 H dien 5 H	ours sis ours t
Golden Secti Module:3 Gradient des algorithm. Module:4 Conjugate di of all algorith Module:5 Dynamic pro free methods Module:6 NN basics, c gradient base Module:7 Direct and in	Gradi cent me Conju rections hms. Misce ogramm s in engi apabilit ed and g Gradi direct r	ch, Fibonacci Search, Inexact line search. ent based optimization thod, method of steepest descent, Newton's Method, Levenber gate Direction Methods: and conjugate gradient method, Fletcher-Reeves formula. Con llaneous topics ing. Dynamic optimization. Sample applications of gradient bas neering. cation of optimization methods to neural networks ies and limitations of single perceptron, multilayer perceptron. ' radient free methods.	verger sed and Frainin	nce a a a a a a a a a a a a a a a a a a a	7 H odt 7 H inaly 6 H dien 5 H	ours sis ours t

			Total	Lecture hours:	45 hours
Text H	Book				
1.	Introduction to Optimization b	y Chong and Zak	, John Wile	y & Sons, Inc., IV Ed	d., 2013.
Refere	ence Books				
1.	Engineering Optimization, The	eory and Practice	by S S Rao,	John Wiley & Sons	, Inc., IV Ed.,
	2009.				
2.	Practical Methods of Optimiza	tion, by Fletcher,	John Wile	y & Sons, Inc., II Ed	., 2006
	Current literature.				
Mode	of Evaluation: CAT / Assignmen	t / Quiz / FAT / F	Project / Sem	ninar	
Recon	nmended by Board of Studies	17/08/2017			
Appro	ved by Academic Council	47 th AC	Date	05/10/2017	

EEE2006		(Deemed to be University under section 3 of UGC Act, 1956) Communication Engineering	L	Т	ΡJ	C
2000						_
Due neguiait		EEE1005	-	_		
Pre-requisit		EEE1005 Nil	Syllal	bus		
Anti-requisi					۷.	2.0
Course Obj		dents with the knowledge of analog and digital communication	on on air	r	na	
	amental		on engi	leen	ng	
		s. students various communication systems and its analysis & a	annlicat	ione		
		basic understanding of appropriate tools and technologies to d		10115		
-		ion-engineering solutions.	levelop			
Expected Co	ourse (Dutcome:				
•		of this course the student will be able to:				
1		e the need for modulation.				
2. Exam	nine the	presence of noise in communication systems.				
3. Anal	lyze mo	odulation techniques for analog and digital Signals.				
	0	smitters and receivers for communication systems				
		ous shift keying techniques.				
		e spread spectrum techniques and channel assignment strateg	ies.			
		d design modern communication systems.				
8. Desig	gn and G	Conduct experiments, as well as analyze and interpret data				
Module:1	Intro	duction to Communication System		6	Ho	urs
		tems: Introduction, need, importance, elements, block diagra	m and 1			
	-	ncy ranges – bandwidth– pre-emphasis and de-emphasis –mo				
	-	of electronic communications.	auluioi	ii uii	. 105	
Module:2	Noise	in CW Modulation System		4	Но	urs
		ernal noise – noise voltage – signal-to-noise ratio– noise figur	e – nois		-	
		in CW modulation systems.				
1						
Module:3	Ampl	itude Modulation		8	Ho	urs
Representation	on and	generation of analog modulation systems including AM, SSB	B, DSB,	VSB	_	
frequency sp	ectrum	, power relation-different types of modulators - AM transmi	itter: lov	w lev	/el a	nd
high level me	odulatio	on – SSB transmitter – AM demodulators: Square-law detector	or, enve	lope		
detector, rect	tifier de	etector, synchronous detector – characteristics of receivers – S	Super he	etero	dyn	e
principle – A	M supe	er heterodyne receiver – SSB receiver – comparison of differe	ent AM	syst	ems	•
Module:4		e Modulation:			Ho	
-		generation of frequency and phase modulation (FM and PI	-			
		-FM transmitters $-comparison$ of AM and FM $-comparison$				
		PM and PM to FM – TRF Receivers – Choice of IF and os				
		M super heterodyne receiver- slope detectors - HF Commun	nication	Rec	eive	er –
diversity rece	eption.					

Modu	ule•5	(Deemed to be University under section 3 of UGC Act, 1956) Pulse Modulation Systems	5 Hours
		ations– sampling theorem – pulse amplitude modulation– pulse wid	
		n modulation – signal to noise ratio of pulse modulation systems – de	
-	-	odulation – signal to holse failo of pulse modulation systems – u	
puise		loculation	
Modu	ule:6	Digital modulation systems	5 Hours
		shift keying – frequency shift keying – phase shift keying –	
-		s of digital communication systems.	and anonges and
	0	5	
Modu	ule:7	Cellular concept	5 Hours
		gnment strategies – interference and system capacity – spread spectr	um modulation –
		ace spread spectrum – Frequency hop spread spectrum – code divisio	
		rireless communication – Broadband integrated services network.	
Modu	ule:8	Contemporary issues:	2 Hours
		Total Lecture Hours	45 Hours
Text	Book(s		
1.	Sim	on Haykin; Michael Moher, "An Introduction to Analog	and Digital
		nmunications.", Hoboken : Wiley Textbooks, 2012.	
2.	Leo	n W Couch, "Digital and analog communication systems", Upper	Saddle River,
		Prentice Hall, 2013	
3.		paport T.S., "Wireless Communications", Pearson Education, 2010.	
Refer	rence B	ooks	
1.		pert Taub; Donald L Schilling; Goutam Saha, "Principles of c	ommunication
		ems", New Delhi : McGrew Hill Education, 2013.	
2.		njee Prasad, "OFDM for wireless communications systems", Bos	ston; London:
		ch House, 2004.	
3.	-	ne Tomasi, "Electronic Communication Systems – Fundame	ntals through
		anced", 4th edition, Pearson Education, 2005.	
4.		G Proakis; Masoud Salehi, "Digital Communication", 5th edi	tion, New York
~		Graw-Hill 2014.	
5.		nedy and Davis, "Electronic Communication Systems", 4th edition	n, 1 ata McGraw
Med		, 2008.	
wide	OI EVa	luation: CAT / Assignment / Quiz / FAT / Project / Seminar	
List a	of Chai	langing Exportments (Indicative)	
		lenging Experiments (Indicative) ude Modulation	2 hours
	-	phasis and De-Emphasis	2 hours
		Amplitude Modulation	2 hours
		Vidth Modulation	2 hours
		ncy Modulation/Mixer	2 hours
		tion of Shift Keying Methods	2 hours
		SB Modulation and Detection	2 hours
		PM Modulation and Detection	2 hours
0.	1 IVI all		

9.	Pulse Code Modulation and	Delta Modulatio	on		2 hours
10.	10.Generation and Detection of spread spectrum2 hours				
			Total L	aboratory Hours	30 hours
Mod	le of Evaluation: CAT / Assig	nment / Quiz / F	FAT / Project	/ Seminar	
Reco	ommended by Board of Studie	es	30/11/2015		
App	roved by Academic Council	39 th AC	Date	17/12/2015	

EEE	3005	Design of Electrical Apparatus	L T P J C 2 0 0 4 3
Pre-	requisite	EEE2003	Syllabus version
Anti	-requisite	Nil	v. 1.0
Cou	rse Objectives:		
1.	Apply theoret	ical concepts in designing electrical machines.	
2.	Select approp	riate values for designing electrical machines.	
3.	Estimate the r	machine performance based on the design outcome by data int	erpretation
Expe	ected Course C	Outcome:	
On th	ne completion of	of this course the student will be able to:	
1	. Determine e	electric and magnetic field strengths and their effects in and ar	ound electrical
	machinery, i	ncluding effects of magnetic induction on moving parts.	
2	. Design state using design	or and rotor parts of the d.c machines and predict the performative values.	ince of DC machine
3	0 0	nsformer and estimates its performance as per the requirement	ts and constraints

- 4. Design the stator and cage rotor of an Induction machine.
- 5. Design the wound rotor of induction machine.
- 6. Calculate the main dimension and air gap length of Synchronous Machines.
- 7. Design the stator and cage rotor of Synchronous Machines.
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1 **Magnetic Circuits and Cooling of Electrical Machines:**

Concept of magnetic circuit - MMF calculation for various types of electrical machines - real and apparent flux density of rotating machines – leakage reactance calculation for transformers, induction and synchronous machine - thermal rating: continuous, short time and intermittent short time rating of electrical machines-direct and indirect cooling methods - cooling of turbo alternators

Module:2 **D.C.** Machines

Constructional details - output equation - main dimensions - choice of specific loadings - choice of number of poles – armature design – design of field poles and field coil – design of commutator and brushes - losses and efficiency calculations.

Transformers Module:3

Constructional details of core and shell type transformers – output rating of single phase and three phase transformers -design of core, yoke and windings for core and shell type transformers equivalent circuit parameter from designed data – losses and efficiency calculations – design of tank and cooling tubes of transformers.

Module:4 **Squirrel Cage Induction Motors**

Constructional details of squirrel cage motor - output equation - main dimensions - choice of specific loadings – design of stator – design of squirrel cage rotor – equivalent circuit parameters from designed data – losses and efficiency calculations. **3 Hours**

Module:5 **Slip Ring Induction Motors**

5 Hours

4 Hours

5 Hours

4 Hours

Constructional details of slip ring motor – output equation – main dimensions – choice of specific loadings – design of stator – design of slip ring rotor – equivalent circuit parameters from designed data – losses and efficiency calculations. slip ring design - effect of skewing

Module:6 General Aspects of Synchronous Machines

4 Hours

Constructional details of cylindrical pole and salient pole alternators – output equation – choice of specific loadings – main dimensions – short circuit ratio

Module	e:7	Design of Synchronous M	lachines			3 Hours
Design	of Sy	nchronous Machines: of sta	tor and rotor of c	ylindrical j	pole and salient p	ole machines -
-		d coil - performance calcu	lation from desig	ned data -	introduction to c	computer aided
design.						
Module	e:8	Contemporary issues:				2 Hours
				Total	Lecture Hours	30 Hours
Text Bo	ook(s)					
1.	A.K	Sawhney, 'A Course in	Electrical Machir	ne Design'	, Dhanpat Rai a	nd Sons, New
		i, 2012.				
2.		Sen, 'Principles of Electri		0	Computer Program	nmes', Oxford
		IBH Publishing Co. Pvt Ltd.	., New Delhi, 201	0.		
Referen						
1.		Agarwal, 'Principles of I	Electrical Machin	e Design'	, S.K.Kataria and	d Sons, Delhi,
	2012					
2.		Mittle and A. Mittle, 'Desi	gn of Electrical M	lachines', S	Standard Publicat	ions and
		ributors, Delhi, 2010.				
3.		.Deshpande, "Design and	Testing of Electr	ical Machi	nes" Eastern Eco	onomy Edition,
	2011					
4.		.Say, "Performance and De	sign of Alternation	ng Current	Machines" CBS	Publisher, 3rd
		ion 2010.				
5.	•	ton and Hancock, "Perform	0			, 2010.
Mode o	f Eva	luation: CAT / Assignment /	/ Quiz / FAT / Pro	ject / Semi	inar	
Recom	nende	ed by Board of Studies	29/05/2015			
Approv	ed by	Academic Council	37 th AC	Date	16/06/2015	

				L T P J C
EEE3006		Special Electrical Machir	nes	
Pre-requisite		EEE2003		Syllabus version
Anti-requisit		Nil		
Course Obje				
1. To im	ipart kno	owledge on special type electrical machines	and their import	tance.
Expected Co	ourse O	itcome:		
On the compl	letion of	this course the student will be able to:		
		d the properties of permanent magnetic mat		
		ne performance of stepper motor and design		
		h switched reluctance motor from synchron		
		quare wave and sine wave permanent magne	et brushless mot	for drives.
		end various linear motors		
		he advanced synchronous motor appropriate drive for controlling the operati	one of enabled	lectrical machines
7. 50		appropriate drive for controlling the operation	ons of special ci	
Module:1	Stonn			6 Hours
	Steppe	er Motors:		0 110015
Constructiona		er Motors: rres-principle of operation types and toro	que equations-n	
	al Featu			nodes of excitation,
	al Featu	res-principle of operation types and tore		nodes of excitation,
characteristics applications.	al Featu s, drive	res-principle of operation types and tore c circuits, and microprocessor control of ste		nodes of excitation, oncept of lead angle,
characteristics applications. Module:2	al Featu s, drive Switch	res-principle of operation types and tord r circuits, and microprocessor control of ste ed Reluctance Motors:	epper motors, co	nodes of excitation, oncept of lead angle, 7 Hours
characteristics applications. Module:2 Constructiona	al Featu s, driver Switch al featur methoo	res-principle of operation types and tore c circuits, and microprocessor control of ste	epper motors, co	nodes of excitation, oncept of lead angle, 7 Hours converters and their
characteristics applications. Module:2 Constructiona controllers – control applic	al Featu s, driver Switch al featur methoc cations.	ed Reluctance Motors: re – principle of operation – torque produstion sensing sensor less of	epper motors, co	nodes of excitation, oncept of lead angle, 7 Hours converters and their eristics- closed loop
characteristics applications. Module:2 Constructiona controllers – control applic Module:3	al Featu s, driver Switch al featur method cations. Synch	res-principle of operation types and tord r circuits, and microprocessor control of standard ed Reluctance Motors: re – principle of operation – torque produ- ls of rotor position sensing sensor less op ronous Reluctance Motors:	uction –Power peration-charact	nodes of excitation, oncept of lead angle, 7 Hours converters and their eristics- closed loop 6 Hours
characteristics applications. Module:2 Constructiona controllers – control applic Module:3 Constructiona	Switch al featur al featur methoc cations.	res-principle of operation types and tord r circuits, and microprocessor control of standard ed Reluctance Motors: re – principle of operation – torque produ- ls of rotor position sensing sensor less op ronous Reluctance Motors:	uction –Power peration-charact	nodes of excitation, oncept of lead angle, 7 Hours converters and their eristics- closed loop 6 Hours
characteristics applications. Module:2 Constructiona controllers – control applic Module:3 Constructiona equation – Ph	Switch al featur al featur methoc cations. Synchr al featur asor dia	ed Reluctance Motors: re – principle of operation – torque produces re – principle of operation – torque produces re of rotor position sensing sensor less operation re -Axial and Radial flux motor- operation re -performance characteristics -applica	uction –Power peration-charact	nodes of excitation, oncept of lead angle, 7 Hours converters and their eristics- closed loop <u>6 Hours</u> s-voltage and torque
characteristics applications. Module:2 Constructiona controllers – control applic Module:3 Constructiona equation – Ph Module:4	al Featu s, driver Switch al featur method cations. Synch al featur nasor dia	res-principle of operation types and tord r circuits, and microprocessor control of state ed Reluctance Motors: re – principle of operation – torque produits s of rotor position sensing sensor less of re -Axial and Radial flux motor- oper argramperformance characteristics -applica nent Magnet Brushless DC Motors:	uction –Power peration-charact ating principles tions.	nodes of excitation, oncept of lead angle, 7 Hours converters and their eristics- closed loop <u>6 Hours</u> s-voltage and torque 7 Hours
characteristics applications. Module:2 Constructiona controllers – control applic Module:3 Constructiona equation – Ph Module:4 Permanent M	al Featu s, driver Switch al featur method cations. Synchu al featur nasor dia Perma fagnet m	res-principle of operation types and tord r circuits, and microprocessor control of state ed Reluctance Motors: re – principle of operation – torque produits s of rotor position sensing sensor less operation re -Axial and Radial flux motor- operation agramperformance characteristics -applica nent Magnet Brushless DC Motors: aterials-Magnet Characteristics-Permeance	epper motors, co uction –Power peration-charact ating principles tions.	nodes of excitation, oncept of lead angle, 7 Hours converters and their eristics- closed loop 6 Hours s-voltage and torque 7 Hours nanent magnet Vs.
characteristics applications. Module:2 Constructiona controllers – control applic Module:3 Constructiona equation – Ph Module:4 Permanent M Electromagne	Switch al featur methoc cations. Synchr al featur nasor dia Perma fagnet met. Magr	res-principle of operation types and tord r circuits, and microprocessor control of state ed Reluctance Motors: re – principle of operation – torque produits s of rotor position sensing sensor less operation re -Axial and Radial flux motor- operation argramperformance characteristics -applica nent Magnet Brushless DC Motors: aterials-Magnet Characteristics-Permeance operation circuit analysis – EMF and torque equation	epper motors, co uction –Power peration-charact ating principles tions.	nodes of excitation, oncept of lead angle, 7 Hours converters and their eristics- closed loop 6 Hours s-voltage and torque 7 Hours nanent magnet Vs.
characteristics applications. Module:2 Constructiona controllers – control applic Module:3 Constructiona equation – Ph Module:4 Permanent M Electromagne Converter and	al Featu s, driver Switch al featur method cations. Synchr al featur hasor dia Perma fagnet m et. Magr d their c	res-principle of operation types and tord r circuits, and microprocessor control of stand ed Reluctance Motors: re – principle of operation – torque produ- ls of rotor position sensing sensor less op ronous Reluctance Motors: re -Axial and Radial flux motor- oper agramperformance characteristics -applica nent Magnet Brushless DC Motors: aterials-Magnet Characteristics-Permeance of the circuit analysis – EMF and torque equation ontrollers – Characteristics – Applications.	epper motors, co uction –Power peration-charact ating principles tions.	nodes of excitation, oncept of lead angle, 7 Hours converters and their eristics- closed loop 6 Hours s-voltage and torque 7 Hours hanent magnet Vs. tation – Power
characteristics applications. Module:2 Constructiona controllers – control applic Module:3 Constructiona equation – Ph Module:4 Permanent M Electromagne Converter and Module:5	al Featu s, driver Switch al featur method cations. Synchr al featur hasor dia Perma fagnet m et. Magr d their c Perma	res-principle of operation types and torder circuits, and microprocessor control of state red Reluctance Motors: re – principle of operation – torque produles of rotor position sensing sensor less of ronous Reluctance Motors: re -Axial and Radial flux motor- oper agramperformance characteristics -applica nent Magnet Brushless DC Motors: aterials-Magnet Characteristics-Permeance of netic circuit analysis – EMF and torque equation ontrollers – Characteristics – Applications. nent Magnet Synchronous Motors:	epper motors, co uction –Power peration-charact ating principles tions.	nodes of excitation, oncept of lead angle, 7 Hours converters and their ceristics- closed loop 6 Hours s-voltage and torque 7 Hours hanent magnet Vs. tation – Power 7 Hours
characteristics applications. Module:2 Constructiona controllers – control applic Module:3 Constructiona equation – Ph Module:4 Permanent M Electromagne Converter and Module:5 Principle of	al Featu s, driver Switch al featur method cations. Synchr al featur hasor dia Perma (agnet m et. Magr d their c Perma operation	res-principle of operation types and tord r circuits, and microprocessor control of stand ed Reluctance Motors: re – principle of operation – torque produ- ls of rotor position sensing sensor less op ronous Reluctance Motors: re -Axial and Radial flux motor- oper agramperformance characteristics -applica nent Magnet Brushless DC Motors: aterials-Magnet Characteristics-Permeance of the circuit analysis – EMF and torque equation ontrollers – Characteristics – Applications.	epper motors, co uction –Power peration-charact ating principles tions.	nodes of excitation, oncept of lead angle, 7 Hours converters and their eristics- closed loop 6 Hours s-voltage and torque 7 Hours nanent magnet Vs. tation – Power 7Hours MMFSynchronous
characteristics applications. Module:2 Constructiona controllers – control applic Module:3 Constructiona equation – Ph Module:4 Permanent M Electromagne Converter and Module:5 Principle of reactance-sine	al Featu s, driver Switch al featur method cations. Synch al featur hasor dia Perma d their c Perma operatione	res-principle of operation types and tord r circuits, and microprocessor control of stand ed Reluctance Motors: re – principle of operation – torque produ- ls of rotor position sensing sensor less op ronous Reluctance Motors: re -Axial and Radial flux motor- oper agramperformance characteristics -applica nent Magnet Brushless DC Motors: aterials-Magnet Characteristics-Permeance of the circuit analysis – EMF and torque equation ontrollers – Characteristics – Applications. nent Magnet Synchronous Motors: on-Ideal PMSM -EMF and Torque equation motor with practical windings-phasor diagonal control circuit analysis – EMF and Torque equation control circuit analysis – EMF and Torque equation circuit analysis – EMF and EMF	epper motors, co uction –Power peration-charact ating principles tions. coefficient-Perm tions – Commut tions-Armature ram-characterist	nodes of excitation, oncept of lead angle, 7 Hours converters and their eristics- closed loop 6 Hours s-voltage and torque 7 Hours nanent magnet Vs. tation – Power 7Hours MMFSynchronous
characteristics applications. Module:2 Constructiona controllers – control applic Module:3 Constructiona equation – Ph Module:4 Permanent M Electromagne Converter and Module:5 Principle of reactance-sine	al Featu s, driver Switch al featur method cations. Synch al featur hasor dia Perma d their c Perma operatione	res-principle of operation types and tord r circuits, and microprocessor control of stand ed Reluctance Motors: re – principle of operation – torque produ- ls of rotor position sensing sensor less op ronous Reluctance Motors: re -Axial and Radial flux motor- oper agramperformance characteristics -applica nent Magnet Brushless DC Motors: aterials-Magnet Characteristics-Permeance of the circuit analysis – EMF and torque equation ontrollers – Characteristics – Applications.	epper motors, co uction –Power peration-charact ating principles tions. coefficient-Perm tions – Commut tions-Armature ram-characterist	nodes of excitation, oncept of lead angle, 7 Hours converters and their eristics- closed loop 6 Hours s-voltage and torque 7 Hours nanent magnet Vs. tation – Power 7Hours MMFSynchronous
characteristics applications. Module:2 Constructiona control applic Module:3 Constructiona equation – Ph Module:4 Permanent M Electromagne Converter and Module:5 Principle of reactance-sine	al Featu s, driver Switch al featur method cations. Synchr al featur hasor dia Perma (agnet m et. Magr d their c Perma operatione e wave trollers-	res-principle of operation types and tord r circuits, and microprocessor control of stand ed Reluctance Motors: re – principle of operation – torque produ- ls of rotor position sensing sensor less op ronous Reluctance Motors: re -Axial and Radial flux motor- oper agramperformance characteristics -applica nent Magnet Brushless DC Motors: aterials-Magnet Characteristics-Permeance of the circuit analysis – EMF and torque equation ontrollers – Characteristics – Applications. nent Magnet Synchronous Motors: on-Ideal PMSM -EMF and Torque equation motor with practical windings-phasor diagonal control circuit analysis – EMF and Torque equation control circuit analysis – EMF and Torque equation circuit analysis – EMF and EMF	epper motors, co uction –Power peration-charact ating principles tions. coefficient-Perm tions – Commut tions-Armature ram-characterist	nodes of excitation, oncept of lead angle, 7 Hours converters and their eristics- closed loop 6 Hours s-voltage and torque 7 Hours nanent magnet Vs. tation – Power 7Hours MMFSynchronous

Module:7 Linear Motors: 6 Hours Linear DC motors-Linear induction motor-linear synchronous motors-linear switched reluctance motors-constructions and working-applications. motors-constructions and working-applications. Line Start Synchronous Motors: Line start permanent magnet synchronous motor - line start synchronous reluctance motor - line start permanent magnet synchronous reluctance motor - applications. Module:8 Lecture by industry experts. 2 Hours Module:8 Lecture by industry experts. 2 Hours 45 Hours Text Book(s) T.J.E Miller, "Brushless Permanent Magnet and Reluctance Motor Drives", Clarendon Press, Oxford 1989. 7 T. Kenjo, A. Sugawara, 'Stepping Motors and their Microprocessor Controls', Clarendon Press London, 1994. 7 R. Krishnan, "Permanent Magnet and Brushless DC Motors Drives", CRC Press, New York, 2010. 10 Boldea, 'Linear Electric Machines, Drives, and MAGLEVs Handbook', CRC Press, London, 2013. 10 Reference Books 1 P. P. Acarnley, 'Stepping Motors – A Guide to Motor Theory and Practice', Fourth Edition, Peter Peregrinus, London, 2007. London, 1988. 3. R. Krishnan, 'Permanent Magnet and Brushless DC Motors', Clarendon Press, London, 1988. 3. R. Krishnan, 'Permanent Magnet and Brushless DC Motors', Clarendon Press, London, 1988. 3. 3. R. Krishnan, 'Permanent Magnet and Brushle	characte	eristic	s-applications.			
motors-constructions and working-applications. Line Start Synchronous Motors: Line start permanent magnet synchronous motor - line start synchronous reluctance motor - applications. Module:8 Lecture by industry experts. 2 Hours Module:8 Lecture by industry experts. 2 Hours Total Lecture Hours 45 Hours Text Book(s) 1. T.J.E Miller, "Brushless Permanent Magnet and Reluctance Motor Drives", Clarendon Press, Oxford 1989. 2. T. Kenjo, A. Sugawara, 'Stepping Motors and their Microprocessor Controls', Clarendon Press London, 1994. 3. R. Krishnan, "Permanent Magnet and Brushless DC Motors Drives", CRC Press, New York, 2010. 4. Ion Boldea, 'Linear Electric Machines, Drives, and MAGLEVs Handbook', CRC Press, London, 2013. Reference Books 1. 1. P. P. Acarnley, 'Stepping Motors – A Guide to Motor Theory and Practice', Fourth Edition, Peter Peregrinus, London, 2007. 2. T. Kenjo and S. Nagamori, Permanent Magnet and Brushless DC Motors', Clarendon Press, London, 1988. 3. R. Krishnan, 'Permanent Magnet and Brushless DC Motors Drives', CRC Press, New York, 2010. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Recommended by Board of Studies 29/05/2015	Module	e:7	Linear Motors:			6 Hours
Line Start Synchronous Motors: Line start permanent magnet synchronous motor - line start synchronous reluctance motor - line start permanent magnet synchronous reluctance motor - applications. Module:8 Lecture by industry experts. 2 Hours Total Lecture Hours Total Lecture Hours Total Lecture Hours Text Book(s) 1. T.J.E Miller, "Brushless Permanent Magnet and Reluctance Motor Drives", Clarendon Press, Oxford 1989. 2. T. Kenjo, A. Sugawara, 'Stepping Motors and their Microprocessor Controls', Clarendon Press London, 1994. 3. R. Krishnan, "Permanent Magnet and Brushless DC Motors Drives", CRC Press, New York, 2010. 4. Ion Boldea, 'Linear Electric Machines, Drives, and MAGLEVs Handbook', CRC Press, London, 2013. Reference Books 1. P. P. Acarnley, 'Stepping Motors – A Guide to Motor Theory and Practice', Fourth Edition, Peter Peregrinus, London, 2007. 2. T. Kenjo and S. Nagamori, 'Permanent Magnet and Brushless DC Motors', Clarendon Press, London, 1988. 3. R. Krishnan, 'Permanent Magnet and Brushless DC Motors Drives', CRC Press, New York, 2010. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Recommended by Board of Studies	Linear	DC 1	notors-Linear induction mo	otor-linear synchr	onous mo	otors-linear switched reluctance
synchronous reluctance motor - line start permanent magnet synchronous reluctance motor - applications. Module:8 Lecture by industry experts. 2 Hours Total Lecture Hours 45 Hours Text Book(s) 1. T.J.E Miller, "Brushless Permanent Magnet and Reluctance Motor Drives", Clarendon Press, Oxford 1989. 2. T. Kenjo, A. Sugawara, 'Stepping Motors and their Microprocessor Controls', Clarendon Press London, 1994. 3. R. Krishnan, "Permanent Magnet and Brushless DC Motors Drives", CRC Press, New York, 2010. 4. Ion Boldea, 'Linear Electric Machines, Drives, and MAGLEVs Handbook', CRC Press, London, 2013. Reference Books 1. 1. P. P. Acarnley, 'Stepping Motors – A Guide to Motor Theory and Practice', Fourth Edition, Peter Peregrinus, London, 2007. 2. T. Kenjo and S. Nagamori, 'Permanent Magnet and Brushless DC Motors', Clarendon Press, London, 1988. 3. R. Krishnan, "Permanent Magnet and Brushless DC Motors', Clarendon Press, London, 1988. 3. R. Krishnan, 'Permanent Magnet and Brushless DC Motors Drives', CRC Press, New York, 2010. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Recommended by Board of Studies 29/05/2015	motors-	const	ructions and working-applic	ations.		
applications. Image: Constraint of the second s	Line S	tart S	Synchronous Motors: Line	start permanent	magnet s	synchronous motor - line start
Module:8 Lecture by industry experts. 2 Hours Total Lecture Hours 45 Hours Text Book(s) 1. T.J.E. Miller, "Brushless Permanent Magnet and Reluctance Motor Drives", Clarendon Press, Oxford 1989. 2. T. Kenjo, A. Sugawara, 'Stepping Motors and their Microprocessor Controls', Clarendon Press London, 1994. 3. R. Krishnan, "Permanent Magnet and Brushless DC Motors Drives", CRC Press, New York, 2010. 4. Ion Boldea, Tinear Electric Machines, Drives, and MAGLEVs Handbook', CRC Press, London, 2013. Reference Books 1. P. P. Acarnley, 'Stepping Motors – A Guide to Motor Theory and Practice', Fourth Edition, Peter Peregrinus, London, 2007. 2. T. Kenjo and S. Nagamori, 'Permanent Magnet and Brushless DC Motors', Clarendon Press, London, 1988. 3. R. Krishnan, 'Permanent Magnet and Brushless DC Motors Drives', CRC Press, New York, 2010. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Recommended by Board of Studies 29/05/2015	synchro	nous	reluctance motor - line s	start permanent	magnet sy	nchronous reluctance motor -
Total Lecture Hours 45 Hours Total Lecture Hours 45 Hours Text Book(s) 1. T.J.E Miller, "Brushless Permanent Magnet and Reluctance Motor Drives", Clarendon Press, Oxford 1989. 2. T. Kenjo, A. Sugawara, 'Stepping Motors and their Microprocessor Controls', Clarendon Press London, 1994. 3. R. Krishnan, "Permanent Magnet and Brushless DC Motors Drives", CRC Press, New York, 2010. 4. Ion Boldea, 'Linear Electric Machines, Drives, and MAGLEVs Handbook', CRC Press, London, 2013. Reference Books 1. P. P. Acarnley, 'Stepping Motors – A Guide to Motor Theory and Practice', Fourth Edition, Peter Peregrinus, London, 2007. 2. T. Kenjo and S. Nagamori, 'Permanent Magnet and Brushless DC Motors', Clarendon Press, London, 1988. 3. R. Krishnan, 'Permanent Magnet and Brushless DC Motors Drives', CRC Press, New York, 2010. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Recommended by Board of Studies 29/05/2015	applicat	ions.				
Total Lecture Hours 45 Hours Total Lecture Hours 45 Hours Text Book(s) 1. T.J.E Miller, "Brushless Permanent Magnet and Reluctance Motor Drives", Clarendon Press, Oxford 1989. 2. T. Kenjo, A. Sugawara, 'Stepping Motors and their Microprocessor Controls', Clarendon Press London, 1994. 3. R. Krishnan, "Permanent Magnet and Brushless DC Motors Drives", CRC Press, New York, 2010. 4. Ion Boldea, 'Linear Electric Machines, Drives, and MAGLEVs Handbook', CRC Press, London, 2013. Reference Books 1. P. P. Acarnley, 'Stepping Motors – A Guide to Motor Theory and Practice', Fourth Edition, Peter Peregrinus, London, 2007. 2. T. Kenjo and S. Nagamori, 'Permanent Magnet and Brushless DC Motors', Clarendon Press, London, 1988. 3. R. Krishnan, 'Permanent Magnet and Brushless DC Motors Drives', CRC Press, New York, 2010. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Recommended by Board of Studies 29/05/2015		0				
Text Book(s) 1. T.J.E Miller, "Brushless Permanent Magnet and Reluctance Motor Drives", Clarendon Press, Oxford 1989. 2. T. Kenjo, A. Sugawara, 'Stepping Motors and their Microprocessor Controls', Clarendon Press London, 1994. 3. R. Krishnan, "Permanent Magnet and Brushless DC Motors Drives", CRC Press, New York, 2010. 4. Ion Boldea, 'Linear Electric Machines, Drives, and MAGLEVs Handbook', CRC Press, London, 2013. Reference Books 1. P. P. Acarnley, 'Stepping Motors – A Guide to Motor Theory and Practice', Fourth Edition, Peter Peregrinus, London, 2007. 2. T. Kenjo and S. Nagamori, 'Permanent Magnet and Brushless DC Motors', Clarendon Press, London, 1988. 3. R. Krishnan, 'Permanent Magnet and Brushless DC Motors', Clarendon Press, London, 1988. 3. R. Krishnan, 'Permanent Magnet and Brushless DC Motors', Clarendon Press, London, 1988. 3. R. Krishnan, 'Permanent Magnet and Brushless DC Motors', CRC Press, New York, 2010. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Recommended by Board of Studies 29/05/2015	Module	e:8	Lecture by industry expen-		-	
1. T.J.E Miller, "Brushless Permanent Magnet and Reluctance Motor Drives", Clarendon Press, Oxford 1989. 2. T. Kenjo, A. Sugawara, 'Stepping Motors and their Microprocessor Controls', Clarendon Press London, 1994. 3. R. Krishnan, "Permanent Magnet and Brushless DC Motors Drives", CRC Press, New York, 2010. 4. Ion Boldea, 'Linear Electric Machines, Drives, and MAGLEVs Handbook', CRC Press, London, 2013. Reference Books 1. P. P. Acarnley, 'Stepping Motors – A Guide to Motor Theory and Practice', Fourth Edition, Peter Peregrinus, London, 2007. 2. T. Kenjo and S. Nagamori, 'Permanent Magnet and Brushless DC Motors', Clarendon Press, London, 1988. 3. R. Krishnan, 'Permanent Magnet and Brushless DC Motors', CRC Press, New York, 2010. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Recommended by Board of Studies 29/05/2015				Total Lecture H	ours	45 Hours
Press, Oxford 1989. 2. T. Kenjo, A. Sugawara, 'Stepping Motors and their Microprocessor Controls', Clarendon Press London, 1994. 3. R. Krishnan, "Permanent Magnet and Brushless DC Motors Drives", CRC Press, New York, 2010. 4. Ion Boldea, 'Linear Electric Machines, Drives, and MAGLEVs Handbook', CRC Press, London, 2013. Reference Books 1. P. P. Acarnley, 'Stepping Motors – A Guide to Motor Theory and Practice', Fourth Edition, Peter Peregrinus, London, 2007. 2. T. Kenjo and S. Nagamori, 'Permanent Magnet and Brushless DC Motors', Clarendon Press, London, 1988. 3. R. Krishnan, 'Permanent Magnet and Brushless DC Motors Drives', CRC Press, New York, 2010. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Recommended by Board of Studies 29/05/2015	Text Bo	ook(s))			
 T. Kenjo, A. Sugawara, 'Stepping Motors and their Microprocessor Controls', Clarendon Press London, 1994. R. Krishnan, "Permanent Magnet and Brushless DC Motors Drives", CRC Press, New York, 2010. Ion Boldea, 'Linear Electric Machines, Drives, and MAGLEVs Handbook', CRC Press, London, 2013. Reference Books P. P. Acarnley, 'Stepping Motors – A Guide to Motor Theory and Practice', Fourth Edition, Peter Peregrinus, London, 2007. T. Kenjo and S. Nagamori, 'Permanent Magnet and Brushless DC Motors', Clarendon Press, London, 1988. R. Krishnan, 'Permanent Magnet and Brushless DC Motors Drives', CRC Press, New York, 2010. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Recommended by Board of Studies 	1.	T.J.I	E Miller, "Brushless Perma	anent Magnet an	d Relucta	nce Motor Drives", Clarendon
Press London, 1994. 3. R. Krishnan, "Permanent Magnet and Brushless DC Motors Drives", CRC Press, New York, 2010. 4. Ion Boldea, 'Linear Electric Machines, Drives, and MAGLEVs Handbook', CRC Press, London, 2013. Reference Books 1. P. P. Acarnley, 'Stepping Motors – A Guide to Motor Theory and Practice', Fourth Edition, Peter Peregrinus, London, 2007. 2. T. Kenjo and S. Nagamori, 'Permanent Magnet and Brushless DC Motors', Clarendon Press, London, 1988. 3. R. Krishnan, 'Permanent Magnet and Brushless DC Motors Drives', CRC Press, New York, 2010. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Recommended by Board of Studies 29/05/2015		Pres	s, Oxford 1989.			
 R. Krishnan, "Permanent Magnet and Brushless DC Motors Drives", CRC Press, New York, 2010. Ion Boldea, 'Linear Electric Machines, Drives, and MAGLEVs Handbook', CRC Press, London, 2013. Reference Books P. P. Acarnley, 'Stepping Motors – A Guide to Motor Theory and Practice', Fourth Edition, Peter Peregrinus, London, 2007. T. Kenjo and S. Nagamori, 'Permanent Magnet and Brushless DC Motors', Clarendon Press, London, 1988. R. Krishnan, 'Permanent Magnet and Brushless DC Motors Drives', CRC Press, New York, 2010. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar 	2.	Т. К	lenjo, A. Sugawara, 'Steppi	ng Motors and th	eir Microp	processor Controls', Clarendon
 2010. 4. Ion Boldea, 'Linear Electric Machines, Drives, and MAGLEVs Handbook', CRC Press, London, 2013. Reference Books P. P. Acarnley, 'Stepping Motors – A Guide to Motor Theory and Practice', Fourth Edition, Peter Peregrinus, London, 2007. T. Kenjo and S. Nagamori, 'Permanent Magnet and Brushless DC Motors', Clarendon Press, London, 1988. R. Krishnan, 'Permanent Magnet and Brushless DC Motors Drives', CRC Press, New York, 2010. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Recommended by Board of Studies 29/05/2015 			·			
 4. Ion Boldea, 'Linear Electric Machines, Drives, and MAGLEVs Handbook', CRC Press, London, 2013. Reference Books P. P. Acarnley, 'Stepping Motors – A Guide to Motor Theory and Practice', Fourth Edition, Peter Peregrinus, London, 2007. T. Kenjo and S. Nagamori, 'Permanent Magnet and Brushless DC Motors', Clarendon Press, London, 1988. R. Krishnan, 'Permanent Magnet and Brushless DC Motors Drives', CRC Press, New York, 2010. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Recommended by Board of Studies 29/05/2015 	3.	R. K	rishnan, "Permanent Magne	t and Brushless D	C Motors	Drives", CRC Press, New York,
London, 2013. Reference Books 1. P. P. Acarnley, 'Stepping Motors – A Guide to Motor Theory and Practice', Fourth Edition, Peter Peregrinus, London, 2007. 2. T. Kenjo and S. Nagamori, 'Permanent Magnet and Brushless DC Motors', Clarendon Press, London, 1988. 3. R. Krishnan, 'Permanent Magnet and Brushless DC Motors Drives', CRC Press, New York, 2010. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Recommended by Board of Studies 29/05/2015						
Reference Books 1. P. P. Acarnley, 'Stepping Motors – A Guide to Motor Theory and Practice', Fourth Edition, Peter Peregrinus, London, 2007. 2. T. Kenjo and S. Nagamori, 'Permanent Magnet and Brushless DC Motors', Clarendon Press, London, 1988. 3. R. Krishnan, 'Permanent Magnet and Brushless DC Motors Drives', CRC Press, New York, 2010. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Recommended by Board of Studies 29/05/2015	4.			achines, Drives, a	and MAG	LEVs Handbook', CRC Press,
1. P. P. Acarnley, 'Stepping Motors – A Guide to Motor Theory and Practice', Fourth Edition, Peter Peregrinus, London, 2007. 2. T. Kenjo and S. Nagamori, 'Permanent Magnet and Brushless DC Motors', Clarendon Press, London, 1988. 3. R. Krishnan, 'Permanent Magnet and Brushless DC Motors Drives', CRC Press, New York, 2010. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Recommended by Board of Studies 29/05/2015			,			
Edition, Peter Peregrinus, London, 2007. 2. T. Kenjo and S. Nagamori, 'Permanent Magnet and Brushless DC Motors', Clarendon Press, London, 1988. 3. R. Krishnan, 'Permanent Magnet and Brushless DC Motors Drives', CRC Press, New York, 2010. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Recommended by Board of Studies 29/05/2015	Referen					
2. T. Kenjo and S. Nagamori, 'Permanent Magnet and Brushless DC Motors', Clarendon Press, London, 1988. 3. R. Krishnan, 'Permanent Magnet and Brushless DC Motors Drives', CRC Press, New York, 2010. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Recommended by Board of Studies 29/05/2015	1.		• • • •		to Motor	Theory and Practice', Fourth
London, 1988. 3. R. Krishnan, 'Permanent Magnet and Brushless DC Motors Drives', CRC Press, New York, 2010. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Recommended by Board of Studies 29/05/2015			<u> </u>			
3. R. Krishnan, 'Permanent Magnet and Brushless DC Motors Drives', CRC Press, New York, 2010. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Recommended by Board of Studies 29/05/2015	2.		· ·	nanent Magnet and	Brushless	s DC Motors', Clarendon Press,
2010. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Recommended by Board of Studies 29/05/2015			*			
Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Recommended by Board of Studies 29/05/2015	3.		-	t and Brushless D	C Motors	Drives', CRC Press, New York,
Recommended by Board of Studies 29/05/2015						
	Mode of	f Eva	luation: CAT / Assignment /	Quiz / FAT / Pro	ject / Semi	inar
	Recomm	nende	ed by Board of Studies	29/05/2015		
				37 th AC	Date	16/06/2015

EEE3007	Finite Element Analysis for Electrical N	L T P J C
Pre-requisite	EEE2003	Syllabus version
Anti-requisite	Nil	v. 1.0
Course Objectives:		
1	e the students to the concept of finite element and	•
	the basic electromagnetic theory and its important	nce to electrical machines
	n any electro-magnetic devise	
	m electromagnetic analysis using finite element	methods
	ctromagnetic coupled thermal analysis	
	ctromagnetic coupled structural analysis	
Expected Course C		
-	f this course the student will be able to:	
	electromagnetic field equations to electrical mach	
	portance of finite element method through field e	
	formance assessment and improvement in electric	ical machines.
U	us electro-mechanical devices	
•	pled field circuits	
	tools to find torque and errors	1 / 1 1 1
	air gap region to improve the performance of the	
	ponent or a product applying all the relevant sta	ndards with realistic
constraints		
Module:1 Outli	ne of Electromagnetic Fields:	4 Hours
	ectromagnetic Fields - Fundamental Equations.	
		7 11
	iples of Finite Element Methods:	5 Hours
	h Boundary Conditions - Classical Method for	the Field Problem Solution -
	h Boundary Conditions - Classical Method for Iethod - Classical Variational Method - Finite Ele	the Field Problem Solution -
Classical Residual N	Iethod - Classical Variational Method - Finite El	the Field Problem Solution -
Classical Residual M Module:3 Comp	Iethod - Classical Variational Method - Finite Elements outation of Losses:	the Field Problem Solution - ement Method.
Classical Residual M Module:3 Comp Computation of Edd	Iethod - Classical Variational Method - Finite Elementation of Losses: y Current Loss - Losses in Winding.	the Field Problem Solution - ement Method. 2 Hours
Classical Residual NModule:3CompComputation of EddModule:4Comp	Method - Classical Variational Method - Finite Electron Outation of Losses: y Current Loss - Losses in Winding. Outation of Resistance and Inductance:	the Field Problem Solution - ement Method.
Classical Residual NModule:3CompComputation of EddModule:4Comp	Iethod - Classical Variational Method - Finite Elementation of Losses: y Current Loss - Losses in Winding.	the Field Problem Solution - ement Method. 2 Hours
Classical Residual NModule:3CompComputation of EddModule:4CompInductance and ReadModule:5Analy	Method - Classical Variational Method - Finite Electrical Variation of Losses: y Current Loss - Losses in Winding. Sutation of Resistance and Inductance: extance - Poynting Vector - Nonlinear Problems. sis of Electrical Machines Using Finite Here	the Field Problem Solution - ement Method. 2 Hours 4 Hours
Classical Residual NModule:3CompComputation of EddModule:4CompInductance and ReadModule:5Analy Meth	Iethod - Classical Variational Method - Finite Electrical Variation of Losses: y Current Loss - Losses in Winding. Sutation of Resistance and Inductance: ctance - Poynting Vector - Nonlinear Problems. sis of Electrical Machines Using Finite Hod -I:	the Field Problem Solution - ement Method. 2 Hours 4 Hours Element 4 Hours
Classical Residual NModule:3CompComputation of EddModule:4CompInductance and ReadModule:5AnalyMethAmpere's Force Law	Method - Classical Variational Method - Finite Electrical Variation of Losses: y Current Loss - Losses in Winding. wtation of Resistance and Inductance: stance - Poynting Vector - Nonlinear Problems. sis of Electrical Machines Using Finite Hod -I: y - Boundary Conditions - Computation of the So	the Field Problem Solution - ement Method. 2 Hours 4 Hours Element 4 Hours
Classical Residual NModule:3CompComputation of EddModule:4CompInductance and ReadModule:5Analy MethodAmpere's Force Law Method - Virtual	Iethod - Classical Variational Method - Finite Electrical Variation of Losses: y Current Loss - Losses in Winding. outation of Resistance and Inductance: extance - Poynting Vector - Nonlinear Problems. sis of Electrical Machines Using Finite Hod -I: v - Boundary Conditions - Computation of the So Work Method - Using Machine Models to f	the Field Problem Solution - ement Method. 2 Hours 4 Hours Element 4 Hours
Classical Residual NModule:3CompComputation of EddModule:4CompInductance and ReadModule:5AnalyMethAmpere's Force Law	Iethod - Classical Variational Method - Finite Electrical Variation of Losses: y Current Loss - Losses in Winding. outation of Resistance and Inductance: extance - Poynting Vector - Nonlinear Problems. sis of Electrical Machines Using Finite Hod -I: v - Boundary Conditions - Computation of the So Work Method - Using Machine Models to f	the Field Problem Solution - ement Method. 2 Hours 4 Hours Element 4 Hours
Classical Residual NModule:3CompComputation of EddModule:4CompInductance and ReadModule:5Analy MethodAmpere's Force Law Method - Virtual Computation - ConvModule:6Analy	Iethod - Classical Variational Method - Finite Electrical Variation of Losses: y Current Loss - Losses in Winding. outation of Resistance and Inductance: extance - Poynting Vector - Nonlinear Problems. sis of Electrical Machines Using Finite Hod -I: v - Boundary Conditions - Computation of the So Work Method - Using Machine Models to f	the Field Problem Solution - ement Method. 2 Hours 4 Hours Element 4 Hours
Classical Residual NModule:3CompComputation of EddModule:4CompInductance and ReadModule:5Analy MethodAmpere's Force Law Method - Virtual Computation - ConvModule:6Analy Element	Iethod - Classical Variational Method - Finite Electrical Variation of Losses: y Current Loss - Losses in Winding. outation of Resistance and Inductance: outation of Resistance and Inductance and Inductance outation of Resistance and Inductance	the Field Problem Solution - ement Method. 2 Hours 4 Hours 2 Element 4 Hours 1 Ved Structure - Maxwell Stress 1 ind Torque - Errors in Force 5 Hours
Classical Residual NModule:3CompComputation of EddModule:4CompInductance and ReadModule:5Analy MethodAmpere's Force Law Method - Virtual Computation - ConvModule:6Analy Eleme Using Machine Module	Method - Classical Variational Method - Finite Electrical of Losses: y Current Loss - Losses in Winding. Station of Resistance and Inductance: extance - Poynting Vector - Nonlinear Problems. sis of Electrical Machines Using Finite Hod -I: v - Boundary Conditions - Computation of the So Work Method - Using Machine Models to freegence of Force. sis of Electrical Machines Using Finite ent Method:-II	the Field Problem Solution - ement Method. 2 Hours 4 Hours Element 4 Hours Slved Structure - Maxwell Stress ind Torque - Errors in Force 5 Hours
Classical Residual NModule:3CompComputation of EddModule:4CompInductance and ReadModule:5Analy MethodAmpere's Force Law Method - Virtual Computation - ConvModule:6Analy Eleme Using Machine ModModule:7Air-g	Iethod - Classical Variational Method - Finite Electrical of Losses: y Current Loss - Losses in Winding. Inductance: In	the Field Problem Solution - ement Method. 2 Hours 4 Hours Element 4 Hours Solved Structure - Maxwell Stress ind Torque - Errors in Force 5 Hours on - Convergence of Force. 4 Hours
Module:3CompModule:3CompComputation of EddModule:4CompInductance and ReadModule:5AnalyMethod - VirtualComputation - ConvModule:6AnalyElementUsing Machine Module:7Module:7Air-gIntroduction - Descri	Iethod - Classical Variational Method - Finite Electrical of Losses: y Current Loss - Losses in Winding. Inductance: In	the Field Problem Solution - ement Method. 2 Hours 4 Hours Element 4 Hours Solved Structure - Maxwell Stress ind Torque - Errors in Force 5 Hours on - Convergence of Force. 4 Hours
Classical Residual NModule:3CompComputation of EddModule:4CompInductance and ReadModule:5Analy MethodAmpere's Force Law Method - Virtual Computation - ConvModule:6Analy Eleme Using Machine ModModule:7Air-g Introduction - Descr Solution - Coupling	Iethod - Classical Variational Method - Finite Electrical of Losses: y Current Loss - Losses in Winding. Inductance: In	the Field Problem Solution - ement Method. 2 Hours 4 Hours Element 4 Hours Solved Structure - Maxwell Stress ind Torque - Errors in Force 5 Hours on - Convergence of Force. 4 Hours

			Total Lecture H	ours	30 Hours
Text Be	ook(s)				
1.	1. Nicola Bianchi, 'Electrical Machine Analysis Using Finite Elements', CRC Press, Taylor and Francis, 2015				e Elements', CRC Press, Taylor
2.	2. P. P. Silvester, R. L. Ferrari, 'Finite Element Analysis and Design of Electromagnetic				and Design of Electromagnetic
	Devi	ces', Cambridge University	Press, Cambridge	e, England	l, Third Edition, 2006.
3.	S. J. Salon, 'Finite Element Analysis of Electrical Machine', Kluwer Academic Publishers,				
	Boston, MA, 2009.				
Referen	nce Bo	ooks			
1.	M.V. K. Chari, S. J. Salon. 'Numerical Methods in Electromagnetism', Academic Press			tromagnetism', Academic Press,	
	2000.				
2.	2. J. P. A. Bastos, N. Sadowsky, 'Electromagnetic Modelling By Finite Element M			ng By Finite Element Methods',	
	Marcel-Decker, 2003.				
3.	M. N. O. Sadiku, 'Numerical Techniques in Electromagnetics', CRC press, 2001.				
Mode o	of Eval	luation: CAT / Assignment	/ Quiz / FAT / Pro	oject / Sen	ninar/ Mode of assessment
Recom	mende	ed by Board of Studies	05/03/2016		
Approv	ed by	Academic Council	40 th AC	Date	18/03/2016

	(Deemed to be University under section 3 of UGC	CAct, 1956)	
EEE4002	Power System Protection and Sv	vitchgear	L T P J C 3 0 2 0 4
Pre-requisite	EEE3003		Syllabus version
Anti-requisite	Nil		v. 1.0
Course Objectives:			
1. Apply th	eoretical concepts in designing relays and circ	uit breakers.	
2. identify a	appropriate switch gears for providing protecti	on to power sy	stem components.
3. analyse	the performance of the protection schemes d	luring both pro	e-fault and post-fault
condition	18.		
Expected Course C	Outcome:		
	e course the student will be able to		
-	netrical components method for analyzing the	different types	of faults
	iate protection scheme to provide protection to		
components.		1	2
3. Design relays us	sed in the protection schemes		
	es of relays based on their characteristics		
	us types of circuit breakers		
	ous ratings of the circuit breakers		
7. Identify an appr	opriate type of circuit breaker based on voltag	e and current r	atings in the system
8. Design and Con	duct experiments, as well as analyze and inter	pret data.	
Module:1 Intro	duction to Faults and Protection:		6 Hours
	nature and causes of faults - types of fault	s – fault curre	
	nents – Principles and need for protective s		
neutral grounding.		1	
Module:2 Prote	ctive Relays		6 Hours
Basic properties of 1	elay - Electromagnetic relays – Over current,	directional - St	atic relays.
Module:3 Differ	rent Protection Schemes	5 Hours	
Applications of ins	trument transformers in protection schemes	, Differential	protection, Distance
protection - other so	chemes of protection- Under frequency relays	and Negative s	equence relays
Module:4 Prote	ction of transformer, generator and		6 Hours
moto			
Differential scheme	for protection of transformer, generator, moto	r	
Module:5 Prote	ction of bus bars, transmission lines:		6 Hours
	ars-Application of differential scheme for bus	bar protection	
protection using dist		Jan protocilo	
r-ottenion asing all			
Module:6 Theorem	ry of Circuit Interruption :		6 Hours
	ry of Circuit Interruption :	e & Recoverv	6 Hours voltage, rate of rise
Physics of arc pher	ry of Circuit Interruption : nomena and arc interruption. Restriking voltage, resistance switching, current chopping and i		voltage, rate of rise

DC circuit breaking.

measurements.

Module:7	Circuit Breakers :	8 Hours
Difference be	etween circuit breakers and isolators- making and b	reaking capacity - Types of Circuit
Breakers – A	Air blast, Air break, Oil, SF6 and Vacuum circui	t breakers- comparative merits of
different cir	cuit breakers – Testing of circuit breakers. Ea	rth leakage circuit breakers and

Text Book(s) 1. B. Ravindranath, and N. Chander, 'Power System Protection & Switchgear', New Ag International., 2012. 2. Badri Ram ,B.H. Vishwakarma, 'Power System Protection and Switchgear', New Ag International Pvt Ltd Publishers, Second Edition 2011. 3. Bhavesh Bhalja, R.P. Maheshwari, Nilesh G. Chotani,'Protection and Switchgear' Oxfor University Press, 2011. Reference Books 1. J B Gupta, "A Course in Electrical Power ", New Delhi, India : Kataria, 2014. 2. C.L.Wadhwa, "Electrical Power Systems", New Academic Science, London, 2017. 3. M.L. Soni, P.V. Gupta, V.S. Bhatnagar, A.Chakrabarti, "A Text Book on Power Syste Engineering", Dhanpat Rai & Co., 2013.	Module:8		Contemporary issues:	2 Hours		
1. B. Ravindranath, and N. Chander, 'Power System Protection & Switchgear', New Aq International, 2012. 2. Badri Ram ,B.H. Vishwakarma, 'Power System Protection and Switchgear', New Aq International Pvt Ltd Publishers, Second Edition 2011. 3. Bhavesh Bhalja, R.P. Maheshwari, Nilesh G. Chotani, 'Protection and Switchgear' Oxfo University Press, 2011. Reference Books			Total Lecture Hours	45 Hours		
International, 2012. 2. Badri Ram, B.H. Vishwakarma, 'Power System Protection and Switchgear', New Ag International Pvt Ltd Publishers, Second Edition 2011. 3. Bhavesh Bhalja, R.P. Maheshwari, Nilesh G. Chotani, 'Protection and Switchgear' Oxfo University Press, 2011. Reference Books 1. J B Gupta, "A Course in Electrical Power ", New Delhi, India : Kataria, 2014. 2. C.L.Wadhwa, "Electrical Power Systems", New Academic Science, London, 2017. 3. M.L. Soni, P.V. Gupta, V.S. Bhatnagar, A.Chakrabarti, "A Text Book on Power Syste Engineering", Dhanpat Rai & Co., 2013. 4. Y.G.Paithankar and S.R.Bhide, " Fundamentals of Power System Protection", Prentice Ha of India Pvt., Ltd., 2014. List of Challenging Experiments (Indicative) 1. (i) Performance characteristics of current transformers (ii) Earth leakage protection using core balance transformers 2 hours 2. (i) Study of Zonal Protection Scheme (ii) Testing of breakdown voltage strength of the given sample of transformer oil using Transformer oil testing kit 3. 3. Earth electrode resistance and soil resistivity measurements using Megger Earth Tester 2 hours 4. (i)Earth fault protection for a 3-\$ induction motor using Air circuit breakers (ii) Microcontroller based over and under voltage, IDMT/DMT relay. 2 hours 5. Transformer protection using differential pr	Text	Book(s	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;			
International Pvt Ltd Publishers, Second Edition 2011. 3. Bhavesh Bhalaja, R.P. Maheshwari, Nilesh G. Chotani, 'Protection and Switchgear' Oxfo University Press, 2011. Reference Books 1. J B Gupta, "A Course in Electrical Power ", New Delhi, India : Kataria, 2014. 2. C.L.Wadhwa, "Electrical Power Systems", New Academic Science, London, 2017. 3. M.L. Soni, P.V. Gupta, V.S. Bhatnagar, A.Chakrabarti, "A Text Book on Power Syste Engineering", Dhanpat Rai & Co., 2013. 4. Y.G.Paithankar and S.R.Bhide, " Fundamentals of Power System Protection", Prentice Ha of India Pvt., Ltd., 2014. List of Challenging Experiments (Indicative) 1. (i) Performance characteristics of current transformers (ii) Earth leakage protection using core balance transformers 2 hours 2. (i) Study of Zonal Protection Scheme (ii) Testing of breakdown voltage strength of the given sample of transformer oil using Transformer oil testing kit 2 hours 3. Earth electrode resistance and soil resistivity measurements using Megger (ii) Microcontroller based over and under voltage, IDMT/DMT relay. 2 hours 5. Transformer protection using differential protection scheme. 2 hours 6. Transformer protection using over current relay 2 hours 7. Performance characteristics over current relay 2 hours	1.		B. Ravindranath, and N. Chander, 'Power System Protection & Switchgear', New Age International., 2012.			
University Press, 2011. Reference Books 1. J B Gupta, "A Course in Electrical Power ", New Delhi, India : Kataria, 2014. 2. C.L.Wadhwa, "Electrical Power Systems", New Academic Science, London, 2017. 3. M.L. Soni, P.V. Gupta, V.S. Bhatnagar, A.Chakrabarti, "A Text Book on Power Syste Engineering", Dhanpat Rai & Co., 2013. 4. Y.G.Paithankar and S.R.Bhide, "Fundamentals of Power System Protection", Prentice Ha of India Pvt., Ltd., 2014. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Image: Colspan="2">List of Challenging Experiments (Indicative) 1. (i) Performance characteristics of current transformers (ii) Earth leakage protection using core balance transformers 2 hours 2. (i) Study of Zonal Protection Scheme (ii) Testing of breakdown voltage strength of the given sample of transformer oil using Transformer oil testing kit 2 hours 3. Earth electrode resistance and soil resistivity measurements using Megger Earth Tester 2 hours 4. (i)Earth fault protection for a 3-\$ induction motor using Air circuit breakers (ii) Microcontroller based over and under voltage, IDMT/DMT relay. 2 hours 5. Transformer protection using differential protection scheme. 2 hours 6. Transformer protection using over current relay 2 hours 7. Pe	2.		Badri Ram ,B.H. Vishwakarma, 'Power System Protection and Switchgear', New Age			
1. J B Gupta, "A Course in Electrical Power ", New Delhi, India : Kataria, 2014. 2. C.L.Wadhwa, "Electrical Power Systems", New Academic Science, London, 2017. 3. M.L. Soni, P.V. Gupta, V.S. Bhatnagar, A.Chakrabarti, "A Text Book on Power Syste Engineering", Dhanpat Rai & Co., 2013. 4. Y.G.Paithankar and S.R.Bhide, "Fundamentals of Power System Protection", Prentice Ha of India Pvt., Ltd., 2014. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar I. (i) Performance characteristics of current transformers (ii) Earth leakage protection using core balance transformers 2. (i) Study of Zonal Protection Scheme (ii)Testing of breakdown voltage strength of the given sample of transformer oil using Transformer oil testing kit 2 hours 3. Earth electrode resistance and soil resistivity measurements using Megger (ii) Microcontroller based over and under voltage, IDMT/DMT relay. 2 hours 5. Transformer protection using over current relay (ii) Microcontroller based over current relay (ii) Microcontroller based over current relay (ii) Performance characteristics over current relay (IDMT Type) 2 hours 6. Transformer protection using over current relay (IDMT Type) 2 hours 7. Performance characteristics over current relay (IDMT Type) 2 hours 8. Protection of three phase induction motor against earth fault using IDMT type Earth Fault Over current relay (i) Reverse Power Relay	3.		Bhavesh Bhalja, R.P. Maheshwari, Nilesh G. Chotani,'Protection and Switchgear' Oxford			
1. J B Gupta, "A Course in Electrical Power ", New Delhi, India : Kataria, 2014. 2. C.L.Wadhwa, "Electrical Power Systems", New Academic Science, London, 2017. 3. M.L. Soni, P.V. Gupta, V.S. Bhatnagar, A.Chakrabarti, "A Text Book on Power Syste Engineering", Dhanpat Rai & Co., 2013. 4. Y.G.Paithankar and S.R.Bhide, "Fundamentals of Power System Protection", Prentice Ha of India Pvt., Ltd., 2014. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar List of Challenging Experiments (Indicative) 1. (i) Performance characteristics of current transformers 2. (i) Study of Zonal Protection Using core balance transformers 2. (i) Study of Zonal Protection Scheme (ii)Testing of breakdown voltage strength of the given sample of transformer oil using Transformer oil testing kit 2 hours 3. Earth electrode resistance and soil resistivity measurements using Megger (ii) Microcontroller based over and under voltage, IDMT/DMT relay. 2 hours 5. Transformer protection using over current relay (I) Microcontroller based over current relay 2 hours 7. Performance characteristics over current relay (IDMT Type) 2 hours 8. Protection of three phase induction motor against earth fault using IDMT 2 hours 9. Alternator Protection using (i) Reverse Power Relay 2 hours <td>Refe</td> <td>rence B</td> <td>Books</td> <td></td>	Refe	rence B	Books			
3. M.L. Soni, P.V. Gupta, V.S. Bhatnagar, A.Chakrabarti, "A Text Book on Power Syste Engineering", Dhanpat Rai & Co., 2013. 4. Y.G.Paithankar and S.R.Bhide, "Fundamentals of Power System Protection", Prentice Ha of India Pvt., Ltd., 2014. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Image: State of Challenging Experiments (Indicative) 1. (i) Performance characteristics of current transformers (ii) Earth leakage protection using core balance transformers 2 hours (ii) Testing of breakdown voltage strength of the given sample of transformer oil using Transformer oil testing kit 2 hours 3. Earth electrode resistance and soil resistivity measurements using Megger Earth Tester 2 hours 4. (i)Earth fault protection for a 3-φ induction motor using Air circuit breakers (ii) Microcontroller based over and under voltage, IDMT/DMT relay. 2 hours 5. Transformer protection using over current relay 2 hours 6. Transformer protection using over current relay (IDMT Type) 2 hours 7. Performance characteristics over current relay (IDMT Type) 2 hours 8. Protection of three phase induction motor against earth fault using IDMT 2 hours 9. Alternator Protection using 2 hours 9. Alternator Protection using <td< td=""><td></td><td></td><td></td><td>014.</td></td<>				014.		
Engineering", Dhanpat Rai & Co., 2013. 4. Y.G.Paithankar and S.R.Bhide, "Fundamentals of Power System Protection", Prentice Ha of India Pvt., Ltd., 2014. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar List of Challenging Experiments (Indicative) 1. (i) Performance characteristics of current transformers (ii) Earth leakage protection using core balance transformers 2 hours (ii) Testing of breakdown voltage strength of the given sample of transformer oil using Transformer oil testing kit 2 hours 3. Earth electrode resistance and soil resistivity measurements using Megger Earth Tester 2 hours 4. (i)Earth fault protection for a 3-\$\phi induction motor using Air circuit breakers (ii) Microcontroller based over and under voltage, IDMT/DMT relay. 2 hours 5. Transformer protection using over current relay 2 hours 6. Transformer protection using over current relay 2 hours 7. Performance characteristics over current relay (IDMT Type) 2 hours 8. Protection of three phase induction motor against earth fault using IDMT 2 hours 9. Alternator Protection using 2 hours	2.	C.L	.Wadhwa, "Electrical Power Systems", New Academic Science, Lond	lon, 2017.		
of India Pvt., Ltd., 2014. Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar List of Challenging Experiments (Indicative) 1. (i) Performance characteristics of current transformers (ii) Earth leakage protection using core balance transformers 2 hours 2. (i) Study of Zonal Protection Scheme 2 hours (ii)Testing of breakdown voltage strength of the given sample of transformer 2 hours oil using Transformer oil testing kit 2 3. Earth electrode resistance and soil resistivity measurements using Megger 2 hours 4. (i)Earth fault protection for a 3-\$\$ induction motor using Air circuit breakers 2 hours (ii) Microcontroller based over and under voltage, IDMT/DMT relay. 2 hours 5. Transformer protection using over current relay 2 hours 6. Transformer protection using over current relay 2 hours 7. Performance characteristics over current relay (IDMT Type) 2 hours 8. Protection of three phase induction motor against earth fault using IDMT 2 hours 9. Alternator Protection using 2 hours (i) Reverse Power Relay 2 hours	3.					
List of Challenging Experiments (Indicative) 1. (i) Performance characteristics of current transformers 2 hours (ii) Earth leakage protection using core balance transformers 2 hours 2. (i) Study of Zonal Protection Scheme 2 hours (ii) Testing of breakdown voltage strength of the given sample of transformer oil using Transformer oil testing kit 2 hours 3. Earth electrode resistance and soil resistivity measurements using Megger Earth Tester 2 hours 4. (i)Earth fault protection for a 3-φ induction motor using Air circuit breakers (ii) Microcontroller based over and under voltage, IDMT/DMT relay. 2 hours 5. Transformer protection using over current relay 2 hours 6. Transformer protection using over current relay (IDMT Type) 2 hours 7. Performance characteristics over current relay (IDMT Type) 2 hours 8. Protection of three phase induction motor against earth fault using IDMT 2 hours 9. Alternator Protection using 2 hours	4.	. Y.G.Paithankar and S.R.Bhide, "Fundamentals of Power System Protection", Prentice Hall				
List of Challenging Experiments (Indicative) 1. (i) Performance characteristics of current transformers 2 hours (ii) Earth leakage protection using core balance transformers 2 hours 2. (i) Study of Zonal Protection Scheme 2 hours (ii) Testing of breakdown voltage strength of the given sample of transformer oil using Transformer oil testing kit 2 hours 3. Earth electrode resistance and soil resistivity measurements using Megger Earth Tester 2 hours 4. (i)Earth fault protection for a 3-φ induction motor using Air circuit breakers (ii) Microcontroller based over and under voltage, IDMT/DMT relay. 2 hours 5. Transformer protection using over current relay 2 hours 6. Transformer protection using over current relay (IDMT Type) 2 hours 7. Performance characteristics over current relay (IDMT Type) 2 hours 8. Protection of three phase induction motor against earth fault using IDMT 2 hours 9. Alternator Protection using 2 hours	Mod	e of Eva	aluation: CAT / Assignment / Quiz / FAT / Project / Seminar			
1. (i) Performance characteristics of current transformers 2 hours (ii) Earth leakage protection using core balance transformers 2 hours 2. (i) Study of Zonal Protection Scheme 2 hours (ii) Testing of breakdown voltage strength of the given sample of transformer oil using Transformer oil testing kit 2 hours 3. Earth electrode resistance and soil resistivity measurements using Megger Earth Tester 2 hours 4. (i)Earth fault protection for a 3-\$\phi\$ induction motor using Air circuit breakers (ii) Microcontroller based over and under voltage, IDMT/DMT relay. 2 hours 5. Transformer protection using differential protection scheme. 2 hours 6. Transformer protection using over current relay 2 hours 7. Performance characteristics over current relay (IDMT Type) 2 hours 8. Protection of three phase induction motor against earth fault using IDMT type Earth Fault Over current relay 2 hours 9. Alternator Protection using (i) Reverse Power Relay 2 hours	widu		indation. CAT / Assignment / Quiz / TAT / Troject / Seminar			
1. (i) Performance characteristics of current transformers 2 hours (ii) Earth leakage protection using core balance transformers 2 hours 2. (i) Study of Zonal Protection Scheme 2 hours (ii) Testing of breakdown voltage strength of the given sample of transformer oil using Transformer oil testing kit 2 hours 3. Earth electrode resistance and soil resistivity measurements using Megger Earth Tester 2 hours 4. (i)Earth fault protection for a 3-\$\phi\$ induction motor using Air circuit breakers (ii) Microcontroller based over and under voltage, IDMT/DMT relay. 2 hours 5. Transformer protection using differential protection scheme. 2 hours 6. Transformer protection using over current relay 2 hours 7. Performance characteristics over current relay (IDMT Type) 2 hours 8. Protection of three phase induction motor against earth fault using IDMT type Earth Fault Over current relay 2 hours 9. Alternator Protection using (i) Reverse Power Relay 2 hours	List	of Chal	lenging Experiments (Indicative)			
 (ii) Earth leakage protection using core balance transformers 2. (i) Study of Zonal Protection Scheme (i)Testing of breakdown voltage strength of the given sample of transformer oil using Transformer oil testing kit 3. Earth electrode resistance and soil resistivity measurements using Megger 2 hours Earth Tester 4. (i)Earth fault protection for a 3-\$\phi\$ induction motor using Air circuit breakers (ii) Microcontroller based over and under voltage, IDMT/DMT relay. 5. Transformer protection using differential protection scheme. 2 hours 6. Transformer protection using over current relay (IDMT Type) 2 hours 8. Protection of three phase induction motor against earth fault using IDMT 2 hours type Earth Fault Over current relay 9. Alternator Protection using (i) Reverse Power Relay 				2 hours		
2. (i) Study of Zonal Protection Scheme 2 hours (ii) Testing of breakdown voltage strength of the given sample of transformer 2 hours oil using Transformer oil testing kit 3. Earth electrode resistance and soil resistivity measurements using Megger 2 hours 4. (i)Earth fault protection for a 3-φ induction motor using Air circuit breakers 2 hours 5. Transformer protection using differential protection scheme. 2 hours 6. Transformer protection using over current relay 2 hours 7. Performance characteristics over current relay (IDMT Type) 2 hours 8. Protection of three phase induction motor against earth fault using IDMT 2 hours 9. Alternator Protection using 2 hours		. ,		2 110015		
 (ii)Testing of breakdown voltage strength of the given sample of transformer oil using Transformer oil testing kit Earth electrode resistance and soil resistivity measurements using Megger Earth Tester (i)Earth fault protection for a 3-\$\ophi\$ induction motor using Air circuit breakers (ii) Microcontroller based over and under voltage, IDMT/DMT relay. Transformer protection using differential protection scheme. Transformer protection using over current relay Performance characteristics over current relay (IDMT Type) hours Protection of three phase induction motor against earth fault using IDMT hours Alternator Protection using Reverse Power Relay 	2.			2 hours		
oil using Transformer oil testing kit3.Earth electrode resistance and soil resistivity measurements using Megger Earth Tester2 hours4.(i)Earth fault protection for a 3-φ induction motor using Air circuit breakers (ii) Microcontroller based over and under voltage, IDMT/DMT relay.2 hours5.Transformer protection using differential protection scheme.2 hours6.Transformer protection using over current relay Performance characteristics over current relay (IDMT Type)2 hours8.Protection of three phase induction motor against earth fault using IDMT type Earth Fault Over current relay2 hours9.Alternator Protection using (i) Reverse Power Relay2 hours		• •	•			
3.Earth electrode resistance and soil resistivity measurements using Megger Earth Tester2 hours4.(i)Earth fault protection for a 3-φ induction motor using Air circuit breakers (ii) Microcontroller based over and under voltage, IDMT/DMT relay.2 hours5.Transformer protection using differential protection scheme.2 hours6.Transformer protection using over current relay Performance characteristics over current relay (IDMT Type)2 hours8.Protection of three phase induction motor against earth fault using IDMT type Earth Fault Over current relay2 hours9.Alternator Protection using (i) Reverse Power Relay2 hours						
Earth Tester4.(i)Earth fault protection for a 3-φ induction motor using Air circuit breakers (ii) Microcontroller based over and under voltage, IDMT/DMT relay.2 hours5.Transformer protection using differential protection scheme.2 hours6.Transformer protection using over current relay2 hours7.Performance characteristics over current relay (IDMT Type)2 hours8.Protection of three phase induction motor against earth fault using IDMT type Earth Fault Over current relay2 hours9.Alternator Protection using (i) Reverse Power Relay2 hours	3.			r 2 hours		
(ii) Microcontroller based over and under voltage, IDMT/DMT relay.5. Transformer protection using differential protection scheme.2 hours6. Transformer protection using over current relay2 hours7. Performance characteristics over current relay (IDMT Type)2 hours8. Protection of three phase induction motor against earth fault using IDMT2 hours9. Alternator Protection using2 hours(i) Reverse Power Relay2 hours						
(ii) Microcontroller based over and under voltage, IDMT/DMT relay.5. Transformer protection using differential protection scheme.2 hours6. Transformer protection using over current relay2 hours7. Performance characteristics over current relay (IDMT Type)2 hours8. Protection of three phase induction motor against earth fault using IDMT2 hours9. Alternator Protection using2 hours(i) Reverse Power Relay2 hours	4.	(i)Eart	2 hours			
5.Transformer protection using differential protection scheme.2 hours6.Transformer protection using over current relay2 hours7.Performance characteristics over current relay (IDMT Type)2 hours8.Protection of three phase induction motor against earth fault using IDMT2 hours9.Alternator Protection using (i) Reverse Power Relay2 hours						
6.Transformer protection using over current relay2 hours7.Performance characteristics over current relay (IDMT Type)2 hours8.Protection of three phase induction motor against earth fault using IDMT2 hours9.Alternator Protection using (i) Reverse Power Relay2 hours	5.					
8.Protection of three phase induction motor against earth fault using IDMT2 hoursype Earth Fault Over current relay9.Alternator Protection using (i) Reverse Power Relay2 hours	6.					
8.Protection of three phase induction motor against earth fault using IDMT2 hoursype Earth Fault Over current relay9.Alternator Protection using (i) Reverse Power Relay2 hours	7.	Perform				
type Earth Fault Over current relay2 hours9.Alternator Protection using (i) Reverse Power Relay2 hours		Protect	tion of three phase induction motor against earth fault using IDM	2 hours		
(i) Reverse Power Relay						
	9.	Altern	ator Protection using	2 hours		
(ii) Differential relay		(i)				
		(ii)	Differential relay			

10.	. Time graded protection for Radial Feeders				2 hours
11.	11. Fault analysis of 3- \u03c6 Alternator				
12. Generator protection using numeric protective relays, over current, over				2 hours	
	voltage and under voltage relay.				
Total Laboratory Hours					30 hours
Recommended by Board of Studies 05/03/2016					
	roved by Academic Council	40 th AC	Date	18/03/2016	

EEE40 ()3	Generation and Utilization of Electrica	l Energy	L T P J C	
				2 0 0 4 3	
Pre-requisite EEE3003 Syllabus v					
Anti-ree	quisite	Nil		v. 1.(
Course	Objective	es:			
1.	Analyze t	he concepts and phenomenon of different so	ources of Power Ger	neration	
		ne fundamental concepts in traction and con nd welding.	nprehend different i	ssues related to	
3.		e illumination and to discuss various Tarif cal energy.	f methods for optim	num utilizatior	
Expecte	d Course	Outcome:			
	-	of this course the student will be able to: ritically evaluate the generation and demand			
 Des Dise mov Ana Eva Des wele Des con 	ign the differences vario vement. Ilyze energing luate the energing the high the high ding. ign a constraints.	us sources for the generation of electrical po- fferent types of electric illumination for inde- us types of Electric Traction based on the m gy consumption and tariff rates. energy conservation and identify the econom- eating elements for various application a mponent or a product applying all the	oor and outdoor area notors used and mee nic choice of equipm and discuss about	chanics of train nent. the process o with realistic	
Module	:1 Intro	oduction:		2 Hours	
sources,	Energy so on and eff	demand-worldwide scenario- Types of C ources and their availability in India, Introducet on system operation.			
		from non-conventional sources -layout and	working of steam.		
-		ower plants-pumped storage plants- nuclear	-	,	
Module	:3 Gen	eration from renewable sources:		5 Hours	
	r alternate	energy sources- Power generation from tid	-		

Module:4	Economic Generation and Util	ization:		5 Hours	
Comparison	between AC and DC systems for	or transmiss	sion effici	ency, Load and load duration	
curve, dema	and and diversity factors, Plant c	capacity and	d plant u	se factors, choice of type of	
generation, choice of size and number of unit cost of energy generated, Tariffs-KW demand					
-	KVA demand constant. Introduc				
	Tools for Energy auditing, Causes				
factor, Case		1			
Module:5	Illumination:			5 Hours	
Nature of ra	diation, definition, laws, photom	etry, lightii	ng calcula	ations, design of illumination	
	or residential, industrial, com				
•	ve complexes), types of lamps-ene				
			v 1		
Module:6	Heating and Welding:			4 Hours	
Methods c	f heating, requirement of heatir	ng material	, design	of heating element, Types,	
	ns-furnaces, Ovens, , welding			ling transformer and its	
	tics, welding types.			-	
Module:7	Electric Traction:			4 Hours	
Introduction	, requirements of an ideal tractio	on system,	supply sy	stems for track electrification,	
types of tra	ction system and comparison, me	echanics of	train mo	vement traction motors and	
-		••••••••••••	train mo	venient, traction motors and	
control, m	ultiple units, braking, current				
control, m traction.	ultiple units, braking, current				
	ultiple units, braking, current				
	ultiple units, braking, current Contemporary issues:				
traction.	Contemporary issues:		systems	and recent trends in electric	
traction.	Contemporary issues: Total	collection	systems	and recent trends in electric 2 Hours	
traction. Module:8 Text Book(Contemporary issues: Total 3	collection	systems	and recent trends in electric 2 Hours 30 Hours	
traction. Module:8 Text Book(1. S S	Contemporary issues: Total 3 s) Sivanagaraju; M Balasubba Red	collection Lecture He ldy; D Sri	systems	and recent trends in electric 2 Hours 30 Hours	
traction. Module:8 Text Book(1. S S elec	Contemporary issues: Total s) Sivanagaraju; M Balasubba Red trical energy", Noida, India: Pears	collection Lecture He ldy; D Sri son, 2010.	systems ours latha, "C	and recent trends in electric 2 Hours 30 Hours Generation and utilization of	
traction. Module:8 Text Book(1. S S elec 2. J.B.	Contemporary issues: Total 5 Sivanagaraju; M Balasubba Red trical energy", Noida, India: Pears Gupta, 'Utilization of Electric Po	collection Lecture He ldy; D Sri son, 2010.	systems ours latha, "C	and recent trends in electric 2 Hours 30 Hours Generation and utilization of	
traction. Module:8 Text Book(1. S S elec 2. J.B.	Contemporary issues: Total 5 Sivanagaraju; M Balasubba Red trical energy", Noida, India: Pears Gupta, 'Utilization of Electric Po ond edition, 2012.	collection Lecture He ldy; D Sri son, 2010.	systems ours latha, "C	and recent trends in electric 2 Hours 30 Hours Generation and utilization of	
traction. Modulะ:8 Text Book(1. S S elec 2. J.B. secc Refererce I	Contemporary issues: Total 5 S) Sivanagaraju; M Balasubba Red trical energy", Noida, India: Pears Gupta, 'Utilization of Electric Po ond edition, 2012. Books	collection Lecture He ldy; D Sri son, 2010. ower and El	systems ours latha, "C ectric Tra	and recent trends in electric 2 Hours 30 Hours Generation and utilization of action', S.K.Kataria and Sons,	
traction. ModuL:S Text B→K(1) 1. S S elec 2. J.B. seco Refer:Elect 1. C.L	Contemporary issues: Total 5 Sivanagaraju; M Balasubba Red trical energy", Noida, India: Pears Gupta, 'Utilization of Electric Po ond edition, 2012. Books . Wadhwa, 'Generation, Distribu	collection Lecture He ldy; D Sri son, 2010. ower and El	systems ours latha, "C ectric Tra	and recent trends in electric 2 Hours 30 Hours Generation and utilization of action', S.K.Kataria and Sons,	
traction. ModuL:8 Text Book(1. S S elec 2. J.B. secc Refer:El 1. C.L New	Contemporary issues: Total 1 5) Sivanagaraju; M Balasubba Red trical energy", Noida, India: Pears Gupta, 'Utilization of Electric Po ond edition, 2012. Books Wadhwa, 'Generation, Distribu v Age International Pvt. Ltd, 2012	collection Lecture He ldy; D Sri son, 2010. ower and El ution and U	systems ours latha, "C ectric Tra Utilization	and recent trends in electric 2 Hours 30 Hours Generation and utilization of action', S.K.Kataria and Sons, of Electrical Energy', 3rd/e,	
traction. ModuL:S Text B→K(1. S S elec 2. J.B. secc Refer:E H 1. C.L New 2. Jam	Contemporary issues: Total 2 Sivanagaraju; M Balasubba Red trical energy", Noida, India: Pears Gupta, 'Utilization of Electric Po ond edition, 2012. Books Wadhwa, 'Generation, Distribu v Age International Pvt. Ltd, 2012 es L Kirtley, "Electric power prin	collection Lecture He ldy; D Sri son, 2010. ower and El ution and U	systems ours latha, "C ectric Tra Utilization	and recent trends in electric 2 Hours 30 Hours Generation and utilization of action', S.K.Kataria and Sons, of Electrical Energy', 3rd/e,	
traction. ModuL:8 Text B→K(9 1. S S elec 2. J.B secc Refer=VE I 1. C.L New 2. Jam Hot	Contemporary issues: Total 1 S) Sivanagaraju; M Balasubba Red trical energy", Noida, India: Pears Gupta, 'Utilization of Electric Po ond edition, 2012. Books . Wadhwa, 'Generation, Distribu v Age International Pvt. Ltd, 2012 es L Kirtley, "Electric power prin poken, N.J. : Wiley, 2013.	collection Lecture He ldy; D Sri son, 2010. ower and El ution and U 2. nciples: sou	systems ours latha, "C ectric Tra Utilization urces, con	and recent trends in electric 2 Hours 30 Hours Generation and utilization of action', S.K.Kataria and Sons, of Electrical Energy', 3rd/e, version, distribution and use",	
traction. ModuL:S Text B→K(2 1. S S elec 2. J.B. secc Refer:E H 1. C.L New 2. Jam Hot 3. Char	Contemporary issues: Total 2 Sivanagaraju; M Balasubba Red trical energy", Noida, India: Pears Gupta, 'Utilization of Electric Po ond edition, 2012. Books . Wadhwa, 'Generation, Distribu v Age International Pvt. Ltd, 2012 es L Kirtley, "Electric power prin poken, N.J. : Wiley, 2013. krabarti. A, Soni M I, Gupta H	collection Lecture He ldy; D Sri son, 2010. ower and El ution and U 2. nciples: sou	systems ours latha, "C ectric Tra Utilization urces, con	and recent trends in electric 2 Hours 30 Hours Generation and utilization of action', S.K.Kataria and Sons, of Electrical Energy', 3rd/e, version, distribution and use'',	
traction. ModuL:S Text B→K(1. S S elec 2. J.B secc Refer=VE I 1. C.L New 2. Jam Hot 3. Cha Dha	Contemporary issues: Total 1 S) Sivanagaraju; M Balasubba Red trical energy", Noida, India: Pears Gupta, 'Utilization of Electric Po ond edition, 2012. Books . Wadhwa, 'Generation, Distribu v Age International Pvt. Ltd, 2012 es L Kirtley, "Electric power prin poken, N.J. : Wiley, 2013. krabarti. A, Soni M I, Gupta H npat Rai & Co, 2008.	collection Lecture He ldy; D Sri son, 2010. ower and El ution and U 2. nciples: sou P V, "Text	systems ours latha, "C ectric Tra Utilization urces, con tbook on	and recent trends in electric 2 Hours 30 Hours Generation and utilization of action', S.K.Kataria and Sons, of Electrical Energy', 3rd/e, version, distribution and use'', power system engineering'',	
traction. ModuL:S Text B→ok(5 1. S S elec 2. J.B. secc Refer=ver H 1. C.L New 2. Jam Hot 3. Cha Dha Mode of Ev	Contemporary issues: Total 1 5) Sivanagaraju; M Balasubba Red trical energy", Noida, India: Pears Gupta, 'Utilization of Electric Po ond edition, 2012. Books Wadhwa, 'Generation, Distribu v Age International Pvt. Ltd, 2012 es L Kirtley, "Electric power prin poken, N.J. : Wiley, 2013. krabarti. A, Soni M I, Gupta F npat Rai & Co, 2008. aluation: CAT / Assignment / Qui	collection Lecture He ldy; D Sri son, 2010. ower and El ution and U nciples: sou P V, "Text z / FAT / P	systems ours latha, "C ectric Tra Utilization urces, con tbook on	and recent trends in electric 2 Hours 30 Hours Generation and utilization of action', S.K.Kataria and Sons, of Electrical Energy', 3rd/e, version, distribution and use", power system engineering",	
traction. ModuL:S Text Book (2 1. S S elecc 2. J.B. secc Referere I 1. C.L New 2. Jam Hot 3. Cha Dha Mode of Ev	Contemporary issues: Total 1 S) Sivanagaraju; M Balasubba Red trical energy", Noida, India: Pears Gupta, 'Utilization of Electric Po ond edition, 2012. Books . Wadhwa, 'Generation, Distribu v Age International Pvt. Ltd, 2012 es L Kirtley, "Electric power prin poken, N.J. : Wiley, 2013. krabarti. A, Soni M I, Gupta H npat Rai & Co, 2008.	collection Lecture He ldy; D Sri son, 2010. ower and El tion and U c. nciples: sou P V, "Text z / FAT / P /2016	systems ours latha, "C ectric Tra Utilization urces, con tbook on	and recent trends in electric 2 Hours 30 Hours Generation and utilization of action', S.K.Kataria and Sons, of Electrical Energy', 3rd/e, version, distribution and use", power system engineering",	

EEE4004	Distributed Generation and M	icrogrid	L T P J C
			3 0 0 4 4
Pre-requisite	EEE 3004		Syllabus version
Anti-requisite	Nil		v. 1.10
Course Objectiv			
1. Obtain kn system.	owledge of different distributed generations, e	nergy storage dev	vices and Microgrid
	ding the concepts of system development and r	elevant issues.	
Expected Course	e Outcome:		
*	n of this course the student will be able to:		
-	d the need for DG's and various types		
	d the synchronization of distributed resources s	such as energy sto	orage and fuel cell
3. Comprehe	end the issues of interfacing DG's in regulatory	market	-
	d the types of microgrid and its configuration		
	ver electronic equipment's in Microgrid and acc	quire the knowled	dge of multifunction
U	ected converters		
•	ne various types of control in micro grid in islan	0	
	rgy management concept in grid connected and	_	
Design a c	component or a product applying all the relevan	t standards with i	realistic constraints
		1	
	roduction to Distributed Generation		7 Hours
DG Units - Micr	ro turbines, reciprocating engines, wind gene	-	aic generators, fuel
DG Units - Micr cells, biomass, an	ro turbines, reciprocating engines, wind gene ad tidal sources - Need for Distributed generation	ion, renewable so	aic generators, fuel ources in distributed
DG Units - Micr cells, biomass, an generation, currer	ro turbines, reciprocating engines, wind gene ad tidal sources - Need for Distributed generation at scenario in Distributed Generation, Planning	ion, renewable so	aic generators, fuel ources in distributed
DG Units - Micr cells, biomass, an generation, currer	ro turbines, reciprocating engines, wind gene ad tidal sources - Need for Distributed generation	ion, renewable so	aic generators, fuel ources in distributed
DG Units - Micr cells, biomass, an generation, currer optimal placemen	to turbines, reciprocating engines, wind gene ad tidal sources - Need for Distributed generation at scenario in Distributed Generation, Planning at of DG sources in distribution systems.	ion, renewable so	aic generators, fuel ources in distributed and sizing of DGs –
DG Units - Micr cells, biomass, an generation, curren optimal placemen Module:2 Gri	ro turbines, reciprocating engines, wind gene ad tidal sources - Need for Distributed generation at scenario in Distributed Generation, Planning at of DG sources in distribution systems.	on, renewable so of DGs – Siting	aic generators, fuel ources in distributed and sizing of DGs – 6 Hours
DG Units - Micro cells, biomass, an generation, curren optimal placemen Module:2 Gri Synchronization	ro turbines, reciprocating engines, wind gene ad tidal sources - Need for Distributed generation at scenario in Distributed Generation, Planning at of DG sources in distribution systems.	on, renewable so of DGs – Siting d DGs and rota	aic generators, fuel ources in distributed and sizing of DGs – <u>6 Hours</u> ting machine based
DG Units - Micro cells, biomass, an generation, curren optimal placemen Module:2 Gri Synchronization	ro turbines, reciprocating engines, wind gene ad tidal sources - Need for Distributed generation at scenario in Distributed Generation, Planning at of DG sources in distribution systems.	on, renewable so of DGs – Siting d DGs and rota	aic generators, fuel ources in distributed and sizing of DGs – <u>6 Hours</u> ting machine based
DG Units - Micr cells, biomass, an generation, curren optimal placemen Module:2 Gri Synchronization interfaces - Aggre	ro turbines, reciprocating engines, wind gene ad tidal sources - Need for Distributed generation at scenario in Distributed Generation, Planning at of DG sources in distribution systems.	on, renewable so of DGs – Siting ed DGs and rota	aic generators, fuel ources in distributed and sizing of DGs – <u>6 Hours</u> ting machine based
DG Units - Micr cells, biomass, an generation, currer optimal placemen Module:2 Gri Synchronization interfaces - Aggre	ro turbines, reciprocating engines, wind gene ad tidal sources - Need for Distributed generation at scenario in Distributed Generation, Planning at of DG sources in distribution systems. Id integration of DGs - Different types of interfaces - Inverter base egation of multiple DG units - Distributed resources	on, renewable so of DGs – Siting ed DGs and rota	aic generators, fuel ources in distributed and sizing of DGs – <u>6 Hours</u> ting machine based
DG Units - Micr cells, biomass, an generation, currer optimal placemen Module:2 Gri Synchronization interfaces - Aggre 1547. Energy stor	ro turbines, reciprocating engines, wind gene ad tidal sources - Need for Distributed generation at scenario in Distributed Generation, Planning at of DG sources in distribution systems. Id integration of DGs - Different types of interfaces - Inverter base egation of multiple DG units - Distributed resources	on, renewable so of DGs – Siting ed DGs and rota	aic generators, fuel ources in distributed and sizing of DGs – <u>6 Hours</u> ting machine based
DG Units - Microscells, biomass, and generation, current optimal placementModule:2Gri Synchronization interfaces - Aggree 1547. Energy storModule:3Economic	ro turbines, reciprocating engines, wind gene ad tidal sources - Need for Distributed generation at scenario in Distributed Generation, Planning at of DG sources in distribution systems. Id integration of DGs - Different types of interfaces - Inverter base egation of multiple DG units - Distributed resour- rage elements: Batteries, ultra-capacitors, flywh	on, renewable so of DGs – Siting ed DGs and rota press to electric po eels.	aic generators, fuel ources in distributed and sizing of DGs – 6 Hours ting machine based ower systems: IEEE 6 Hours
DG Units - Micr cells, biomass, an generation, curren optimal placemen Module:2 Gri Synchronization interfaces - Aggre 1547. Energy stor Module:3 Eco Selection of source	ro turbines, reciprocating engines, wind gene ad tidal sources - Need for Distributed generation at scenario in Distributed Generation, Planning at of DG sources in distribution systems. Id integration of DGs - Different types of interfaces - Inverter base egation of multiple DG units - Distributed resour- age elements: Batteries, ultra-capacitors, flywh	on, renewable so of DGs – Siting ed DGs and rota arces to electric po eels.	aic generators, fuel ources in distributed and sizing of DGs – 6 Hours ting machine based ower systems: IEEE 6 Hours ting DG installation
DG Units - Microscells, biomass, and generation, current optimal placement Module:2 Grid Synchronization interfaces - Aggree 1547. Energy store Module:3 Ecconstruction classes, security interfaces - Aggree 1547.	ro turbines, reciprocating engines, wind gene ad tidal sources - Need for Distributed generation at scenario in Distributed Generation, Planning at of DG sources in distribution systems. Id integration of DGs - Different types of interfaces - Inverter base egation of multiple DG units - Distributed resour- age elements: Batteries, ultra-capacitors, flywh Donomics and Regulatory Aspects of DGs ces, regulatory standards/ framework, Standard	on, renewable so of DGs – Siting ed DGs and rota arces to electric po eels.	aic generators, fuel ources in distributed and sizing of DGs – 6 Hours ting machine based ower systems: IEEE 6 Hours ting DG installation
DG Units - Microscells, biomass, and generation, current optimal placement Module:2 Grid Synchronization interfaces - Aggree 1547. Energy store Module:3 Ecconstruction classes, security interfaces - Aggree 1547.	ro turbines, reciprocating engines, wind gene ad tidal sources - Need for Distributed generation at scenario in Distributed Generation, Planning at of DG sources in distribution systems. Id integration of DGs - Different types of interfaces - Inverter base egation of multiple DG units - Distributed resour- rage elements: Batteries, ultra-capacitors, flywh Donomics and Regulatory Aspects of DGs ces, regulatory standards/ framework, Standard ssues in DG implementations. Economic and c	on, renewable so of DGs – Siting ed DGs and rota arces to electric po eels.	aic generators, fuel ources in distributed and sizing of DGs – 6 Hours ting machine based ower systems: IEEE 6 Hours ting DG installation
DG Units - Micr cells, biomass, an generation, currer optimal placemen Module:2 Gri Synchronization interfaces - Aggre 1547. Energy stor Module:3 Ecc Selection of source classes, security i issues and challer	ro turbines, reciprocating engines, wind gene ad tidal sources - Need for Distributed generation at scenario in Distributed Generation, Planning at of DG sources in distribution systems. Id integration of DGs - Different types of interfaces - Inverter base egation of multiple DG units - Distributed resour- rage elements: Batteries, ultra-capacitors, flywh Donomics and Regulatory Aspects of DGs ces, regulatory standards/ framework, Standard ssues in DG implementations. Economic and c	on, renewable so of DGs – Siting ed DGs and rota arces to electric po eels.	aic generators, fuel burces in distributed and sizing of DGs – 6 Hours ting machine based ower systems: IEEE 6 Hours ting DG installation DGs –Market facts,
DG Units - Microscells, biomass, and generation, current optimal placement Module:2 Grit Synchronization interfaces - Aggree 1547. Energy stor Module:3 Eccord Selection of source classes, security i issues and challer Module:4 Int	ro turbines, reciprocating engines, wind gene ad tidal sources - Need for Distributed generation at scenario in Distributed Generation, Planning at of DG sources in distribution systems. Id integration of DGs - Different types of interfaces - Inverter base egation of multiple DG units - Distributed resour rage elements: Batteries, ultra-capacitors, flywh Donomics and Regulatory Aspects of DGs ces, regulatory standards/ framework, Standard ssues in DG implementations. Economic and c ages - Limitations of DGs.	on, renewable so of DGs – Siting ed DGs and rota arces to electric po eels. s for interconnec ontrol aspects of	aic generators, fuel burces in distributed and sizing of DGs – 6 Hours ting machine based ower systems: IEEE 6 Hours ting DG installation DGs –Market facts, 5 Hours
DG Units - Microscells, biomass, and generation, current optimal placement Module:2 Grid Synchronization interfaces - Aggree 1547. Energy stor Module:3 Ecconstruction Selection of source classes, security i issues and challer Module:4 Interface	ro turbines, reciprocating engines, wind gene ad tidal sources - Need for Distributed generation at scenario in Distributed Generation, Planning at of DG sources in distribution systems. Id integration of DGs - Different types of interfaces - Inverter base egation of multiple DG units - Distributed resour- age elements: Batteries, ultra-capacitors, flywh Donomics and Regulatory Aspects of DGs ces, regulatory standards/ framework, Standard ssues in DG implementations. Economic and c ages - Limitations of DGs. roduction to Microgrid urations – CERTS Microgrid Test Bed – DC I	on, renewable so of DGs – Siting ed DGs and rota arces to electric po eels. s for interconnec ontrol aspects of	aic generators, fuel purces in distributed and sizing of DGs – 6 Hours ting machine based ower systems: IEEE 6 Hours ting DG installation DGs –Market facts, 5 Hours
DG Units - Microgrid Config Module:2 Gri Module:2 Gri Synchronization interfaces - Aggre 1547. Energy stor Selection of source classes, security i issues and challer Int Module:4 Int Microgrid Config Microgrid – Hybr	ro turbines, reciprocating engines, wind gene ad tidal sources - Need for Distributed generation at scenario in Distributed Generation, Planning at of DG sources in distribution systems. Id integration of DGs - Different types of interfaces - Inverter base egation of multiple DG units - Distributed resour- age elements: Batteries, ultra-capacitors, flywh Donomics and Regulatory Aspects of DGs ces, regulatory standards/ framework, Standard ssues in DG implementations. Economic and c ages - Limitations of DGs. roduction to Microgrid	on, renewable so of DGs – Siting ed DGs and rota arces to electric po eels. s for interconnec ontrol aspects of	aic generators, fuel purces in distributed and sizing of DGs – 6 Hours ting machine based ower systems: IEEE 6 Hours ting DG installation DGs –Market facts, 5 Hours C Microgrid –LFAC
DG Units - Microgrid Cells, biomass, and generation, current optimal placement Module:2 Grid Module:2 Grid Synchronization interfaces - Aggred 1547. Energy store Selection of source classes, security i issues and challer Interface Module:4 Interface Module:5 Poy	ro turbines, reciprocating engines, wind gene ad tidal sources - Need for Distributed generation at scenario in Distributed Generation, Planning at of DG sources in distribution systems. id integration of DGs - Different types of interfaces - Inverter base egation of multiple DG units - Distributed resources age elements: Batteries, ultra-capacitors, flywh conomics and Regulatory Aspects of DGs ces, regulatory standards/ framework, Standard ssues in DG implementations. Economic and c ages - Limitations of DGs. roduction to Microgrid urations – CERTS Microgrid Test Bed – DC I id DC- and AC- Coupled Microgrid wer Electronics in Microgrid	ion, renewable so of DGs – Siting ed DGs and rota irces to electric po- eels. s for interconnec ontrol aspects of Microgrid- HFAC	aic generators, fuel purces in distributed and sizing of DGs – 6 Hours ting machine based ower systems: IEEE 6 Hours ting DG installation DGs –Market facts, 5 Hours C Microgrid –LFAC 6 Hours
DG Units - Microgrid Config Module:2 Gri Module:2 Gri Synchronization interfaces - Aggre 1547. Energy stor 1547. Energy stor Module:3 Ecc Selection of source classes, security i issues and challer Microgrid Config Microgrid – Hybr Module:5 Power Electronic Power	ro turbines, reciprocating engines, wind gene ad tidal sources - Need for Distributed generation at scenario in Distributed Generation, Planning at of DG sources in distribution systems. Id integration of DGs - Different types of interfaces - Inverter base egation of multiple DG units - Distributed resour- age elements: Batteries, ultra-capacitors, flywh Donomics and Regulatory Aspects of DGs ces, regulatory standards/ framework, Standard ssues in DG implementations. Economic and c ages - Limitations of DGs. roduction to Microgrid urations – CERTS Microgrid Test Bed – DC I id DC- and AC- Coupled Microgrid	on, renewable so of DGs – Siting ed DGs and rota arces to electric pe eels. s for interconnec ontrol aspects of Microgrid- HFAC	aic generators, fuel burces in distributed and sizing of DGs – 6 Hours ting machine based ower systems: IEEE 6 Hours ting DG installation DGs –Market facts, 5 Hours C Microgrid –LFAC 6 Hours – Battery Charging

	Lenge (Deemin	ed to be University under section 3 of	00C Act, 19.			
Module:6	Control in Microgrid			7 Hours		
Impact of load characteristics - Local control - Centralized Control- Decentralized Control-						
Microgrid control for islanded operation - PQ Control - Droop control methods -						
Frequency/V	oltage Control – Control of I	Inverter Output Im	pedanc	e.		
Module:7	Microgrid Energy Manag	gement Systems		6 Hours		
Introduction	- Load Sharing and Power	Management Stra	ategy i	n Microgrid - Stand-alone – Grid		
connected -	energy storage - Voltage Cor	ntrol and Active Po	ower M	lanagement.		
Module:8	Contemporary issues:			2 Hours		
		Total Lecture H	ours	45 Hours		
Text Book(s)					
1.	N. Jenkins, J.B.Ekanayake	and G.Strbac, 'Di	stribute	ed Generation', IET Press, 2010		
2.	Nikos Hatziargyiou, "Micr	ogrids: Architectu	res and	Control", Wiley-IEEE Press		
	December 2013					
Reference B	ooks					
1.				Georgios I. Orfanoudakis, Babar		
	Hussai, "Power Electronic	Converters for Mi	crogric	l", Wiley-IEEE Press, 2014		
2.	2. S.Chowhury, S.P.Chowdury and Peter Crossley," Microgrids and Active Distribution					
Networks" ISBN978-1-84919-014-5, IET renewable Energy series, 2009						
Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar						
Recommend	Recommended by Board of Studies 05/03/2016					
Approved by	Academic Council	40 th AC	Date	18/03/2016		

		60 	L T P J C
EEE4005	Power System Operation and	Control	2 0 0 4 3
Pre-requisite	EEE 3003		yllabus version
Anti-requisite	Nil		v. 1.0
Course Objecti			
1. This econd2. Introd power3. Introd contrExpected CoursOn successful co1. Analyze the 	course will provide the student with power gene omic mode and their control. duce students to the important terminal character or generation systems. duce current topics in the system developmen ol systems for power system network. Se Outcome: ompletion of the module, students will be able to basic structure of power system and the effer of managerial issues in operating states of the power and ALFC mathematically relationship between voltage and reactive power	ristics for hydroelec t and methods are ct of load character yer system to be addressed in th	etric and thermal used in modern istics on system e solution of unit
	Energy Management System		
8. Design a co	mponent or a product applying all the relevant st	andards with realistic	c constraints
Module:1 Po	ower System Performance		2 Hours
	racteristics, load curves, load-duration curve, loa	l d factor, diversity fa	
•	stalled reserves, spinning reserves, cold reserves	•	
1			
Module:2 Po	ower System Operation		4 Hours
Load forecasting	, unit commitment, load dispatching. Governor	control, LFC, EDC,	AVR, system
voltage control,	security control.		
		I	
	utomatic Generation Control		7 Hours
system: Static a Control, Multi-a	acteristics, Load sharing concept of control and dynamic analysis of uncontrolled and co rea systems modeling, static analysis, uncontrol tate variable model	ntrolled cases, Eco	nomic Dispatch
	utomatic voltage control		7 Hours
and absorption of	on system, modeling, static and dynamic analysi of reactive power, Relation between voltage, po and MVAR injection of switched capacitors-r s,	wer and reactive pow	wer; Injection of
		1	
Module:5 U	nit Commitment(UC)		3 Hours

Unit Commitment (UC) constraints in UC, spinning reserve, thermal, hydro, fuel and other constraints, UC solution methods, Priority-list methods, forward dynamic programming approach, numerical problems.

Module	:6	Economic Dispatch (ED)			2 Hours	
Incremental cost curve, co-ordination equations without loss and with loss, solution by direct method						
and λ -it	eratic	on method, Base point and j	participation factor	s and	Economic dispatch controller with	
LFC con	ntrol					
Module	:: 7	Energy Management Syst	tem		3 Hours	
Energy	contr	ol, Monitoring, data acquisi	tion and control, S	Systen	n hardware configuration, SCADA	
and EM	S fun	ctions, Network topology d	etermination, state	estim	ation, security analysis and control,	
Various	oper	ating states: Normal, alert	, emergency, in e	xtrem	is and restorative, State transition	
diagram	shov	ving various state transitions	and control strateg	gies		
Module	::8	Contemporary issues:			2 Hours	
			Total Lecture Ho	ours	30 Hours	
Text Bo	ook(s)					
1.	DP	Kothari, I J Nagrath, "Mod	ern Power System	Anal	ysis", Publisher Name, 3rd Edition,	
	2011					
2.	Alle	n.J.Wood and Bruce F.Woll	lenberg, 'Power Ge	enerat	ion, Operation and Control', 3rd/e,	
	John	Wiley & Sons, Inc., 2013.				
Referen	ice B	ooks				
1.	PS	R Murthy, 'Operation and C	ontrol in Power Sy	stems	', BS Publications ; Leiden : CRC	
		s, cop. 2011.				
2.			er Engineering Ha	nd Bo	ok', 3rd/e, CRC Press &IEEE	
		s, 2012.				
3.		.	em Stability & Cor	ntrol',	Third edition, Boca Raton, Fla. :	
		2 Press, 2012				
Mode of	f Eva	luation: CAT / Assignment /	' Quiz / FAT / Proj	ect / S	eminar	
Recomm	nende	ed by Board of Studies	05/03/2016			
Approved by Academic Council40th ACDate18/03/2016						

EEE4006	Restructured Power Systems	L	Τ	Р	J	С
		3	0	0	0	3
Pre-requisit	e EEE 3003	Syll	abı	18 1	ver	sion
Anti-requisi	te Nil				v	. 1.0
Course Obj	ectives:					
2. Expla conge 3. Introd 4. Introd	course will provide the student with an overview of the restructuri cturing models. in the students to stranded costs, market operations, and transmiss stion management. luce the various restructuring models of power systems luce the restructuring process taken place in international scenario with p luce the current scenario of deregulation in Indian Power sector.	sion	pr	riciı	ng	and
Expected Co	ourse Outcome:					
 Analyze environ Design 	and specify the various pricing mechanisms in electrical power sector the congestion management, stability aspects, and power quality issuement. The market architecture and power market aspects the effective and efficient market pricing schemes followed in Indian power				gul	ated
Module:1	Power System Restructuring			2	ц	ours
	• •					
	cture of a deregulated electricity system ,Comparison with Vertically in vaton for restructuring of power system-Different entities-Benefits fro	-				
Module:2	Operations in Power Market			5	H	ours
Restructuring	Models-poolco, bilateral, hybrid models-ISO, Role of ISO, Power of e-Single Auction and Double Auction Power Pool.	exch	an			
M. J. J. 2					TT	
Module:3	Transmission and Congestion Pricing					ours
	Pricing, Transmission cost allocation methods: Postage stamp rate method W Mile method with examples, Congestion Pricing, Congestion prights.					-

Modul	le:4	Congestion Management	to be University under section 3 of			6 Hours
-	conges	t of Inter-zonal and intra-zonal stion sub problem with examples	-	-		
Modul	le:5	Available Transfer Capab	ility (ATC)			5 Hours
Definit	tions,	OASIS, Methods of ATC Det	ermination, ATC	calculation	using MATLAB/P	WS.
Modul	le:6	Ancillary service Manager	nent			9 Hours
servic	es –	on of Ancillary services as Voltage control and reactive dards CPS1 and CPS2 –Case	power support of			
Modul	le:7	Reforms in Indian Power S	Sector			9 Hours
Electric	city ad	 Framework of Indian pow ct 2003 – players in the Indi he near future 				
Modul	le:8	Lecture by Industry Expe	erts.			2 Hours
Modul	le:8	Lecture by Industry Expe	erts.	Tot	al Lecture Hours	2 Hours 45 Hours
Modul Text B			erts.	Tot	al Lecture Hours	
	Book(s		ffaq Alomoush,	Marcel D	ekker, "Restructure	45 Hours ed Electrical
Text B	Book(s Mol pow Kan) nammad Shahidepour Muea	ffaq Alomoush, g and Volatility ", Boolen, Jaap E. I	Marcel D CRC Pres	ekker, "Restructure s; 1st edition, 2001.	45 Hours ed Electrical
Text B 1.	Book(s Mol pow Kan syst) nammad Shahidepour Mueat rer systems Operation, Tradin kar Bhattacharya, Math H.J. ems ", Kluwer Academic pub	ffaq Alomoush, g and Volatility ", Boolen, Jaap E. I	Marcel D CRC Pres	ekker, "Restructure s; 1st edition, 2001.	45 Hours ed Electrical
Text B 1. 2.	Gook(s Mol pow Kan syst ence B) nammad Shahidepour Mueat rer systems Operation, Tradin kar Bhattacharya, Math H.J. ems ", Kluwer Academic pub	ffaq Alomoush, g and Volatility ", Boolen, Jaap E. I lishers, 2012. m Restructuring a	Marcel D CRC Pres Daadler, "	ekker, "Restructure s; 1st edition, 2001. Operation of restruc ation Trading, Perfe	45 Hours ed Electrical ctured power
Text B 1. 2. Refere	Book(s Mol pow Kan syst ence B Loi info Mar) nammad Shahidepour Muea ver systems Operation, Tradin kar Bhattacharya, Math H.J. ems ", Kluwer Academic pub ooks Lei Lai ,John, " Power System	ffaq Alomoush, g and Volatility ", Boolen, Jaap E. I lishers, 2012. m Restructuring a Wiley &Sons Ltd and Lester fink, "	Marcel D CRC Pres Daadler, " nd deregul England ,2	ekker, "Restructure s; 1st edition, 2001. Operation of restruc ation Trading, Perfe	45 Hours
Text B 1. 2. Reference 1.	Gook (s Mol pow Kan syste ence B Loi info Mar and P.V) nammad Shahidepour Muea ver systems Operation, Tradin kar Bhattacharya, Math H.J. ems ", Kluwer Academic pub ooks Lei Lai ,John, " Power System rmation Technology ", John V ija Illic, Francisco Galiana a	ffaq Alomoush, g and Volatility ", Boolen, Jaap E. I lishers, 2012. m Restructuring a Wiley &Sons Ltd and Lester fink, " nic publishers, US Charles raja, "E	Marcel D CRC Pres Daadler, " nd deregul England ,2 Power Sys SA 2013. ectrical Po	ekker, "Restructure s; 1st edition, 2001. Operation of restruc ation Trading, Perfe 2001. stem Restructuring ower systems Analy	45 Hours ed Electrical ctured power ormance and Engineering
Text B 1. 2. Refere 1. 2. 3.	Gook (s Mol pow Kan syste nce B Loi info Mar and P.V and) nammad Shahidepour Muea ver systems Operation, Tradin kar Bhattacharya, Math H.J. ems ", Kluwer Academic pub ooks Lei Lai ,John, " Power System rmation Technology ", John V ija Illic, Francisco Galiana a Economics ", Kluwer Acader enkatesh, B.V.Manikantan, S	ffaq Alomoush, g and Volatility ", Boolen, Jaap E. I lishers, 2012. m Restructuring a Wiley &Sons Ltd and Lester fink, " nic publishers, US Charles raja, "El private limited, N	Marcel D CRC Pres Daadler, " nd deregul England ,2 Power Sys SA 2013. ectrical Po lew Delhi 2	ekker, "Restructure s; 1st edition, 2001. Operation of restruc ation Trading, Perfe 2001. stem Restructuring ower systems Analy 2012.	45 Hours ed Electrical ctured power ormance and Engineering
Text B 1. 2. Refere 1. 2. 3. Mode of	Book (s Mol pow Kan syst ence B Loi info Mar and P.V and of Ev:) nammad Shahidepour Muea ver systems Operation, Tradin kar Bhattacharya, Math H.J. ems ", Kluwer Academic pub ooks Lei Lai ,John, " Power System rmation Technology ", John V ija Illic, Francisco Galiana a Economics ", Kluwer Acader enkatesh, B.V.Manikantan, S deregulation ", PHI Learning	ffaq Alomoush, g and Volatility ", Boolen, Jaap E. I lishers, 2012. m Restructuring a Wiley &Sons Ltd and Lester fink, " nic publishers, US Charles raja, "El private limited, N	Marcel D CRC Pres Daadler, " nd deregul England ,2 Power Sys SA 2013. ectrical Po lew Delhi 2	ekker, "Restructure s; 1st edition, 2001. Operation of restruc ation Trading, Perfe 2001. stem Restructuring ower systems Analy 2012.	45 Hours ed Electrical ctured power ormance and Engineering

EEE4007		Energy Management Systems and SCAI	DA	L	T	P J	C
				3	0	0 () 3
Pre-requisit		EEE3003		Sylla	bus	s ver	sion
Anti-requisi		Nil				V	. 1.0
Course Obj							
		se aims to make the students familiar with the prep				-	
	-	the next day's operation and the various autom					
		nted on the system to meet the Minute-to-minute	variation	of sys	tem	loa	d in
p	ower sy	stellis.					
Expected Co	ourse O	Outcome:					
-		e course the student will be able to					
1. Outli	ne the f	unction of Energy Management System (EMS) and lo	bad flow	method	S		
0		e factors influencing fuel scheduling.					
		thermal coordination and load scheduling	1 .1				
	-	techniques for power/energy interchange and app Environment.	ly the w	heeling	cc	ncep	ot in
		estimation techniques in power system prediction/ana	lvsis				
		SCADA architecture and functional requirements	1y515.				
		CADA concept in power system automation.					
	-						
						< •••	
Module:1		view of Load Flow Methods				6 H	ours
Energy Man	agemen	t Centres and their functions – Recent Developments.	•				
Module:2	Econo	omic Dispatch				6 H	ours
Take or pay		pply contract – Composite Generation and solution –	Fuel sche	eduling	Pro		
I V		· · · · ·					
Module:3	Hydro	othermal Coordination				7 H	ours
Short term	hydro	scheduling - Pumped storage hydro plant. Unit	Commi	tment		Solut	ions
techniques of	f unit co	ommitment.					
Module:4		change of power and energy					ours
		er and energy, Economic aspects, Energy Intercha					
Power Pool,	Transm	ission effects and Issues, Wheeling, Transaction invo	olving not	n-utility	^y Pa	rties	•
Module:5	State	Estimation				7 H	ours
		nation, Power System State Estimation, Maximum I	ikelv hor	od conc	ent		
		mation (WLS), WLS by DC Analysis, Concept of obs	•		-		
				J, L. 20			
Module:6	Super	visory Control and Data Acquisition				6 H	ours
		pervisory Control and Data Acquisition – SCADA F					
-		acture of a SCADA communication Protocol - Gene	ral featur	es, Fur	icti	ons a	ind
Application						5 11	01122
Module:7	rowel	r Systems SCADA				3 H	ours

Introdu	ction	to Power Systems SCADA a	and SCADA in Por	wer Syste	m Automation.		
Module:8Contemporary issues:2 Ho							
			Total Lecture H	ours	45 Hours		
Text Bo	ook(s)						
1.		d, A. J and Wollenberg, B. Wiley and Sons, 2013.	F, "Power Gener	ation Ope	eration and Control", 2 nd Edition		
2.			onald, "Power syst	em SCAI	DA and smart grids", CRC press,		
	2015	5.					
Refere	nce Bo	ooks					
1.	Stua	rt A.Boyer, "SCADA: Supe	rvisory Control an	nd Data A	cquisition", by ISA; 4th Revised		
	Editi	ion 2010.					
2.	Turn	er, W. C, "Energy Manager	nent Handbook", '	Vol. 2, 8th	n Edition, 2010.		
3.	Gree	en, J. N, Wilson, R, "Contro	ol and Automation	of Electr	ic Power Distribution Systems",		
	Tayl	or and Francis, 2007.					
4.	Prac	tical Modern SCADA Prot	tocols: DNP3, 60	870.5 and	l Related Systems", by Gordon		
	R.Clarke, Deon Reynder & Edwin wright - Elsevier, Newness Publications 2004.						
Mode o	f Eval	luation: CAT / Assignment /	/ Quiz / FAT / Proj	ject / Sem	inar		
Recom	nende	ed by Board of Studies	05/03/2016				
Approv	proved by Academic Council 40 th AC Date 18/03/2016						

EEE4008		High Voltage Engineerin	g	L	T	P J	I C
				3	0	0 0) 3
Pre-requisit	e	EEE3003		Sylla			sior
Anti-requisi		Nil				v	. 1.0
Course Obje	ectives:						
 D di 2. D 3. A m 4. E co Expected Co On the comp Discuss insulati Derive Derive Derive Derive dentify Design Analyzo 	viscuss a ielectric besign hi nalyze heasuren xplain t bordinat ourse O letion o s and ar on syste and ana and ana own y the var high vo e the var	gh voltage, high current and impulse generat the various methodologies for high voltage nent he various types of over-voltages in power ion of power apparatus utcome: f this course the student will be able to: nalyze various types of electrical stress con	ors , high current an system and meth trol techniques ir eakdown voltage wn in liquid and n current generation npulse generators neasurement techn	d imp nods fo n gas a d solic	ulse or in and	e vol nsula	tage ation
Module:1	High stress:	voltages in electrical systems and electric				6 Ho	Durs
in the dielec	gh volta trics –	ge – Electrical insulation and Dielectrics – i Electric field stresses – gas / vaccum as ir e voltage their distribution and control.	-				-
Module:2	Condi	iction and breakdown in gases				6 Ho	our
Gases as insu equation – 0 breakdown - gases – time	ulating r Current the exp e lags t	nedia - Collision Processes – Ionization Pro- growth in the presence of secondary pro- erimental determination of coefficients α an for breakdown – streamer theory of break hiform field and corona discharges.	ocesses - Townse dγ–breakdown	end's o in elec	rren crite tro	nt gro erion nega	owth foi ative
Module:3	Condu dielect	iction and breakdown in Liquid, solid trics				6 Ho	ours
commercial l	liquids –	 conduction and breakdown in pure liquids testing of insulating oils – breakdown in sol ind thermal - breakdown in composite dielectr 	id dielectrics – int			n in	

Module:4Generations of high voltages and currents6 HoursGenerationsof high direct current and alternating voltages – generation of impulse voltages and
currents – tripping and control of impulse generators.6 Hours

Module:	5	Measurement of high voltages and currents		6 Hours		
Measure	ment	t of high direct current voltages - Measurement	of h	igh ac and impulse voltages -		
Measurement of high current - direct, alternating and impulse - cathode ray oscillographs for						
impulse voltage and current measurements – measurement of direct current resistivity - measurement						
of dielect	tric c	constant and loss factor - partial discharge measure	ment.			
Module:		High voltage testing of electrical apparatus		7 Hours		
0		nsulators and bushings - Testing of isolators and c		e		
Testing	of tr	ansformers - Testing of surge arrestors - radio inte	rferen	ce measurements.		
Module:	:7	Over voltage and insulation coordination in		6 Hours		
		electric power system:				
		es for over voltages – lightning switching and	-			
0		voltage - bewley's lattice diagram - principles	of in	sulation coordination on high		
	1	xtra high voltage power system.				
Module:	:8	Contemporary issues:		2 Hours		
		Total Lecture Hours		45 Hours		
Text Boo	ok(s)					
1.	High	n Voltage Engineering by M.S.Naidu and V. I	Kamar	aju – TMH Publications, 5rd		
	Editi	ion,2013.				
2.	High	n Voltage Engineering: Fundamentals by E.Kuffe	l, W.	S.Zaengl, J.Kuffel by Elsevier,		
	2nd	Edition, 2000.				
Reference						
		a High Voltage AC Transmission Engineering,	Rako	sh Das Begamudre, New Age		
		rnational (P) Ltd., New Delhi – 2007.				
2.	High	Notage Engineering by C.L.Wadhwa, New Age	Interna	ationals (P) Limited, 2010.		
		Voltage Engineering:, E. Kuffel, W. S. Zaengl,	J. Kuf	fel, Cbs Publishers New Delhi,		
		Edition, 2005.	~ .			
Mode of	Eva	luation: CAT / Assignment / Quiz / FAT / Project /	Semi	nar		
Recomm	ende	ed by Board of Studies 05/03/2016				
Approve	d by	Academic Council 40th AC Dat	e	18/03/2016		

Γ

EEE4009	FACTS and HVDC		L T P J C 3 0 0 4 4
Pre-requisite	EEE3003, EEE 3004		Syllabus version
Anti-requisite	Nil		v. 1.0
Course Objective			
2. Identify	tand the importance of controllable parameters the significance of HVDC over HVAC transmittion of HVDC links in practical power systems	nission systems, typ	
Expected Course	Outcomo		
· · · · · · · · · · · · · · · · · · ·	tion of this course the student will be able to:		
-	he applications of FACTS Controllers in powe	r flow	
	t the significance of shunt, series compensation		S devices on
	control.		5 devices on
	e the functional operation and design the contr	oller of GCSC_TSS	SC TCSC and
SSSC.	e die fanedonal operation and deorgn die eona		, , , , , , , , , , , , , , , , , , ,
	the principles, operation and control of UPFC	and IPFC.	
	be the SSR theory and its mitigation methods u		ollers.
6. Explain	the HVDC concepts and application of HVD	C systems in bulk p	ower
transmi	ssion.		
7. Classify	y the DC links and describe the operation of va	rious MTDC system	ms.
8. Design	a component or a product applying all the rele	vant standards with	realistic
constra	ints		
	oduction flow in transmission lines, Application and	alassification of F	6 Hours
	DC transmission- Comparison between HVD		
Module:2 Shu	nt connected Devices		6 Hours
Objectives of sh	unt compensation , Methods of controll	able VAR genera	ation, Static Var
Compensator, STA		1	
	es connected devices		7 Hours
Objectives of serie	s compensation, GCSC, TSSC, TCSC and SS	SC	
Module:4 Con	ibined controllers		6 Hours
Unified Power Flo	ow Controller, Interline Power Flow Control	ler and Generalize	d Unified Power
Flow Controller			
Module:5 Sub	synchronous Resonance		5 Hours
SSR Theory and M	litigation using FACTS controllers		
Module:6 HVI	DC Transmission		7 Hours
Introduction to C	SI and VSI based HVDC Controllers. Conver	ter control, Configu	uration of HVDC
	ends in HVDC transmission, HVDC systems i	, 0	
Module:7 Dc I	links		6 Hours
	Back to back HVDC connections. Multi-term	inal HVDC system	
	ntemporary issues:		2 Hours
	Total Lecture Hours		45 Hours
	i our Lecture Hours		

Text Book(s)						
1.	Narain Hingorani & Lazzlo Gyu	ıgi "Understandin	g FACTS	. Concepts & Technology of		
	FACTS", Standard publishers &	distributors, 200	1.			
2.	K.R.Padiyar,"HVDC Power Tra	nsmission System	ns "New A	Academic Science , 2017		
Referen	nce Books					
1.	R.Mohan Mathur, Rajiv.K.Var	ma, "Thyristor	Based FA	ACTS Controllers for Electrical		
	Transmission systems" John W	iley and Sons, 20	11.			
2.	Jos Arrillaga, Y. H. Liu, Nevill	le R. Watson " I	Flexible F	ower Transmission: The HVDC		
	Options", Wiley 2007.					
Mode o	Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar					
Recom	mended by Board of Studies	05/03/2016				
Approv	ed by Academic Council	40 th AC	Date	18/03/2016		

EEE4010		Power Quality		\mathbf{L}	T	P J	С
				2	0	0 4	3
Pre-requisite		EEE3004		Sylla		l	_
Anti-requisite		Nil					1.1
Course Object							
1. To c	describ	e power quality characteristics as per IEEE/	EC standards				
2. To s	simula	te and analyze overvoltage and transients in	power systems				
		te SAIDI/SAIFI and THD at customer site us					
4. To c	conduc	t power quality survey at an Industrial/Datac	entre/Hospital si	te			
Expected Cou	rse Oi	itcome:					
		this course the student will be able to:					
1. Defi	ine and	d Describe power quality characteristics as po	er IEEE/IEC stan	dards			
	•	oltage sag and interruption					
		ate over voltages and enumerate the methods		oltages			
		armonics & Design of filters for harmonic re		_			
		E/IEC power quality standards for measurer					
		ower quality at an Industry/Data centre/Hosp			on		
		nodel to Evaluate power quality in grid integ					~ .
	ign a straints	component or a product applying all th	e relevant stand	Jards v	vitn	rean	suc
COILS	stramta	b					
		uction To Power Quality as: Overloading - under voltage - over vol	tage. Concepts of	of trans		H o 5 - sl	
Terms and def duration variati and swells - vo	finitior ions su oltage ernatio	ns: Overloading - under voltage - over vol the as interruption - long duration variation sag - voltage swell - voltage imbalance - vo nal standards of power quality. Computer	such as sustaine oltage fluctuatior	ed interr n - pow	tients ruption er fro	s - sl on. S reque	nort ags ncy
Terms and def duration variati and swells - vo variations. Inte Associations (C	finitior ions su oltage ernatio CBEM	ns: Overloading - under voltage - over vol the as interruption - long duration variation sag - voltage swell - voltage imbalance - vo nal standards of power quality. Computer	such as sustaine oltage fluctuatior	ed interr n - pow	ruptio er fro lanuf	s - sl on. S reque	nort ags ncy rers
Terms and def duration variati and swells - vo variations. Inte Associations (C Module:2 Sources of sage Protection -Sol	Finitior ions su oltage ernatio CBEM Voltag s and i lutions	ns: Overloading - under voltage - over vol tich as interruption - long duration variation sag - voltage swell - voltage imbalance - vo nal standards of power quality. Computer A) curve.	such as sustaine oltage fluctuation Business Equipr ormance -Fundar onomics of Diffe	ed intern n - pow ment M	ients ruptic er fro Ianuf Princ	s - sl on. S reque factu 4 Ho ciple	nort ags ncy rers urs s of
Terms and def duration variati and swells - vo variations. Inte Associations (C Module:2 Sources of sage Protection -Sol Alternatives -M	Finitior ions su oltage ernatio CBEM Voltag s and i lutions Iotor-S	 as: Overloading - under voltage - over voluch as interruption - long duration variation sag - voltage swell - voltage imbalance - voluce and standards of power quality. Computer A) curve. Bags And Interruptions Interruptions - Estimating Voltage Sag Perfect at the End-User Level-Evaluating the Ecology (1998). 	such as sustaine oltage fluctuation Business Equipr ormance -Fundar onomics of Diffe	ed intern n - pow ment M	ients ruptic er fr Ianuf Princ Lide-	s - sl on. S reque factu 4 Ho ciple	nort ags ncy rers urs s of ugh
Terms and def duration variation and swells - vo variations. Inte Associations (O Module:2 Sources of sags Protection -Sol Alternatives -N Module:3	Finitior ions su oltage ernatio CBEM Voltag S and i lutions Aotor-S	 as: Overloading - under voltage - over voluch as interruption - long duration variation sag - voltage swell - voltage imbalance - voluce and standards of power quality. Computer A) curve. Bags And Interruptions Interruptions - Estimating Voltage Sag Perfect at the End-User Level-Evaluating the Ecological Sags (Utility System Fault-Clearing Sags) 	such as sustaine oltage fluctuation Business Equipr ormance -Fundar onomics of Diffe Issues	ed intern n - pow ment M mental rerent R	ients ruptic er fr lanuf Princ Ride-7	s - sl on. S reque factu 4 Ho ciple Thro	nort ags ncy rers urs s of ugh urs
Terms and def duration variation and swells - vo variations. Inte Associations (C Module:2 Sources of sage Protection -Sol Alternatives -M Module:3 Sources of ove	Finitior ions su oltage ernatio CBEM Voltag Voltag s and i lutions Aotor-S Overvo	 as: Overloading - under voltage - over voluch as interruption - long duration variation sag - voltage swell - voltage imbalance - voluce and standards of power quality. Computer A) curve. age Sags And Interruptions bitages 	such as sustaine oltage fluctuation Business Equipr ormance -Fundar onomics of Diffe Issues	ed intern n - pow ment M mental ferent R litigatio	ients ruptic er fr Ianuf Princ Cide-' 4 on of	s - sl on. S eque factu 4 Ho ciple Thro I Ho	nort ags ncy rers urs s of ugh urs age
Terms and def duration variation and swells - vo variations. Inte Associations (C Module:2 Sources of sags Protection -Sol Alternatives -N Module:3 Sources of ove swells - surge a	Finitior ions su oltage ernatio CBEM Voltag s and i lutions Aotor-S Dverve er volta arreste	 as: Overloading - under voltage - over voluch as interruption - long duration variation sag - voltage swell - voltage imbalance - voluce and standards of power quality. Computer A) curve. A Sags And Interruptions A the End-User Level-Evaluating the Economic Sags ,Utility System Fault-Clearing Sags - Capacitor switching – lightning - fer 	such as sustaine oltage fluctuation Business Equipr ormance -Fundar onomics of Diffe Issues	ed intern n - pow ment M mental ferent R litigatio	ients ruptic er fr Ianuf Princ Cide-' 4 on of	s - sl on. S eque factu 4 Ho ciple Thro I Ho	nort ags ncy rers urs s of ugh urs age
Terms and def duration variation and swells - volution variations. Inte Associations. Inte Associations (O Module:2 Sources of sage Protection -Sol Alternatives -M Module:3 Sources of ove swells - surge a arresters - prote	Finitior ions su oltage ernatio CBEM Voltag s and i lutions Aotor-S Dverve er volta arreste	as: Overloading - under voltage - over vol ach as interruption - long duration variation sag - voltage swell - voltage imbalance - vol nal standards of power quality. Computer A) curve. Se Sags And Interruptions Interruptions - Estimating Voltage Sag Perf at the End-User Level-Evaluating the Eco Starting Sags ,Utility System Fault-Clearing Ditages ages - Capacitor switching – lightning - fer rs - low pass filters - power conditioners. Light of transformers and cables	such as sustaine oltage fluctuation Business Equipr ormance -Fundar onomics of Diffe Issues	ed intern n - pow ment M mental ferent R litigatio	ients ruptic er fr Ianuf Princ Cide-7 4 on of ieldin	s - sl on. S eque factu 4 Ho ciple Thro I Ho	nort ags ncy rers urs s of ugh <u>urs</u> age line
Terms and def duration variation and swells - vo variations. Inte Associations. Inte Associations (O Module:2 Sources of sags Protection -Sol Alternatives -M Module:3 Sources of ove swells - surge a arresters - prote Module:4	Finitior ions su oltage ernatio CBEM Voltag s and i lutions Aotor-S Overve er volt arreste ection	as: Overloading - under voltage - over vol ach as interruption - long duration variation sag - voltage swell - voltage imbalance - vol nal standards of power quality. Computer A) curve. Se Sags And Interruptions Interruptions - Estimating Voltage Sag Perf at the End-User Level-Evaluating the Eco Starting Sags ,Utility System Fault-Clearing Ditages ages - Capacitor switching – lightning - fer rs - low pass filters - power conditioners. Light of transformers and cables	such as sustaine oltage fluctuation Business Equipr ormance -Fundar onomics of Diffe Issues	ed intern n - pow ment M mental ferent R litigatic on – sh	ients ruptic er fr Ianuf Princ Ride-7 4 on of ieldin	s - sl on. S reque factu 4 Ho ciple Thro 4 Ho f volt ng - 4 Ho	nort ags ncy rers urs s of ugh urs age line
Terms and def duration variation and swells - vo variations. Inte Associations (C Module:2 Sources of sags Protection -Sol Alternatives -N Module:3 C Sources of ove swells - surge a arresters - prote Module:4 H Harmonic sour response charact	Finitior ions su oltage ernatio CBEM Voltag s and i lutions dotor-S er volta arreste ection Harmo cces fro	as: Overloading - under voltage - over vol ach as interruption - long duration variation sag - voltage swell - voltage imbalance - vol nal standards of power quality. Computer A) curve. Be Sags And Interruptions Interruptions - Estimating Voltage Sag Perf at the End-User Level-Evaluating the Eco Starting Sags ,Utility System Fault-Clearing I Ditages ages - Capacitor switching – lightning - fer rs - low pass filters - power conditioners. Light of transformers and cables Ditages om commercial and industrial loads, locating cs - Harmonics Vs transients. Effect of harm	such as sustaine oltage fluctuation Business Equipr ormance -Fundar onomics of Diffe Issues	ed intern n - pow ment M mental ferent R litigation on – sh urces. Pro- c distort	ients ruptic er fr lanuf Princ Cide-7 4 on of ieldin ieldin	s - sl on. S reque factu 4 Ho ciple Thro 4 Ho f volt ng - 4 Ho r sys - volt	nort ags ncy rers urs s of ugh urs age line urs tem age
Terms and def duration variation and swells - vol variations. Inte Associations (C Module:2 Sources of sags Protection -Sol Alternatives -N Module:3 C Sources of ove swells - surge a arresters - prote Module:4 H Harmonic sour response charact	Finitior ions su oltage ernatio CBEM Voltag s and i lutions dotor-S er volta arreste ection Harmo cces fro	as: Overloading - under voltage - over vol ach as interruption - long duration variation sag - voltage swell - voltage imbalance - vo nal standards of power quality. Computer A) curve. A curve. B Sags And Interruptions Interruptions - Estimating Voltage Sag Perf at the End-User Level-Evaluating the Eco Starting Sags ,Utility System Fault-Clearing D Itages ages - Capacitor switching – lightning - fear rs - low pass filters - power conditioners. Light of transformers and cables D itages D itages 	such as sustaine oltage fluctuation Business Equipr ormance -Fundar onomics of Diffe Issues	ed intern n - pow ment M mental ferent R litigation on – sh urces. Pro- c distort	ients ruptic er fr lanuf Princ Cide-7 4 on of ieldin ieldin	s - sl on. S reque factu 4 Ho ciple Thro 4 Ho f volt ng - 4 Ho r sys - volt	nort ags ncy rers urs s of ugh urs age line urs tem age

Standards - IEEE, IEC, ANSI, EN, UL, Limits and regulations on power quality in transmission and distribution network

Module:6Power Quality Monitoring And Survey

4 Hours

Monitoring Considerations - Historical Perspective of Power Quality Measuring Instruments-Power Quality Measurement Equipment-Assessment of Power Quality Measurement Data-Application of Intelligent Systems-Power Quality Monitoring Standards

Module	:7	Harmonic Analysis Tools A	And Case Study 4 Hours				
VLT® N	Motio	n Control Tool MCT 31, Har	monic Calculation	n Softw	are (HCS), PQ Bo	ox – Case Studies	
and Rep	orts o	on effect of diesel generators	and renewables o	n powe	r quality paramet	ers in a electrical	
network	grid						
Module	e:8	Contemporary issues:				2 Hours	
			Total Lecture H	ours		30 Hours	
Text Bo	ook(s))		•			
1.	Ro	ger C. Dugan, Mark F. M	IcGranaghan, Su	rya Sa	ntoso "Electrical	l Power System	
	Qu	ality", Tata Mcgraw-hill, Nev	w Delhi, 2012.				
2.	Ad	reas Eberhard, Power Quality	v, , InTech, 2011.				
Refere	ence l	Books					
1.	Po	wer Quality in Power System	s and Electrical M	achines	s", Mohammad A.	S Masoum,	
	Ew	ald F.Fuchs, Academic Press	, Elsevier, 2015.				
	DI		T7 1 41 TY 11		0 1% D 11	1	
2.		im Singh, Ambrish Chandra,		-	er Quality: Proble	ems and	
	Mitigation Techniques", John Wiley & sons Ltd, 2015						
Mode of	f Eval	luation: CAT / Assignment /	Quiz / FAT / Proje	ct / Ser	ninar		
Recomm	Recommended by Board of Studies 05/03/2016						
Approve	ed by	Academic Council	40 th AC	Date	18/03/2016		

	(Deemed to be University under section 3 of UGC Act, 1956)	Ι.	1-	-	-
EEE4011	Energy Audit and Conservation	L 2		P J 0 4	
Pre-requisite	EEE3003	Syllabu	is ve	rsio	1
Anti-requisite	Nil				1.0
Course Objectives:					
•	stand the energy audit and energy saving concept in electrica	al system			
	stand the energy scenario and Electricity Acts	2			
3. To under	stand the effect of over exploitation of energy resources				
Expected Course C	Outcome:				
On the completion of	f this course the student will be able to:				
1. Understa	nd Indian Energy Policy and Electricity ACT.				
	he impact of Climatic change on Environment and Energy re	esources.			
3. Explain	needs of energy management through energy audit.				
4. Solve en	ergy management problem using modern tools.				
	the energy consumption and derive energy saving opportuni	ties			
	nergy ratings for components.				
1	ECBC for various Buildings & Support firms with HVAC sp	1			
_	a component or a product applying all the relevant star	ndards v	vith	reali	stic
constrair	ts.				
Module:1 Energ	y Scenario and Energy Conservation Act			5 Ho	urs
	and related policies			5 110	uis
	esources, final energy consumption, Indian energy scenar	io and a	onei	imnt	ion
	owing economy, energy intensity, long term energy scenar				
	ergy conservation and its importance, energy strategy fo			-	-
	001 and its features, Electricity Act 2003, Integrated ene				
action plan on clima	• •	agy pon	су, 1	Natio	mai
	te change				
	gy, Environment and Climate change			3 Ho	
	ment, air pollution, climate change United Nations Frame				
	NFCC), sustainable development, Kyoto Protocol, Conferen				
-	Mechanism (CDM), CDM Procedures case of CDM - Bac	chat Lam	p Yo	ojna	and
industry; Prototype	Carbon Fund (PCF).				
Module:3 Energy	y Management & Audit			3 Ho	ure
· · · · · · · · · · · · · · · · · · ·	, types of energy audit. Energy management (audit) app	proach_u			
••	marking, energy performance, matching energy use to requ				-
	optimizing the input energy requirements, fuel and energy				-
-		y substitt	ιιΟΠ	, ene	ıgy
	d metering, precautions, thermography, smart metering			2 11	
	y Monitoring and Targeting	inform (3 Ho	
	g & targeting, elements of monitoring & targeting, data and			-	
techniques - energy	consumption, production, cumulative sum of differences	s (CUSL	J M) .	Ene	rgy
В ТЕСН (ЕЕЕ)		Page			

Management Information Systems (EMIS)

	Electrical system	5 Hours
Module:5 Electricity	billing, electrical load management and maximum	
•	nt, selection and location of capacitors, performan	-
-	and transformer losses. Star labelled distribut	_
	t, Assessment of transmission and distribution effici	
-	palance, Maximum demand controllers, automatic	•
efficient tra		1
Module:6	Electric motors	3 Hours
	fecting motor performance, rewinding and motor re-	
	es with energy efficient motors. Star labeled energ	
	, Ist rewind, 2nd rewind), Star operation, voltage ur	balance, energy efficient motors,
soft starter	s with energy saver, variable speed drives.	
Module:7	Energy conservation in Buildings and Energy	5 Hours
	Conservation Building Codes (ECBC)	
	nservation Building Codes (ECBC), building envel	
	air conditioning (HVAC), fenestrations, water	
	ive generation, elevators and escalators, star labeli	ng for existing buildings, Energy
Service Cor	npanies based case studies	
	Contomporour igguage	
Module:8	Contemporary issues:	2 Hours
	Total Lecture Hours	30 Hours
Text Book(,	
1. Wa	yne C. Turner, Steve Doty, "Energy Management Ha	undbook" The Fairmont Press Inc
		indotox, the fullion fress, ne.,
20	3.	
20		
201 2. Co	urse Material for Energy Audit and Managers Exam,	Vol. 1-4 Energy Audit Manual the
201 2. Co Pra	urse Material for Energy Audit and Managers Exam, ctitioner's Guide Jointly published by EMC and NPC	Vol. 1-4 Energy Audit Manual the
20 2. Co Pra Reference 1	urse Material for Energy Audit and Managers Exam, ctitioner's Guide Jointly published by EMC and NPC Books	Vol. 1-4 Energy Audit Manual the , 2017.
20 2. Co Pra Referer ■ 1. Ba	urse Material for Energy Audit and Managers Exam, ctitioner's Guide Jointly published by EMC and NPC Books rney L. Capehart, Wayne C. Turner, William J	Vol. 1-4 Energy Audit Manual the , 2017.
20 2. Co Pra Reference 1. Ba Ma	urse Material for Energy Audit and Managers Exam, ctitioner's Guide Jointly published by EMC and NPC Books mey L. Capehart, Wayne C. Turner, William J nagement", The Fairmont Press, Inc, 2016.	Vol. 1-4 Energy Audit Manual the , 2017. . Kennedy , " Guide to Energy
20 2. Co Pra Reference I 1. Ba Ma 2. All	urse Material for Energy Audit and Managers Exam, ctitioner's Guide Jointly published by EMC and NPC Books mey L. Capehart, Wayne C. Turner, William J nagement", The Fairmont Press, Inc, 2016. pert Thumann, Terry Niehus, William Younger, "	Vol. 1-4 Energy Audit Manual the , 2017. . Kennedy , " Guide to Energy
201 2. Co Pra Refere tet 1. Ba Ma 2. All Fai	urse Material for Energy Audit and Managers Exam, ctitioner's Guide Jointly published by EMC and NPC Books mey L. Capehart, Wayne C. Turner, William J nagement", The Fairmont Press, Inc, 2016. bert Thumann, Terry Niehus, William Younger, "I rmont Press, Inc, 2013.	Vol. 1-4 Energy Audit Manual the , 2017. . Kennedy , " Guide to Energy Handbook of Energy Audits" The
201 2. Co Pra Referere I 1. Ba Ma 2. All Fai Mode of Ev	urse Material for Energy Audit and Managers Exam, ctitioner's Guide Jointly published by EMC and NPC Books mey L. Capehart, Wayne C. Turner, William J nagement", The Fairmont Press, Inc, 2016. pert Thumann, Terry Niehus, William Younger, " rmont Press, Inc, 2013. aluation: CAT / Assignment / Quiz / FAT / Project / S	Vol. 1-4 Energy Audit Manual the , 2017. . Kennedy , " Guide to Energy Handbook of Energy Audits" The
202.CoPraReference I1.BaMa2.AllFaiMode of EvRecommender	urse Material for Energy Audit and Managers Exam, ctitioner's Guide Jointly published by EMC and NPC Books mey L. Capehart, Wayne C. Turner, William J nagement", The Fairmont Press, Inc, 2016. bert Thumann, Terry Niehus, William Younger, "I rmont Press, Inc, 2013.	Vol. 1-4 Energy Audit Manual the , 2017. . Kennedy , " Guide to Energy Handbook of Energy Audits" The eminar

EEE4012		Renewable Energ	y Sources	L T P J C
			<u>-</u>	3 0 0 0 3
Pre-requisite	EEE3003			Syllabus versior
Anti-requisite	Nil			v. 1.0
Course Objec				
		lge of various types of		rces.
		sing different renewabl		
3. To und	erstand the basic prin	nciples of operation of	the various renewable	e energy sources.
<u> </u>	rse Outcome:	1 4 111 11 4		
-	of the course the stu			
	0	nt types of renewable e	.	
		erent type's thermal co		
		analyse the performane rating principles of ti		to design on Occor
	al Energy Conversion		uai and wave energy	to design an ocean
		sources and its application	ation	
		ergy conversion techn		of waste into useful
energy				
••		pes, working principle	s and its related applic	cations.
		· · · ·		
Module:1	Introduction to Ene	ergy Sources		4 Hours
		utilisation – Global en	ergy problems and rol	le of renewable energy
 Introduction 	to alternate energy s	ources.		
	Solar Energy and A			8 Hours
		on geometry – Sola		
		ifferent types of collec		
		ters, solar cooling, sol	• •	
– Solar electric	power generation:	Solar tower concept (s	olar pond) and Solar p	photo-voltaic.
	Wind Energy			7 Hours
	• 1	d General theory of w		
-	-	ectric generation scher	nes -Applications of	wind Energy - stand-
alone and grid	connected systems.			
			<u> </u>	7 11
	<u>Fidal and Wave En</u>	ergy idal Barrage -working	nrinciples and opera	7 Hours
		Design of 5 MW O		
	impacts of OTEC.	Design of 5 million		plant. Leononnes and
Liithoinneintu	Geothermal Energy	1		6 Hours
Module:5		- Geothermal source	s - principle of worl	
	geotherman power			U 1
Estimation of	of geothermal power	er generation- Future of	f geothermal energy.	
Estimation of different types Module:6	of geothermal powe Bio-Energy			6 Hours
Estimation of different types Module:6	of geothermal powe Bio-Energy version techniques:	Biogas generation, c wastes, municipal wast	classification and typ	es of biogas plants,

Module:7	le:7 Fuel Cells Energy 5 Hours						
Fuel cells – Principle of operation, classification and types of fuel cells – Applications- Limitations							
and future	prospect.						
Module:8	Contemporary issues:			2 Hours			
		Total Lecture H	ours	45 Hours			
Text Boo	k(s)						
1. F	rank Kreith, Susan Krumdeic	k, Principles of S	Sustainable	e Energy Systems, CRC press,			
Т	aylor and Francis group, Secon	d Edition, 2014					
2. C	B.D. Rai, Non-Conventional End	ergy Sources, Kha	nna Publis	hers, 2004.			
Reference	e Books						
1. J	ohn Twidell and Tony Weir,	Renewable Energ	gy Resour	ces, Second edition, Taylor &			
F	rancis, 2006.						
2. S	.P. Sukhatme, Solar Energy, P.	rinciples of Thern	nal Collect	tion and Storage, Tata McGraw			
H	Iill Publishers, Fourth Print, Fel	bruary 2015.		-			
3. 0	G.D. Rai, Solar Energy Utilizations, Khanna Publishers, Second Revised Edition, 2004.						
4. R							
Edition 1982.							
5. Putnam, Energy from the Wind, Prentice Hall of India.2004.							
Mode of H	Evaluation: CAT / Assignment /	/ Quiz / FAT / Proj	ect / Semi	nar			
Recomme	nded by Board of Studies	05/03/2016					
Approved	by Academic Council	40 th AC	Date	18/03/2016			

г	(Deemed to be University under section 3 of UG	C Act, 1956)	
EEE4013	Smart Grid		L T P J C 3 0 0 4 4
Pre-requisite	EEE3003, EEE3004		Syllabus versior
Anti-requisite	Nil		v. 2.0
Course Objectives:		.	
1. Architect	ure designs		
2. Measurer	nent and Communications Technologies		
	arize the transmission and distribution autom	ation using smart G	rid.
4. Integratio	on of vehicles with rechargeable batteries in t	o distribution netwo	orks.
Expected Course O			
-	f this course the student will be able to:		
	the necessity and evolution of smart grid wit		
	he appropriate measurement techniques for s		tation
	eoretical concepts for analyzing the performa		
	he appropriate choice for data transaction in		
	nd various power transmission automation te		CI
	the working of distribution automation	and the two-way	power flow of
	on system	· 1 0 D // ·	
	he concept of V2G & G2V using Electric veh		1
8. Design a	a component or a product applying all th	e relevant standard	is with realistic
constrain			
Module:1 Smart	Grid Architectural Designs		7 Hours
Introduction. Evolut	ion of electric Grid, Need for smart grid, di	fference between C	onventional grid
0	eneral View of the Smart Grid Market		of Smart Grid
Components, present	t development and international policies in sr	nart grid.	
Module:2 Smart	Grid Communications And		8 Hours
Measu	rement Technology		
Communication and	d Measurement , Monitoring, PMU, S	mart Meters, and	Measurement
Technologies ,Wide	Area Monitoring Systems (WAMS), Phasor	Measurement Units	s (PMU), Smar
Meters , Smart App	bliances, Advanced Metering Infrastructure	(AMI),, GIS and C	Google Mapping
Tools Multi agent Sy	ystems (MAS) Technology ,Multi agent Syst	ems for Smart Grid	Implementation
, Micro grid and Sma	art Grid Comparison		
Module:3 Perfor	rmance Analysis Tools For Smart Grid		6 Hours
Desigr	e e e e e e e e e e e e e e e e e e e		
Challenges to Load	Flow in Smart Grid and Weaknesses of the	Present Load Flow	Methods ,type:
,Load Flow State of	of the Art: Classical, Extended Formulation	ons, and Algorithn	ns, Congestion
Management Effect	, Load Flow for Smart Grid Design , Cases	for the Developme	ent of Stochastic
Dynamic optimal Pc	ower Flow (DSOPF), Application to the Sma	art Grid, Static Secu	urity Assessmen
(SSA) and Continger	ncies, Contingency Studies for the Smart Gri	d	
Module:4 Inform	nation Security And Communication		6 Hours
Tasha		1	
	ology For Smart Grid n, switching techniques, communication cha		

Zigbee, GPS, Wi-Fibased communication, Wireless mesh network, Basic of cloud computing and cyber security for smart grid, Broadband over power line(BPL)

Module:5	Transmission Automation:	7 Hours
Introduction,	Transmission Infrastructure functionality, Tr	ansmission technology, Energy
Management	System , Map Board Automatic Generation Con	ntrol (AGC) ,Supervisory Control ,
Contingency	Reserve Management ,Interchange Scheduling ,	SCADA Master Terminal Unit,
Transmission	Substations, Synchrony phasor as IEDs, Rela	ys as IEDs ,Programmable Logic
Controllers a	s IEDs ,RTUs as IEDs, Smart Transmission Cyber S	Security.

|--|

Introduction, Distribution System Architecture, Distribution automation, working of Distribution Automation, ,role of Smart Grid Function of Distribution Automation, Importance of the Distribution System and Its Security Challenges ,Securing the Distribution System, Distribution Management Systems ,Standards, Inoperability, and Cyber Security

Module:7Integration Of Vehicles With Rechargeable
Batteries Into Distribution Networks

3 Hours

6 Hours

The revolution of individual electrical transport, consequences on the electrical network. Demand management and vehicle-to-grid, Vehicles as "active loads" Energetic services,. Frequency regulation.

Module	e:8	Contempor	ary issues:		2 Hour		
				Total Lecture Hours45 Hou			
Text Bo	Text Book(s)						
1.	Jame	es momoh, "S	mart grid fund	lamentals of desig	gn and ana	lysis, "IEEE Press, a john wiley	
	& sc	ons, inc., publi	cation, 2012.				
2.	Berr	d M. Buchho	lz, Zbigniew	Styczynski ,"Sma	rt grid fur	damentals and Technologies in	
	Elec	tricity Networ	ks", Springer	Heidelberg New	York Dord	recht London, 2014.	
Referen	nce B	ooks					
1.	Jana	ka Ekanayako	e, Nick Jenki	s, Kithsiri Liyana	age, Jianzl	nong Wu, Akihiko Yokoyama,	
	"Smard grid technology and applications,: Wiley, 2012.						
2.	Stuart Borlase "Smart grid: Infrastructure, Technology and solutions, "CRC Press 2012.						
Mode o	Mode of Evaluation: CAT I & II – 30%, DA I & II – 20%, Quiz – 10%, FAT – 40%						
Recom	Recommended by Board of Studies 05/03/2016						
Approv	ed by	Academic Co	ouncil	40 th AC	Date	18/03/2016	

		(Deemed to be University under section 3 of UGC Act, 1956)		
EEE4016		Electric Vehicles		L T P J C 2 0 0 4 3
Pre-requisit	e	EEE3004		Syllabus version
Anti-requisi	te	Nil		v. 1.0
Course Obj	ectives:			
1. This cour	rse intro	oduces the fundamental concepts, principles, analysis and	l desigr	n of hybrid
electric v	vehicles.			
Expected Co	ourse O	Putcome:		
On the comp	letion o	of this course the student will be able to:		
1. Comp	rehend	the performance of conventional vehicles.		
2. Infer t	he hyb	rid electric vehicles and its impact on environment		
3. Analy:	ze the v	arious hybrid vehicle configurations and its performance	e.	
4. Interp	ret the	electric components used in hybrid and electric vehicles	\$	
5. Desigi	n the siz	zing of drive systems for electric vehicles.		
6. Choos	e prope	er energy storage systems for vehicle applications		
7. Identi	fy vario	us communication protocols and technologies used in v	ehicle r	networks
8. Desigi	n a com	ponent or a product applying all the relevant standards	with re	ealistic
consti	raints.			
	1			
Module:1		luction to Conventional Vehicles:		3 Hours
		erformance, vehicle power source characterization, tran	ismissi	on characteristics,
and mathema	atical m	odels to describe vehicle performance		
Module:2	Intro	duction to Electrical Vehicles:		3 Hours
		d electric vehicles, social and environmental importance	of hyb	
		lectric vehicles, comparison with IC engine drive vehicle	•	
		lectric venicies, comparison with re engine drive venicit	20	
Module:3		ric Vehicle Drive Train:		4 Hours
		uration, Components, gears, differential, clutch, brakes,		
-		concept of electric traction, Introduction to various drive	train to	opologies, power
	1	ric drive topologies, fuel efficiency analysis		
Module:4		ric Propulsion Unit:		4 Hours
		ric components used in hybrid and electric vehicles, Con	-	
		onfiguration and control of Introduction Motor drives, c		
drive system		et Motor drives, Configuration and control of Switch F	teructa	ince Motor drives,
unve system	efficier	icy.		
Module:5	Sizing	g the drive system:		3 Hours
	-	tic machine and the internal combustion engine (ICE) Sizir	
•		power electronics, selecting the energy storage techno		0 1 1
supporting su		• • •	<i>0</i> ,	
	~			
Module:6	Energ	y Storage:		4 Hours
Introductio	-	ergy storage requirements in hybrid and Electric vehicles	Batter	ry based energy

Introduction to energy storage requirements in hybrid and Electric vehicles, Battery based energy storage and its analysis, fuel cell based and super capacitor based energy storage and its analysis. Hybridization of different energy storage devices

Module	e:7	Energy ma	anagement stra	tegies and Case		7 Hours		
	Studies:							
differen implem	t ene entati	rgy manage on issues of	ement strategies energy strategie	s, comparison of	differen	electric vehicle, classification of t energy management strategies, ectric Vehicle (HEV), Design of a		
Battery	Elect	ric Vehicle	(BEV).					
Module	e:8	Contemp	orary issues:			2 Hours		
		•	.	Total Lecture H	ours	30 Hours		
Text Be	ook(s)							
1.	Iqba	l Hussain, '	'Electric and H	ybrid Vehicles-De	esign Fu	ndamentals", CRC Press, Second		
		ion, 2011.						
2.					'Modern	n Electric, Hybrid and Fuel Cell		
	Vehi	icles: Funda	mentals", CRC	Press, 2010.				
Referen	nce B	ooks						
1.	Chri	s Mi, MA	Masrur, and	D W Gao, "H	/brid E	lectric Vehicles- Principles and		
	App	lications wit	th Practical Pers	pectives", Wiley, 2	2011.			
2.	Davi	ide Andrea,	, "Battery mana	agement Systems	for La	rge Lithium-Ion Battery Packs",		
	Arte	ch House, 2	010.					
Mode o	f Eva	luation:	CAT I & II – 3	0%, DA I & II – 2	0%, Qu	iz – 10%, FAT – 40%		
Recom	Recommended by Board of Studies 05/03/2016							
Approv	ed by	Academic (Council	40 th AC	Date	18/03/2016		

EEE4017	Industrial Drives and Automation	L T P J C
		3 0 0 4 4
Pre-requisite	EEE3004, EEE3001	Syllabus version
Anti-requisite	Nil	v. 1.0
Course Objectives:		
-	lore the various DC, AC and special machine drives for ind	11
	ly the various open loop and closed loop control schemes for	
3. To intro	oduce the hardware implementation of the basic controllers	using PLC.
	×	
Expected Course C		
-	of this course the student will be able to:	.•
	the basic components of the drive system from automation	
•	the various converter and chopper fed DC drive with approximately approxim	-
	the various scalar and vector control methodologies for ind	
	the synchronous motor drive with relevant control technique the various special machines and its control.	168.
•	and the basic logics of PLC	
	he PLC programming to control drives.	
	a component or a product applying all the relevant s	tandards with realistic
constrai		undurus with realistic
Module:1 Intro	duction	5 Hours
	ctric Drives - Need of electric drives, basic parts, prese	
	Dynamics in an Electric Drive – Understand the concept o	
	components. Identify the Scope.	
Module:2 DC M	Iotor Drive	6 Hours
	pper circuit –steady state analysis of chopper controlled	
	half controlled and fully controlled single phase and	
	scontinuous conduction modes of operation, 4-quadrant	operation using dual
converter- Braking.	Analysis of Closed Loop Control of DC Motor.	
	ction Motor Drive	6 Hours
	h variable voltage operation -Variable frequency operation	1
	d field weakening regions-Vector control strategies-Direct	torque control scheme-
Slip power recovery	v scheme- analysis-Applications	
Module:4 Synch	nronous motor Drive	5 Hours
	Drive with voltage source inverter, load commutated thyris	
	strategies – Constant torque angle control –Unity power fa	•
mutual flux linkage		
matuur mux mikage	control.	
Module:5 Speci	al Machine Drives	7 Hours
	synchronous motor - Field oriented control - Direct torqu	
0	Direct current (BLDC) machine control strategies, Volta	
	e minimization – Application.	

Module:6	Introduction to Programmable Logic	7 Hours							
	Controllers								
PLC archite	ecture, Input Output modules, PLC interfacing with	plant, memory structure of PLC.							
PLC progra	mming methodologies: ladder diagram, STL, functio	nal block diagram, creating ladder							
diagram fro	diagram from process control descriptions, introduction to IEC61131 international standard for								
PLC.									

Module:7 **PLC based Control**

Bit logic instructions, ladder diagram examples, interlocking, latching, inter dependency and logical functions, PLC Timer & Counter functions, Control components, sensors, actuators and valves, PID configuration, various network topologies and communication protocols like Profibus, Foundation field bus, Devicenet, HART

Module:8		Contempo	rary issues:	2 Hours		
				Total Lecture F	Iours	45 Hours
Text B	ook(s)					
1.	Veda	am Subramar	yam, "Electric	Drives - Concep	ots and Ap	plications", Tata McGraw Hill,
	2011	•				
2.	Rich	ard Shell, Ha	ndbook of Indu	strial Automation	, CRC Pres	ss, 2000.
Refere	nce Bo	ooks				
1.	John	Webb: Progr	rammable Logic	c Controllers print	ciples & Ap	oplications, PHI, 2009.
2.	A K	Gupta, Indus	trial Automatio	n and Robotics, F	irewall Me	dia, 2013.
3.	Bima	al K Bose, "N	Iodern Power E	Electronics and AC	C Drives", 1	Pearson Education Asia, 2012.
4.	R. K	rishnan, "Per	manent Magner	t Synchronous and	d Brushless	DC Motor Drives", Taylor and
		cis, 2010	C	•		
5.	Hait	nam Abu-Rul	b, Atif Iqbal, Ja	roslaw Guzinski,	"High Per	formance Control of AC Drives
	with	Matlab/Simu	ılink Models", J	John Wiley & Son	s, 2012.	
Mode o	of Eval	uation:	CAT I & II – 3	30%, DA I & II –	20%, Quiz	- 10%, FAT - 40%
Recommended by Board of Studies 05/03/2016						
Approv	ed by	Academic Co	ouncil	40 th AC	Date	18/03/2016

EEE4018		Advanced Control Theory		L	T]	ΡJ	С
				3	0	0 4	4
Pre-requisit	e	EEE 3001	S	ylla	bus	versi	ion
Anti-requisi	ite	Nil				v. 2	2.0
Course Obj	ectives:						
1. To im	part in-o	depth knowledge in the field of control theory, analysis and	l desig	gn of	MI	MO	
system	s in stat	e space					
		anding on features of linear and nonlinear systems					
	•	e features of linear and nonlinear systems using phase plan	e anal	ysis	and		
	0	ction analysis					
		e stability of linear and nonlinear systems using stability co	ncept	S			
Expected Co							
-		f this course the student will be able to:					
		al systems using state variable approach					
		O systems by state space approach eedback controller and observer for simple and practical dy	nomic	o ovoi	toma		
Ŭ		lassify the nonlinearities in the physical systems	nanne	. sysi	.ems)	
		eatures and stability of nonlinear systems using phase portr	aits				
		ystems with common nonlinearities using describing function					
•		lity of linear and non – linear systems					
8. Desig	n a com	ponent or a product applying all the relevant standards with	ı reali	stic	cons	train	ts
Module:1	State	Variable Representation			6	б Ног	urs
Introduction	, Conce	pt of State Equation for Dynamic Systems, Non Unique	eness	of S	tate	mod	lel,
State Diagr	ams, P	hysical Systems and State Assignments - State spa	ce re	pres	enta	tion	of
multivariable	e system	18					
Module:2		on Of State Equations				б Ног	
		atrix - Properties and Computation. Controllability	and	Ot	oserv	vabili	ity,
Stabilizabilit	y and D	etectability.					
	1						
Module:3	•	n In State Space				7 Ноі	
State Feedba	ack, Ou	tput Feedback, Design Methods, Pole Assignment, Full	Orde	er ar	nd R	Reduc	ced
Order Obser	vers. In	roduction to Linear Quadratic problems.					
Module:4		luction To Non Linear Systems				5 Ноі	urs
Introduction	, Featu	res of Linear and Non Linear Systems, Types of non	-linea	ırity,	С	omm	ion
nonlinearitie	s in con	trol systems, Typical Examples, Concept of phase portra	its – S	Singu	ılar j	point	s –
Limit cycles							
Module:5	Phase	Plane Analysis			7	7 Ноі	urs
Construction	of pha	ase portrait, Concepts of phase plane analysis Phase pla	ine ar	nalys	is o	f lin	ear
system and r	onlinea	r system, Existence of limit cycles.					
Module:6		ibing Function Analysis				б Ног	
0		fundamentals, Describing functions of common nonlin	neariti	les, l	Desc	ribin	ıg
function ana	lysis of	nonlinear systems, Limit cycles, Stability of Oscillations					

Modul	e :7	Stability Analysis			6 Hours						
Stabilit	Stability Concepts, Equilibrium Points, BIBO and Asymptotic Stability, Lyapunov theory										
Lyapun	ov's l	Direct method, Variable gr	adient method Fr	equency I	Domain Stability Criteria, Popov's						
Method	l & its	Extension.									
Modul	e :8	Contemporary issues:			2 Hours						
			iours:	45 Hours							
Text B	ook(s)										
1.	Kats	uhiko Ogata, "Modern Co	ntrol Engineering	", PHI Le	earning Pvt Ltd, 5 th Edition, 2010.						
2.	Hass	an K Khalil, "Nonlinear C	Control ", Pearson	Prentice H	Hall, 1 st Edition, 2014.						
Refere	nce B	ooks									
1.	M. 0	Gopal, "Modern Control Sy	stems Theory", N	lew Age F	Publishers, 3 rd Edition, 2014.						
2.	Rich	ard C. Dorf, Robert H. Bis	shop, "Modern C	ontrol Sys	tems", Prentice Hall, 12 th Edition,						
	2010).									
Mode o	of Eva	luation: CAT / Assignment	t / Quiz / FAT / P	roject / Se	minar						
Recom	mende	ed by Board of Studies	05/03/2016								
Approv	Approved by Academic Council 40 th AC Date 18/03/5016										

EEE4019		LT	P J C		
				2 0	0 4 3
Pre-requisit	te	EEE3002		Syllabus	versio
Anti-requisi		Nil			v. 1.
Course Obj					
1. To l	learn co	mplex digital systems using Hardware Descr	iption Language.		
2. To	learn	field programmable gate array (FPGA) t	echnologies and	utilize as	sociated
comp	outer aid	ded design (CAD) tools to synthesize and ana	lyze digital systen	ns.	
Expected Co					
-		of this course the student will be able to:			
		recognize the trade-offs involved in digital de	esign flows for sys	tem	
-	1	l synthesize Verilog HDL. I synthesize digital modules and circuits for a	wide application .	ranga	
	•	machines to control complex systems.	while application i	ange.	
	-	og test bench to test Verilog modules.			
	•	chronous DSP system in Verilog and verify it	ts performance.		
	0	ating point arithmetic using the IEEE-754 Sta			
	0	nponent or a product applying all the relevan	t standards with re	ealistic	
const	traints				
	[T		
Module:1		duction to FPGAs			3 Hour
0		le Logic architectures, Complex Programm	U	es (CPLD	s), Field
Programmab	ble Gate	e Arrays (FPGAs), Design Flow, Design Tool	.S.		
Module:2	Intro	duction to Verilog HDL			5 Hour
		HDL, Modeling styles: Behavioral, Dataf	low and Structur		
		Modeling, Hierarchal structural modeling.	low, and Structur	ai wioden	ng, gao
delays, swite		Wodening, Incluiental Structural modeling.			
Module:3	Imple	ementing Logic using MSI Combinational			4 Hour
	-	Blocks			
Multiplexer,	0	tiplexer, Encoder, Decoder, ROM, PAL, PLA	A.		
Module:4	Veril	og Modelling of Sequential Circuits			4 Hour
Flip-Flops, S	Shift Re	gisters, Counters, Finite State Machine Mode	elling.		
				-	
Module:5	Verif	ication			3 Hour
Functional v	rerificat	ion, simulation types, Test Bench design, val	ue change dump (VCD) files	•
Module:6	Desig	n			6 Hour
		actors, Multiplication Digital Signal Processi	0		
Bus structur CPU design	-	nchronous & Asynchronous data transfer, UA	RT baud rate gene	erator, A si	imple
Module:7	Float	ing point arithmetic circuits			3 Hour
mount./	I IVal	ms point arrandene en cuito	1		5 HOUL

Adders,	, Subt	ractors, Multipliers						
Module	e:8	Contemporary issues:			2 Hours			
			Total Lecture H	ours	30 Hours			
Text B	ook(s)							
1.	Michael D Ciletti, "Advanced Digital Design with the Verilog HDL" Prentice Hall, 2 nd Edition, 2011.							
2.		ir Palnitkar, "Verilog HDL ond Edition, 2009.	: A Guide to D	igital Des	sign and Synthesis" Pearson,			
Referen	nce B	ooks						
1.		hen Brown & Zvonko Vran 'A Mc Graw Hill Ltd. 3 rd Ec		als of dig	gital Logic with Verilog Design"			
2.		g-Bo Lin., Digital System ey, 2008.	Designs and Pra	ctices Us	sing Verilog HDL and FPGAs.			
3.		ods, R., McAllister, J., Yi, Y essing systems. John Wiley	e	G. FPGA	-based implementation of signal			
Mode o	of Eval	luation: CAT / Assignment /	Quiz / FAT / Pro	ject / Sem	inar			
Recom	Recommended by Board of Studies 05/03/2016							
Approv	ed by	Academic Council	40 th AC	Date	18/03/2016			

	— г	(Deemed to be University under section 3 of UGC Act, 1956)		
EEE4020		Embedded System Design		L T P J C
Pre-requisite		EEE4001		Syllabus version
Anti-requisite		Nil		v. 1.0
Course Objec				
-	-	phasis on the characteristics and hardware archite	cture of emb	edded system and
	-	ting systems.		1 1' f
-		sential knowledge on various communication proper machines.	rotocols and	understanding of
•		e essential knowledge in the embedded modeli	ng and desi	on of finite state
machine		essential knowledge in the embedded model	ing and desi	gii of finite state
Expected Cor		atcome:		
-		this course the student will be able to:		
-		characteristics and concepts of embedded system.		
		rchitecture of hardware embedded system		
3. Compare	the cor	cepts of RTOS with general purpose OS.		
-		e components/architecture for embedded system a	pplications.	
-		ed and wireless communication protocols.		
0	1	ce model using Moore and Mealy technique		
		bedded system modelling with state transition and		-4:
8. Design a c	compo	nent or a product applying all the relevant standar	rds with reali	stic constraints
Module:1	Introd	lustion to Fuch added sustained		3 Hours
		luction to Embedded systems:	and ice	
-		Definition, Categories, Requirements. Challen nt, Trends in embedded software developmen	-	
systems.	siopine	in, frends in embedded software developmen	i, Applicatio	ins of endedded
systems.				
Module:2	Hardy	vare architecture of embedded system:		4 Hours
		Memory models, Latches and Buffers, crystal, T	imers, reset o	
	-	logic circuit, ADC and DAC, Display units		-
Introduction to			, comun	interraces,
Module:3	Real ti	me operating system (RTOS) with Kernel:		4 Hours
		rpose OS, Kernel Architecture and Functionalitie	s - Task man	agement, Process
	-	e management (Semaphores and Mutex), Task		0
software devel			2	
Module:4	Serial	Bus for embedded systems:		5 Hours
		ration, Bit Transfer Waveform and exceptions. C	CAN- Layere	
		ta Rates, Frame types. USB- Physical interface,	-	
		pes of transfers.		· ,
• •		ess Applications:		4 Hours
		eless networking –Basics. Bluetooth – Over	view, powe	
		e band, Packet format, packet heading, pack	-	
			J 1	
Overview of	IEEE	802.15.4 standard feature, Device types an	d Frame fo	

Architecture objectives, Network model, ZigBee stack block diagram, Network layer. ZigBee Vs Bluetooth.

Module:6	Introduction to Moore and Mealy models	4 Hours
Design of a	a Level to Pulse converter implementing Moore and M	Iealy FSM- Block diagram,
definition o	f the state, building state transition diagram to state tab	le, Relative trade-offs. State
space mode	ls of sequential machines- Introduction.	

Modu	le:7	Embedde	d Systei	n Mode	elling:					4 Hours
Finite	nite State Machine (FSM) - Rules for designing FSM, Design examples implementing state and									
state tr	ransitic	n diagram f	for vend	ing mac	hine, ATM	, digital lock.				
Modu	le:8	Contemp	oorary i	ssues:						2 Hours
					Tota	al Lecture Ho	urs			30 Hours
Text F	Book(s)					1			
1.	Dav	id.E. Simon	ı, "An E	mbedde	d Software	primer", Pears	son Educat	tion Inc., 2	012.	
2.	Tam	my Noerga	ard, "Er	nbedded	d systems a	rchitecture: a c	comprehen	sive guide	for e	engineers
	and	programme	rs" Berl	in: Else	vier, 2014.		-	_		-
Refere	ence B	ooks								
1.	Xiac	ong Fan, "l	Real-tim	ne embe	dded syster	ns: Design prin	nciples and	l engineeri	ng pi	ractices",
	Ams	sterdam [Ne	therland	ls]: Nev	vnes, 2015.					
2.	Fran	k Vahid	and	Tony	Givargis,	"Embedded	System	Design:	А	Unified
	Hardware/Software Approach", Wiley; Student edition, 2010.									
Mode	of Eva	luation: CA	T / Assi	ignment	/ Quiz / FA	AT / Project / S	eminar			
Dagon	amand	d by Roard	of Stud	ling	05/02/20	16				

commended by Board of Studies	05/03/2016			
proved by Academic Council	40 th AC	Date	18/03/2016	

	(Deemed to be University under section 3 of UGC Act, 1936)						
EEE4027	Robotics and Control		L	T	Р	J	С
			2	0	0	4	3
Pre-requisite	EEE3001	S	ylla	ıbu	s v	ers	ion
Anti-requisite	Nil					v.	1.0
~ ~ ~ ~ ~							

Course Objectives:

- 1. To develop the student's knowledge in various robot structures and their workspace.
- 2. To develop student's skills in performing spatial transformations associated with rigid body motions & some knowledge and analysis skills associated with trajectory planning.
- 3. To develop student's skills in performing kinematic analysis of robotic systems and some knowledge and skills associated with robot control

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Select different types of sensors and actuators for robotic systems
- 2. Apply spatial transformation to obtain the forward kinematic equation of robot manipulators.
- 3. Analyse forward and inverse kinematics for simple robot manipulators.
- 4. Derive Jacobian matrix and identify singularities.
- 5. Identify the dynamics of the robotic manipulator using Euler Lagrangian approach
- 6. Generate joint trajectories for motion planning.
- 7. Implement the multivariable controller for setpoint tracking and disturbance rejection
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1Introduction2 HoursBrief History, Types of robots, Degrees of freedom of robots, Robot configurations and concept of
workspace, End effectors and Different types of grippers, vacuum and other methods of gripping.
Pneumatic, hydraulic and electrical actuators, applications of robots, specifications of different
industrial robots.2 Hours

Module:2	Rigid	Motion	and	Homogeneous	5 Hours
	transfor	mation			

Position definitions. Coordinate frames. Different orientation descriptions. Free vectors. Translations rotations and relative motion, Composition of rotation, rotation with respect to fixed frame and current frame, parameterisation of rotation, Euler Angele, roll, pitch, yaw, axis/angle representation, Homogeneous transformation

Module:3 Forward Kinematics

Link coordinate frames. Denavit-Hartenberg convention. Assignment, of coordinate frame, Joint and end effector Cartesian space. Calculation of DH parameters and forward kinematic equation of different configuration of manipulator, Planner elbow manipulator, Cylindrical three link, SCARA, Spherical Wrist and other configuration.

Module:4 Velocity Kinematics:

Forward kinematics transformations of position Translational and rotational velocities. Velocity Transformations. Singularity, The Manipulator Jacobian.

Module:5 Robot Dynamics

4 Hours

Lagrangian formulation, general expression for kinetic and potential energy of n-link manipulator, Newton-Euler equations of motion. Derivation of equations of motion for simple cases: two-link manipulators.

Module:6	Trajectory Planning& Programming	5 Hours
Trajectory p	lanning and avoidance of obstacles.Trajectory	for point to point motion,Cubic
polynomial t	rajectory,Quintic polynomial, LSPB(Linear segme	ent with parabolic blend)Minimum
time trajector	ry, Trajectories for Paths Specified by Via Points.	Robot languages, computer control
and Robot so	ftware	

Modulo•7	Indonandant Laint Control
Module:7	Independent Joint Control:

Actuator dynamics, Set point tracking Feed forward control, Drive Train dynamics. Introduction to force control and multivariable control.

Module	e:8	Contemporary issues:			2 Hours				
			Total Lecture H	ours	30 Hours				
Text B	ook(s)							
1.	M.W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control, Wiley, .2nd revise edition, 2012								
2.	2. J.J. Craig, Introduction to Robotics: Mechanics and Control, Pearson Education, 4th Editi 2017								
3.		. Groover, et.al., Industrial R Graw Hill, 2nd indian edition		y, Progran	nming and applications,				
Referen	nce B	ooks							
1.		ot Manipulators : Modeling, ama Khalil, Somerset : Wiley		lysis and (Control. by Etienne Dombre;				
2.		Tokhi, A K M Azad,Flexibl on, 2017.	e robot manipulat	or :model	ling, simulation and control 2nd				
3.	3. Ashitava Ghosal.Robotic fundamental Concept and Analysis,Oxford University Press 11th impression 2015.								
Mode o	f Eva	luation: CAT / Assignment /	Quiz / FAT / Proj	ect / Semi	nar				
Recom	nende	ed by Board of Studies	05/03/2016						
Approv	ed by	Academic Council	40 th AC	Date	18/03/2016				

EEE4028		VLSI Design	No. No.	L T P J C
		8		3 0 2 0 4
Pre-requisite		EEE3002		Syllabus version
Anti-requisit		Nil		v. 2.0
Course Obje	ctives:			
-		n understanding of the digital VLSI concepts		-
-		ntroduction to architecture and design con-	cepts underlying n	nodern complex
VLSI.		1	1 1 1.	, 1 , 1 .,
-		udents with the background needed to desig	· · · ·	st digital circuits
		thardware Description Language (VHDL) and the students to design the digital circuits using		nlex systems
4. To pro		te students to design the digital encuts using		npiex systems.
Expected Cor	urse O	utcome:		
		f this course the student will be able to:		
1. Analy	ze and	identify the methodologies for fabricating the	ne ICs.	
2. Synthe	esize ar	nd design arithmetic circuits using HDL.		
3. Design	n logic	circuits using CMOS and its equivalent layo	ut for fabrication.	
•		characteristics of CMOS to reduce the delay	and power dissipat	ion in logic
circuit				
	•	istor configurations for better performance i	n logic circuits.	
-		bry devices using transistors.		
	-	design arithmetic circuits for various applica		
8. Design	n and C	conduct experiments, as well as analyze and	interpret data	
Module:1	Overv	view of VLSI Design Methodology		4 Hours
		ocess, Architectural design, logical design,	Physical design, l	
custom, Semi				
		luction to Verilog HDL		6 Hours
	-	HDL, Gate level, data flow, behavioral mod		nd Operators,
Blocking and	non-bl	ocking assignment statements. Test benches.		
M. 1. 1. 2	T.4			
		luction to MOS Devices	6 Hours	
		S Transistor Theory: nMOS, pMOS Enhance oltage, MOS Device Design Equations, Body		
		odel. Stick Diagram, Layout Design Rules.	y chiect, Second on	ier enteets. WOS
		oder. Stiek Diagram, Dayout Design Rules.		
Module:4	Circui	t Characterization And Performance		6 Hours
Wiodule.4	Estim			0 Hours
DC Character		of CMOS Inverter, Switching Characteris	stics of CMOS In	verter, Transistor
		elay model- Rise Time, Fall Time. Gate		
• •		ation: Static- Dynamic-Short Circuit Power		

Introduction, Static CMOS Design- Complex Logic Gates, Ratioed Logic, Pass-Transistor Logic, Transmission gate Logic, Dynamic CMOS Logic Design: Dynamic Logic Design Considerations. Speed and Power Dissipation of Dynamic logic, Signal integrity issues, Cascading Dynamic gates.

Module:6	Sequential Logic Circuits	6 Hours
Static and D	ynamic Latches and Registers, Timing issues, pipeli	ning

Module:7	Designing arithmetic circuits
----------	-------------------------------

Adders-Ripple carry, Carry-Look ahead, Multiplier using Array based-Ripple carry adder, Carry-Save adder, Multiplier using Tree based-Wallace Tree, Dadda Tree, Booth Multiplier, Squarer. Modeling of arithmetic circuits using HDL:

Pipelined Multiplier and Accumulator, FIR filter design. Verilog Coding for arithmetic circuits.

Mod	ule:8	Contempo	orary issues:			2 Hours				
				Total Lecture H	ours	45 Ho				
List	List of Challenging Experiments (Indicative)									
1.	Four b	it adder usin	ng different appr	oaches for delay ar	nd Area reducti	on	2 Hours			
2.	2. Four Bit Wallace tree multiplier									
3.	Four b	it dada tree i	multiplier				2 Hours			
4.	Four bi	t squarer des	sign				2 Hours			
5.	Multip	lier and Acc	umulator design				2 Hours			
6.	FIR filt	ter design					2 Hours			
7.				n of Complex Bool			2 Hours			
8.	CMOS	switch level	l implementation	n of adder and subt	ractor		2 Hours			
9.	Implen	nentation of	Boolean function	n using various tra	nsistors		2 Hours			
10.	Positiv	e and negativ	ve edge triggere	d register design			2 Hours			
					Total Labor	atory Hours	30 hours			
Text	Book(s)								
1.		•		akasan, B.Nikolic,	e	grated circuit	s: A design			
	-	1		entice Hall of Indi						
2.			•	Harris, "CMOS	VLSI DESIG	N: a circuits	and systems			
	pers	pective", Fo	urth edition, Pea	arson 2015.						
Refe	erence E									
1.	Sam	ir Palnitkar,	"Verilog HDL"	, Prentice Hall, 20	10.					
2.	Sun	g-Ma Kong	, Yusuf Leblebi	ici and Chulwoo	Kim, "CMOS	digital integra	ated circuits:			
	analysis and design", 4th edition, McGraw-Hill Education, 2015.									
Mod	e of Eva	luation:	CAT I & II – 3	0%, DA I & II – 2	0%, Quiz – 109	%, FAT – 40%				
Reco	mmend	ed by Board		05/03/2016	-					
		Academic (40 th AC	Date	18/03/2016				

			to be University under section 3 of						
EEE40	37	Rapi	d Prototyping wi	th FPGAs]	LT	P J	C
							0 0	4 0	2
Pre-req	luisite	Nil				Sy	llabu	s vers	sion
Anti-re	-	Nil						٢	v1.0
Course	Objectives:								
		irse exposes students				and	test o	fav	vide
		f prototype electric an							
		ing design by appl				tivity	and	mod	lern
	computa	tional tools to the synt	nesis of a simple of	component	or system.				
Fynoet	ed Course O	Jutcomo:							
-		of this course the stude	nt will be able to:						
	-	Conduct experiments,			ret data				
1.		conduct experiments,	us well us unuryze	und interp	Ict data				
List of	Experiment	S							
1		nulator design in Veri	log						
2		design in Verilog	6						
3		programming- Adder,	Subtractor, Multp	lexer, Dem	ultiplexer				
4		converter	· 1	,	1				
5	Shift 1	register/Universal shif	t register						
6		unter/Downcounters							
7	FIR fi	lter							
8	Array	multiplier							
9	Rapid	Prototyping of P	ower Electronics	6 Convert	ers for Ph	notovo	oltaic	Sys	tem
9	Appli	cation Using Xilinx Sy	ystem Generator						
10	-	n Principles for Rapid			-		-		
11	-	Rapid Control Prototyping of Active Vibration Control Systems in Automotive							
		cations							
12		Rapid Prototyping of a Low-Cost Solar Array Simulator Using an Off-the-Shelf DC							
		Power Supply							
13	Rapid	Prototyping of Minia	-						
D 0	T		Total Labo	oratory Ho	urs			60 ho	ours
	nce Books				1				
1. Chee Kai Chua, Kah Fai Leong, Chu Sing Lim Rapid Prototyping: Principles and Andrew Cherker and Andrew Ch				and					
 Applications ,3rd Edition, Kindle Edition 2. Miltiadis Boboulas, CAD-CAM & Rapid prototyping Application Evaluation, Bookboom 									
2.	MIIITIADIS B	odoulas, CAD-CAM	x kapia prototypi	ng Applica	uion Evaluat	uon, I	300Kt	oon	
3.	3. R. C. Cofer Benjamin Harding , Rapid System Prototyping with FPGAs								
Recomm	nended by B	oard of Studies	13/10/2018						
Approv	ed by Acade	mic Council	53 rd AC	Date	13/12/2018	3			

	(Deemed to be University under section 3 of UGC Act, 1956)					
EEE4038		Testi	ng and Calibrat	ion System	IS	L T P J C
						0 0 2 0 1
Pre-requisi	te	EEE4021/EEE2004	4			Syllabus version
Anti-requis	site	Nil				v. 1.0
Course Obj	jectives:					
1. To	o explore	e the basic concepts a	nd terminology of	of testing an	d calibration	systems.
Expected C						
-	-	f this course the stude				
1.1	Design a	nd Conduct experime	ents, as well as a	nalyze and i	interpret data	
List of Exp						
		a comparative exper				• •
		eight Pressure Gauge				
		the errors and estimated the errors and estima				
I	_	an experimental st				
						date the same by
	estimation of uncertainties during flow measurement.Perform uncertainty calculations for the given Voltmeter and ammeter and calibrate the					
	same using multifunctional calibrator system. Validate the meters for a given electrical					
	circuit.					
	Conduct a verification and validation of a three-phase wattmeter and a single-phase					
V	wattmeter. Perform uncertainty calculations for the same					
	Configure and calibrate the given K-type thermocouple for measuring temperature of a					
6 k	kettle between 25°C to 250°C. Perform uncertainty analysis.					
1	Perform	a calibration and r	incertainty analy	reis for a	given thermi	stor for measuring
		n a calibration and uncertainty analysis for a given thermistor for measuring ature of a system between 25°C to 150°C.				
(Conduct a verification and validation of a hygrometer for measuring humidity. Perform					
<u> </u>		nent uncertainty for t	-	e	U	5
9 I	Perform an experiment for RTD and Thermocouple probe calibration.					
10 0	Conduct	an experiment for tor	rque transducer c	alibration a	nd check the	errors
Total Laboratory Hours 30 hours						
Reference Books						
1. Al	Alessandro Brunelli, Calibration Handbook of Measuring Instruments, Ist Edition, ISA.					
	Paul.D.Q., An Introduction to Measurement and Calibration, Campbell Industrial Press Inc,					
					1	,
Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar						
	1 11 5	1.60/1	12/10/2010			
Recommended by Board of Studies 13/10/2018						
Approved by	y Acader	nic Council	53 rd AC	Date	13/12/2018	

VIT VIT Vellore Institute of Technology (Deemed to be University under section 3 of UGC Act, 1956)

MEE1006	Applied Mechanics and Thermal Engineering	L T P J C		
Pre-requisite	Nil	`Syllabus version		
Anti-requisite Nil v.2.				
Course Objectives:				

1. To make the students to understand the principles of solid mechanics.

- 2. To make the students to understand the basic concepts of mechanical vibrations.
- 3. To familiarize the students with the properties of fluids and the applications of fluid mechanics.
- 4. To make the students to understand the principles of thermodynamics and to get broad knowledge in its applications.
- 5. To provide the students a gist of the theory behind the refrigeration and air conditioning system.
- 6. To make the students to understand the principles of heat transfer.

Expected Course Outcome:

Student will be able to

- 1. Evaluate the allowable loads and associated allowable stresses before mechanical failure in different types of structures.
- 2. Assess the vibrations associated with various mechanical systems.
- 3. Apply the fundamental laws of thermodynamics for the analysis of wide range of thermodynamic systems.
- 4. Explain basic concepts of fluid mechanics and their applications.
- 5. Demonstrate and analyze various refrigeration and air conditioning systems.
- 6. Evaluate heat transfer through different modes.

Module 1 Solid Mechanics

Concept of stress and strain-Normal and shear stress -relationship between stress and strain-Elasticity- poisson's ratio-shear force and bending moment diagrams for simply supported, cantilever and overhanging beams - Analysis of forces in truss members

Module 2 Mechanical Vibrations

Single degree of freedom systems- Un-damped and damped- Natural frequency- transverse vibration of shafts- critical speed by Rayleigh's and Dunkerley's method.Forced vibration-Harmonic excitation-Magnification factor- Vibration isolation-Torsional vibration-Holzer's analysis.

Module 3 Fluid Mechanics

Properties of fluid- Uniform and steady flow- Euler's and Bernoulli's Equations- pressure losses along the flow. Flow measurement- Venturi meter and Orifice meters, Pipes in series and parallel. Introduction to Turbines and pumps - classification of turbines - specific speed and speed governance. Classification of pumps- characteristics and efficiency.

Module 4 Thermodynamic systems

Basic concepts of Thermodynamics - First law of thermodynamics– Second law of thermodynamics - applications. Working Principle of four stroke and two stroke engines - Open and closed cycle gas turbines

Module 5 Steam Boilers and Turbines

Formation of steam - Thermal power plant - Boilers -Modern features of high-pressure boilers -

5 hours

5 hours

4 hours

3 hours

3 hours

N/		(Deemed to be Un	12		
Mounti	ngs and accessories - St	eam turbines: Im	pulse and	a reaction	on principle.
Module	e 6 Compressors, conditioning	Refrigeration	and	Air	5 hours
					rifugal and axial flow compressors -
				und Vap	pour absorption systems-Principle of
air cond	litioning system- Types	and comparison.			
Madala	7 Heat Transfer				2 h anna
Module		conduction con	vection	and rad	3 hours iation - Free convection and forced
		,			, electric motor and transformers
				0110110	
		51	•		2 hours
Module	e 8 Conte	mporary Discuss	sion		
	То	tal Lecture hour	c		30 hours
	Flipped Class Room, Visit to Industry, Min o				e of physical cut section models to
Practic	al Experiments				
1. Evalı	ution of Engineering S	tress / Strain Diag	ram on S	Steel ro	d, Thin and Twisted Bars under
tension.	• •				
	pression test on Bricks,	Concrete blocks.			
-	ral frequency of longitu		spring n	nass sys	stem.
	mination of torsional v				
	mped free vibration of	·		-	5
	ped vibration of equival	1 0			
-	through Venturimeter	1 0	•		
	through Orifice Meter				
9. Verif	ication of Bernoulli's A	Apparatus			
	formance test on air-cor				
11. Perf	formance test on vapour	compression ref	rigeration	n syster	n
12. Hea	t transfer in natural/fore	ced convection			
13. Hea	t transfer through a con	nposite wall.			
Mode of	f Evaluation : Continuc	ous Assessment in	cludes C	CAT I, C	CAT II, Assignments/Quizzes, FAT
Text Bo					
1. R.	.K. Rajput, (2010), The	rmal Engineering	, Lakshn	ni Publi	cations
	nce Books				
	ogers and Mayhew, 'E Vesley, New Delhi, 1999		nodynan	nics – Y	Work and Heat Transfer', Addision
2. B.	.K. Sarkar, 'Thermal Ei	nginerring'. Tata	McGraw	Hill. N	lew Delhi, 1998.
	B.K. Sarkar, 'Thermal Enginerring', Tata McGraw Hill, New Delhi, 1998.Ahmadal Ameen 'Refrigeration and Airconditioning' Prentice Hall of India Ltd, 2006.				
3. A	innadal Anteen Reing			15 1101	thee fran of mana Eta, 2000.
	K. Nag, 'Heat Transfer				

6.	P.K. Nag, 'Basic and Applied Engir	neering Therm	odynamics', Ta	ta McGraw Hill, New	
	Delhi,2010.				
7.	B.K. Sachdeva, 'Fundamentals of Engineering Heat and Mass Transfer (SI Units)', New Age				
	International (P) Limited (2009).				
8.	C.P. Arora 'Refrigeration and Air Conditioning', Tata McGraw Hill (2001).				
	Recommended by Board of Studies	17/08/2017			
	Approved by Academic Council No.	47 th AC	Date	05/10/2017	

PHY 1002	Materials	Science L T P J C		
Pre-requisite	Nil	Syllabus version		
Anti-requisite Nil v. 1				
Course Objectives:				

To enable the students to understand the nature of different types of materials namely Conducting, Semi conducting, Dielectrics, Magnetic and Superconducting materials.

Expected Course Outcome:

- 1. Students will be able to understand the fundamentals of physics for conducting materials and how it is pertinent for engineering related applications
- 2. Students can understand how to describe the basic classification of semiconducting materials and how to develop an engineering related devices
- 3. Students will be able to describe the fundamental polarization mechanism involved in dielectrics and how it is responsible with different frequency of radiation including how stress and strain plays a major role in piezoelectric.
- 4. Learn basic magnetization concepts in detail and study different properties of magnetic materials, including the analysis of various magnetic properties and its applications.
- 5. Students will be able to describe the phenomenon of superconduction and explain how superconductors behave in magnetic fields including some engineering applications of superconductors.
- 6. Gain the basic phenomenon behind the mechanism between materials and light and how a material blacking, absorbing and enhancing the light including the complete idea of negative index and negative materials by understanding the universal parameters of permeability and permittivity.
- 7. Gain an introduction to nanomaterials and in depth knowledge about synthesis and properties of bulk and nanostructured materials, including their applications.
- 8. Gain knowledge by demonstrating to understand electrical, thermal, dielectric, semiconducting and magnetic properties of materials LAB

Module:1	Conducting Materials	6 hours				
Drude-Lore	Drude-Lorentz Classical free electron theory of metals, electrical conductivity, relaxation time,					
drift velocit	y, Matthiessen's rule, thermal conductivity Wiedem	ann-Franz law, drawbacks of				
classical the	ory, Kronig-Penny Model, Quantum theory (deriva	tion) and its success, Band theory				
of solids.						
Module:2	Semiconducting Materials	7 hours				
Band theory of solids - Kronig-Penney Model & its success; P and N type - direct and indirect						

Band theory of solids – Kronig-Penney Model & its success; P and N type – direct and indirect semiconductor; Density of energy state; Variation of Fermi level with respect to temperature and carrier concent rat ion in intrinsic and extrinsic semiconductors; Hall effect – theory – experimental proof; Hall Sensors, Problems.

Module:3	Iodule:3 Dielectric Materials					7 h	ours
Introduction	n, Clausius-Mosotti	relation;	Polarization	mechanisms,	electronic,	ionic	and
orientation, Temperature dependence of dielectric constant, Frequency dependence of dielectric							
constant, Dielectric loss, dielectric breakdown types, dielectric materials as electrical insulators -							

exa	mples, F	roblems, Ferroelectric and Piezoelectric materials			
Mo	dule:4	Magnetic Materials	6 hours		
		arameters and their relations - Origin of magnetizati			
	U 1	noment, Bohr magneton, Properties of dia, para,	0		
	0	Domain theory of ferromagnetism, Hysteresis, s	0		
		-computer hard disk	e ,		
		• • • • • • • • • • • • • • • • • • •			
_	dule:5	Superconducting Materials	6 hours		
-		ctors, types, properties, Meissner Effect, BCS t			
(YI	BCO). A	pplications- Josephson Effect-SQUID-Cryotron; Pro	oblems.		
M	d1(M. 4			
	dule:6	Metamaterials Natural and Artificial Materials, Photonia Pane	6 hours		
		n, Natural and Artificial Materials, Photonic Banc of a wire medium, Resonant elements for metamat			
		onant loop, Effective permeability, Effect of negative	•		
Car	i yilig i cs	onant 100p, Effective permeability, Effect of hegati	ve materials constants.		
Mo	dule:7	Material Synthesis	6 hours		
		nthesis processes, PVD sputtering, Chemical Va			
		of thin films, bulk and nanomaterials (any one mate			
		,	,		
Mo	dule:8	Contemporary issues:	2 hours		
Gue	est lectur	e by industry experts			
		Total Lecture Hours	45 hours		
Tex	xt Book(s)			
1.	C.M. S	rivasta and Srinivasan, "Science of Engineering Ma	terials", Tata McGraw Hill		
		tions, 2003.			
2.	M S Vi	jaya & G Rangarajan, "Materials Science", Tata Mo	CGraw – Hill Publishing Company		
	Ltd., 20	003.			
3.	Elemer	tary Solid State Physics by M. Ali Omar, Pearson E	Education India, 1975		
		cal Properties of Materials (eighth edition, 2010), L.	Solymar and D. Walsh (Oxford		
4.		ity Press).			
Ref	ference]				
1.		O, "Solid State Physics", revised sixth edition, New			
2.		asap, "Principles of Electronic Materials and device	s", Second edition, Tata McGraw –		
	Hill Publishing Company Ltd., 2002.				
-	3. Van Vlack L, "Materials Science for Engineers", Addison Wesley, 1995.				
4.	4. Raghavan V, "Materials Science and Engineering", Prentice – Hall of India, New Delhi, 1998.				
5.	5. M S Vijaya & G Rangarajan, "Materials Science", Tata McGraw – Hill Publishing Company Ltd., 2003.				
6.					
	Materials Science of Thin Films, Milton Ohring, Academic Press, 2002.				
7.	Materia	als Science of Thin Films, Milton Ohring, Academic	e Press, 2002.		
		als Science of Thin Films, Milton Ohring, Academic cacharya, "Semiconductor Optoelectronic Devices",			

Mo	Mode of Evaluation: CAT / Assignment / Quiz / FAT / Seminar				
Lis	t of Challenging Experiments (Ind	licative)			
1.	Thermal and Electrical Conductivi	ty of a Good Cond	luctor		4 hours
2.	Dielectric study - dielectric behavior	or of a ferroelectri	c ceramic	material at	4 hours
	various temperature and determine	the curie tempera	ture		
3.	Hall Effect - Determine the Hall co	befficient of a give	en German	ium	4 hours
	(Semiconductor) crystal				
4.	Solar Cell - Draw I-V characteristic				3 hours
	maximum power generated from se		r and effici	ency.	
5.	Magnetic Susceptibility - by Quinke's Method				3 hours
6.	6. Band Gap - using four probe method				3 hours
7.	Schering bridge: To find unknown	f the circuit	3 hours		
8.	. B-H curve of magnetic materials				3 hours
9.	. Determination of the electron spin g-factor (Lande g-factor) of a given 3 hours				
	sample by ESR spectrometer				
	Total Laboratory Hours 30 hours				
Mo	Mode of evaluation: Continuous Assessment & Final Assessment Test (FAT)				
Rec	Recommended by Board of Studies 05/03/2016				
App	Approved by Academic Council40th ACDate18/03/2016				

Job Role: SSC/Q8210 2 0 2 4 4 Pre-requisite Nil Syllabus version Anti-requisite Nil v.1.0 Course Objectives: v.1.0 1. To impart knowledge on the infrastructure, sensor technologies and networking technologies of IoT. v.1.0 2. To analyse, design and develop IoT solutions. . . 3. To explore the entrepreneurial aspect of the Internet of Things . . 4. To apply the concept of Internet of Things in the real world scenarios . . Expected Course Outcome: . . . After successfully completing the course the student should be able to . . . 1. Identify the main component of IoT 2. Program the controller and sensor as part of IoT 3. Assess different Internet of Things technologies and their applications Module:1 Introduction: 2 hour Module:2 Internet of Things - An Introduction: 2 hour . . <	ECE3501	(Deemed to be University under section 3 of UGC Act, 1956) IOT Fundamentals	L	Т	Р	J	С
Nutrequisite Nit Operation version Anti-requisite Nit 0, 100 Course Objectives: 0, 100 1. To impart knowledge on the infrastructure, sensor technologies and networking technologies of IoT. 0, 100 2. To analyse, design and develop IoT solutions. 3. To explore the entrepreneurial aspect of the Internet of Things 4. To apply the concept of Internet of Things in the real world scenarios 4. To apply the concept of Internet of Things in the real world scenarios Expected Course Outcome: After successfully completing the course the student should be able to 1. Identify the main component of IoT 2. Program the controller and sensor as part of IoT 3. Assess different Internet of Things technologies and their applications Module:1 Introduction: 2 hour TT-TES/BPM Industry – An Introduction, the relevance of the IT-ITeS sector, Future Skills – An Introduction of IoT and the trends, Impact of IoT on businesses and society, Existing IoT use cases and applications across industries. 6 hours Security and privacy risks, analyze security risks, Technologies and methods that mitigate security, Privacy standards and regulations, Social and privacy impacts 6 hours IoT Solutions Fo bours S hours Prototyping the Pilot execution: <t< th=""><th></th><th></th><th></th><th>0</th><th>2</th><th></th><th>4</th></t<>				0	2		4
Introduction Introduction Introduction of IoT Program the concept of Internet of Things in the real world scenarios Expected Course Outcome: After successfully completing the course the student should be able to I. Identify the main component of IoT Program the controller and sensor as part of IoT 3. Assess different Internet of Things is the real world scenarios Module:1 Introduction: 2 hour Program the controller and sensor as part of IoT 3. Assess different Internet of Things technologies and their applications Module:1 Introduction: TIT-IFES/BPM Industry – An Introduction, the relevance of the IT-ITeS sector, Future Skills – An Introduction, General overview of the Future Skills sub-sector Module:2 Internet of Things - An Introduction: 3 hours Evolution of IoT and the trends, Impact of IoT on businesses and society, Existing IoT use cases and applications across industries. 6 hours Security and privacy risks, analyze security risks, Technologies and methods that mitigate security, Privacy standards and regulations, Social and privacy impacts 6 hours IoT use case development, Need and Goals for IoT solution, Adoption of IoT solutions, Need for stakeholder buy-in Module:5 Prototyping the Pilot execution: 5 hours Prototype developing Stages, deploy real-time UI/UX visualizations, Methods and metrics to anal	Pre-requisite	Nil	S	yllat	ous v	vers	ion
1. To impart knowledge on the infrastructure, sensor technologies and networking technologies of IoT. 2. To analyse, design and develop IoT solutions. 3. To explore the entrepreneurial aspect of the Internet of Things 4. To apply the concept of Internet of Things in the real world scenarios Expected Course Outcome: After successfully completing the course the student should be able to 1. Identify the main component of IoT 2. Program the controller and sensor as part of LoT 3. Assess different Internet of Things technologies and their applications Module:1 Introduction: 2 hour TT-TrES/BPM Industry – An Introduction, the relevance of the IT-ITeS sector, Future Skills – An Introduction, General overview of the Future Skills sub-sector Module:2 Internet of Things - An Introduction: 3 hours Evolution of IoT and the trends, Impact of IoT on businesses and society, Existing IoT use cases and applications across industries. 6 hours Security and privacy risks, analyze security risks, Technologies and methods that mitigate security. Privacy standards and regulations, Social and privacy impacts 6 hours IoT use case development, Need and Goals for IoT solution, Adoption of IoT solutions, Need for stakeholder buy-in 5 hours Prototyping the Pilot execution: 5 hours Prototyping the Pilot execution: <td>Anti-requisite</td> <td>Nil</td> <td></td> <td></td> <td></td> <td>v.1</td> <td>1.0</td>	Anti-requisite	Nil				v. 1	1.0
technologies of IoT. 2. To analyse, design and develop IoT solutions. 3. To explore the entrepreneurial aspect of the Internet of Things 4. To apply the concept of Internet of Things in the real world scenarios Expected Course Outcome: After successfully completing the course the student should be able to 1. Identify the main component of IoT 2. Program the controller and sensor as part of IoT 3. Assess different Internet of Things technologies and their applications Module:1 Introduction: 2 hour IT-ITeS/BPM Industry – An Introduction, the relevance of the IT-ITeS sector, Future Skills – An Introduction, General overview of the Future Skills sub-sector Module:2 Internet of Things - An Introduction: 3 hours Evolution of IoT and the trends, Impact of IoT on businesses and society, Existing IoT use cases and applications across industries. Module:3 IoT Security and Privacy: 6 hours Security and privacy risks, analyze security risks, Technologies and methods that mitigate security, Privacy standards and regulations, Social and privacy impacts Module:5 Prototyping the Pilot execution: 5 hours Prototype development, Need and Goals for IoT solution, Adoption of IoT solutions, Prototyping the Pilot execution: 5 hours Prototype development, Need and Goals for IoT solution, Adoption of IoT solutions, Prototyping the Pilot execution: 5 hours Prototyping Stages, deploy real-time UI/UX visualizations, Methods and metrics to analyze and convey business outcomes, feedback and data obtained from execution. Module:6 Scalability of IoT Solutions, Strategies for implementation, key Milestone, Scalability of IoT Solutions, Methods, platforms and tools. Web and Mobile Interfaces Module:7 Build and Maintain Relationships at the Workplace, Team Empowerment 30 hours	Course Objectives	S:					
1. Identify the main component of IoT 2. Program the controller and sensor as part of IoT 3. Assess different Internet of Things technologies and their applications Module:1 Introduction: 2 hour IT-ITeS/BPM Industry – An Introduction, the relevance of the IT-ITeS sector, Future Skills – An Introduction, General overview of the Future Skills sub-sector 3 hours Evolution of IoT and the trends, Impact of IoT on businesses and society, Existing IoT use cases and applications across industries. 6 hours Security and privacy risks, analyze security risks, Technologies and methods that mitigate security, Privacy standards and regulations, Social and privacy impacts 6 hours IoT Solutions 6 hours 1oT solutions. 5 hours IoT use case development, Need and Goals for IoT solution, Adoption of IoT solutions, Planning for IoT Solution: Evaluate costs, competition, technology challenges and internal resource considerations, Need for stakeholder buy-in 5 hours Prototyping the Pilot execution: 5 hours Roadmap for developing Stages, deploy real-time UI/UX visualizations, Methods and metrics to analyze and convey business outcomes, feedback and data obtained from execution. Module:6 Module:7 Build and Maintain Relationships at the Workplace, Team Empowerment 3 hours	technologies of 2. To analyse, do 3. To explore the 4. To apply the o	of IoT. esign and develop IoT solutions. e entrepreneurial aspect of the Internet of Things concept of Internet of Things in the real world scenarios	wor	king			
IT-ITeS/BPM Industry – An Introduction, the relevance of the IT-ITeS sector, Future Skills – An Introduction, General overview of the Future Skills sub-sector Module:2 Internet of Things - An Introduction: 3 hours Evolution of IoT and the trends, Impact of IoT on businesses and society, Existing IoT use cases and applications across industries. 6 hours Security and privacy risks, analyze security risks, Technologies and methods that mitigate security, Privacy standards and regulations, Social and privacy impacts 6 hours Module:4 IoT Solutions 6 hours IoT solutions 6 hours IoT solutions 6 hours Vodule:4 IoT Solutions 6 hours IoT use case development, Need and Goals for IoT solution, Adoption of IoT solutions, Planning for IoT Solution: Evaluate costs, competition, technology challenges and internal resource considerations, Need for stakeholder buy-in Module:5 Prototyping the Pilot execution: 5 hours Prototype developing Stages, deploy real-time UI/UX visualizations, Methods and metrics to analyze and convey business outcomes, feedback and data obtained from execution. Module:	 Identify the n Program the c 	nain component of IoT controller and sensor as part of IoT					
An Introduction, General overview of the Future Skills sub-sector Internet of Things - An Introduction: 3 hours Internet of Things - An Introduction: 3 hours Evolution of IoT and the trends, Impact of IoT on businesses and society, Existing IoT use cases and applications across industries. 6 hours Module:3 IoT Security and Privacy: 6 hours Security and privacy risks, analyze security risks, Technologies and methods that mitigate security, Privacy standards and regulations, Social and privacy impacts 6 hours Module:4 IoT Solutions 6 hours IoT use case development, Need and Goals for IoT solution, Adoption of IoT solutions, Planning for IoT Solution: Evaluate costs, competition, technology challenges and internal resource considerations, Need for stakeholder buy-in 5 hours Module:5 Prototyping the Pilot execution: 5 hours Prototype developing Stages, deploy real-time UI/UX visualizations, Methods and metrics to analyze and converbusiness outcomes, feedback and data obtained from execution. 5 hours Module:6 Scalability of IoT Solutions, Strategies for implementation, key Milestone, Scalability of IoT Solutions, Methods, platforms and tools. Web and Mobile Interfaces Module:7 Build and Maintain Relationships at the Workplace, Team Empowerment 3 hours	Module:1	Introduction:		2	hou	r	
Evolution of IoT and the trends, Impact of IoT on businesses and society, Existing IoT use cases and applications across industries.Module:3IoT Security and Privacy:6 hoursSecurity and privacy risks, analyze security risks, Technologies and methods that mitigate security, Privacy standards and regulations, Social and privacy impacts6 hoursModule:4IoT Solutions6 hoursIoT use case development, Need and Goals for IoT solution, Adoption of IoT solutions, Planning for IoT Solution: Evaluate costs, competition, technology challenges and internal resource considerations, Need for stakeholder buy-in5 hoursModule:5Prototyping the Pilot execution:5 hoursPrototype developing Stages, deploy real-time UI/UX visualizations, Methods and metrics to analyze and convey business outcomes, feedback and data obtained from execution.5 hoursModule:6Scalability of IoT Solutions:5 hoursRoadmap for developing complete IoT solutions, Strategies for implementation, key Milestone, Scalability of IoT Solutions, Methods, platforms and tools. Web and Mobile Interfaces3 hoursModule:7Build and Maintain Relationships at the Workplace, Team Empowerment30 hours			or, F	uture	e Sk	ills -	_
and applications across industries.IoT Security and Privacy:6 hoursSecurity and privacy risks, analyze security risks, Technologies and methods that mitigate security, Privacy standards and regulations, Social and privacy impacts6 hoursModule:4IoT Solutions6 hoursIoT use case development, Need and Goals for IoT solution, Adoption of IoT solutions, Planning for IoT Solution: Evaluate costs, competition, technology challenges and internal resource considerations, Need for stakeholder buy-in5 hoursModule:5Prototyping the Pilot execution:5 hoursPrototype developing Stages, deploy real-time UI/UX visualizations, Methods and metrics to 	Module:2	Internet of Things - An Introduction:		3	hou	rs	
Security and privacy risks, analyze security risks, Technologies and methods that mitigate security, Privacy standards and regulations, Social and privacy impacts Module:4 IoT Solutions 6 hours IoT use case development, Need and Goals for IoT solution, Adoption of IoT solutions, Planning for IoT Solution: Evaluate costs, competition, technology challenges and internal resource considerations, Need for stakeholder buy-in 6 hours Module:5 Prototyping the Pilot execution: 5 hours Prototype developing Stages, deploy real-time UI/UX visualizations, Methods and metrics to analyze and convey business outcomes, feedback and data obtained from execution. 5 hours Roadmap for developing complete IoT solutions, Nethods, platforms and tools. Web and Mobile Interfaces 3 hours Module:7 Build and Maintain Relationships at the Workplace, Team Empowerment 3 hours			istii	ng Io	oT u	se ca	ises
security, Privacy standards and regulations, Social and privacy impacts 6 hours Module:4 IoT Solutions 6 hours IoT use case development, Need and Goals for IoT solution, Adoption of IoT solutions, Planning for IoT Solution: Evaluate costs, competition, technology challenges and internal resource considerations, Need for stakeholder buy-in 6 hours Module:5 Prototyping the Pilot execution: 5 hours Prototype developing Stages, deploy real-time UI/UX visualizations, Methods and metrics to analyze and convey business outcomes, feedback and data obtained from execution. 5 hours Module:6 Scalability of IoT Solutions; Strategies for implementation, key Milestone, Scalability of IoT Solutions, Methods, platforms and tools. Web and Mobile Interfaces 3 hours Module:7 Build and Maintain Relationships at the Workplace, Team Empowerment 3 hours	Module:3	IoT Security and Privacy:		6	hou	rs	
Module:4IoT Solutions6 hoursIoT use case development, Need and Goals for IoT solution, Adoption of IoT solutions, Planning for IoT Solution: Evaluate costs, competition, technology challenges and internal resource considerations, Need for stakeholder buy-in5 hoursModule:5Prototyping the Pilot execution:5 hoursPrototype developing Stages, deploy real-time UI/UX visualizations, Methods and metrics to analyze and conversions outcomes, feedback and data obtained from execution.5 hoursModule:6Scalability of IoT Solutions:5 hoursRoadmap for developing complete IoT solutions, Strategies for implementation, key Milestone, Scalability of IoT Solutions, Methods, platforms and tools. Web and Mobile Interfaces3 hoursModule:7Build and Maintain Relationships at the Workplace, Team Empowerment30 hours	• -		tho	ds th	nat 1	nitig	gate
Planning for IoT Solution: Evaluate costs, competition, technology challenges and internal resource considerations, Need for stakeholder buy-in Module:5 Prototyping the Pilot execution: 5 hours Prototype developing Stages, deploy real-time UI/UX visualizations, Methods and metrics to analyze and convey business outcomes, feedback and data obtained from execution. 5 hours Module:6 Scalability of IoT Solutions: 5 hours Roadmap for developing complete IoT solutions, Strategies for implementation, key Milestone, Scalability of IoT Solutions, Methods, platforms and tools. Web and Mobile Interfaces 3 hours Module:7 Build and Maintain Relationships at the Workplace, Team Empowerment 30 hours				6	hou	rs	
Prototype developing Stages, deploy real-time UI/UX visualizations, Methods and metrics to analyze and convey business outcomes, feedback and data obtained from execution. Module:6 Scalability of IoT Solutions: 5 hours Roadmap for developing complete IoT solutions, Strategies for implementation, key Milestone, Scalability of IoT Solutions, Methods, platforms and tools. Web and Mobile Interfaces Module:7 Module:7 Build and Maintain Relationships at the Workplace, Team Empowerment 3 hours Total Lecture Hours 30 hours	Planning for IoT	IoT use case development, Need and Goals for IoT solution, Adoption of IoT solutions, Planning for IoT Solution: Evaluate costs, competition, technology challenges and internal					
analyze and convey business outcomes, feedback and data obtained from execution. Module:6 Scalability of IoT Solutions: 5 hours Roadmap for developing complete IoT solutions, Strategies for implementation, key Milestone, Scalability of IoT Solutions, Methods, platforms and tools. Web and Mobile Interfaces Module:7 Module:7 Build and Maintain Relationships at the Workplace, Team Empowerment 3 hours Total Lecture Hours	Module:5	Prototyping the Pilot execution:	_	5	hou	rs	
Roadmap for developing complete IoT solutions, Strategies for implementation, key Milestone, Scalability of IoT Solutions, Methods, platforms and tools. Web and Mobile Interfaces Module:7 Build and Maintain Relationships at the Workplace, Team Empowerment 3 hours Total Lecture Hours 30 hours	• 1 1				l me	etrics	s to
Scalability of IoT Solutions, Methods, platforms and tools. Web and Mobile Interfaces Module:7 Build and Maintain Relationships at the Workplace, Team Empowerment 3 hours Total Lecture Hours 30 hours	Module:6	Scalability of IoT Solutions:		5	hou	rs	
Team Empowerment 3 hours Total Lecture Hours 30 hours							
	•	Build and Maintain Relationships at the Workplace,				rs	
Text Book(s)		Total Lecture Hours		30	hou	irs	
	Text Book(s)						

(Deemed	d to be University under section 3 of UGC Act, 1956)				
1. Arshdeep Bahga, Vijay Madisett University Press, 2015.	ti, "Internet of Things: A hands-on Approach",				
2. Adrian McEwen & Hakim Cassin 2013, (1 st edition)	2. Adrian McEwen & Hakim Cassimally, "Designing the Internet of Things", Wiley, Nov				
3. Claire Rowland, Elizabeth Good	man, Martin Charlier, Ann Light, Algred Lui,"				
Designing Connected Products: U edition).2015	UX for the consumer internet of things", O'Reilly, (1 st				
Reference Books					
1. Rethinking the Internet of things Francis daCosta, Apress, 2014	: A Scalable Approach to Connecting Everything by				
2. Learning Internet of Things by P	Peter Waher, Packt Publishing, 2015				
	s, by Adrian Mcewen, Hakin Cassimally, Wiley India				
4. Cloud Computing, Thomas Erl, I	Pearson Education, 2014				
5. Foundations of Modern Network Stallings, Addison-Wesley Profe	king: SDN, NFV, QoE, IoT, and Cloud, William essional; 1 edition				
	t/files/MC_SSCQ8210_V1.0 IoT-Domain % 20				
List of Experiments					
1. Measure the light intensity in the	room and output data to the web API.				
2. Control your home power outlet f					
3. Build a web based application to a	automate door that unlocks itself using facial recognition.				
4. Drinking water monitoring and ar web app.	nalytics, consists of IoT device, cloud, and mobile and				
5. Smart Parking System					
6. IoT based Healthcare application					
7. Real-time environmental monitor	ring and weather prediction				
8. Traffic pattern prediction					
9. Smart Street light					
10. Plant health monitoring					
	Total Laboratory Hours 30 hours				
Recommended by Board of Studies					
Approved by Academic Council	Date				

ECE3502	(Deemed to be University under section 3 of UGC Act, 1956) IoT Domain Analyst	L	Т	P	J	С			
ECESS02	Job Role: SSC/Q8210	2	0	2	4	4			
Pre-requisite	Nil	Syllabus version							
Anti-requisite	Nil					1.0			
•									
Course Objectives:									
1. To impart kn	owledge on the infrastructure, sensor technologies and n	etwor	king						
technologies	• •		U						
2. To analyse, d	lesign and develop IoT solutions.								
3. To explore the entrepreneurial aspect of the Internet of Things									
4. To apply the	concept of Internet of Things in the real world scenarios								
Expected Course O	utcome:								
-	y completing the course the student should be able to								
1. Identify the main component of IoT									
	controller and sensor as part of IoT								
3. Assess differ	ent Internet of Things technologies and their application	S							
Module:1	IoT Solution Models:		21	iour					
		•							
	To T solutions, Semantic models for data models, Applican n models, information models to structure data, relations								
categories.	in models, information models to structure data, relations	mps t			ata				
eurogonies.									
Module:2	Data Models :		3 ho	urs					
Tags to organize da	ta, tag data to pre-process large datasets, predictive mod	els fo	r for	ecast	ing	,			
Application of prec	lictive models.								
Module:3	Simulation Scenarios:		4 ho	urs					
Models to simulate	real-world scenarios, Application of the models, stages	of dat	a life	ecycl	e,				
reuse existing IoT s	solutions, reusability plan.								
Module:4	Use Case Development		4 ho	urs					
	er business requirements, defining problem statements, l	ousine	ess re	quir	eme	ents			
for use case develo	pment, Assets for development of IoT solutions.								
Module:5	Value engineering and Analysis:		4 ho	urs					
	es of Value Engineering and Analysis, Frameworks for		-		-				
IoT solutions, cost	-function analysis of IoT solution components, action	plans	to i	ncor	por	ate			
Value Engineering	g, Data modelling requirements, Development model	s: W	aterf	all,	Agi	lle,			
Spiral, V models, n	nonetization models for IoT use cases - 'Outcomes As A	Servi	ice' 1	node	el.				
Module:6	Data Analytics for IoT Solutions:		6 ho	urs					
	ata gathering, Data Pre-processing, data analyzation, app gorithms, Exploratory Data Analysis.	licati	on of	ana	lytio	cs,			

Module:7	Deployment of Analytics Solutions				6 hours					
Anomaly Detection and Data Clustering, Predictive Analytics and Streaming Analytics, cloud/edge methods, integrating analytics models, performance of analytical models, Templates for data insights, deriving insights.										
		Total	Lecture	Hours	30 hours					
Text Book(s)										
1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things: A hands-on Approach", University Press, 2015.										
2. Adrian McEwen & Hakim Cassimally, "Designing the Internet of Things", Wiley, Nov 2013, (1st edition)										
 Claire Rowland, Elizabeth Goodman, Martin Charlier, Ann Light, Algred Lui," DesigningConnected Products: UX for the consumer internet of things", O'Reilly, (1 st edition),2015 										
Reference Books										
Ŭ	1. Rethinking the Internet of things: A Scalable Approach to Connecting Everything by									
Francis da Costa, Apress, 2014										
2. Learning Internet of Things by Peter Waher, Packt Publishing, 2015										
 Designing the Internet of Things, by Adrian Mcewen, Hakin Cassimally, Wiley India Private Ltd 										
4. Cloud Computing, Thomas Erl, Pearson Education, 2014										
5. Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud, William Stallings, Addison-Wesley Professional; 1 edition										
 https://nsdcindia.org/sites/default/files/MC_SSCQ8210_V1.0_IoT Domain % 20 Specialist_09.04.2019.pdf 										
List of Experimen	its									
1. Measure the light intensity in the room and output data to the web API.										
2. Control your home power outlet from anywhere using raspberry pi.										
3. Build a web based application to automate door that unlocks itself using facial recognition.										
4. Drinking water monitoring and analytics, consists of IoT device, cloud, and mobile and web app.										
5. Smart Parking System										
6. IoT based Healthcare application										
7. Real-time environmental monitoring and weather prediction										
8. Traffic pattern prediction										
9. Smart Street light										
10. Plant health monitoring										
Total Laboratory Hours 30 hours										
Recommended by I										
Approved by Acad	emic Council		Date							