

SCHOOL OF ELECTRICAL ENGINEERING

B. Tech Electrical and Electronics Engineering

(B.Tech EEE)

Curriculum

(2019-2020 admitted students)

VISION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

Transforming life through excellence in education and research.

MISSION STATEMENT OF VELLORE INSTITUTE OF TECHNOLOGY

World class Education: Excellence in education, grounded in ethics and critical thinking, for improvement of life.

Cutting edge Research: An innovation ecosystem to extend knowledge and solve critical problems.

Impactful People: Happy, accountable, caring and effective workforce and students.

Rewarding Co-creations: Active collaboration with national & international industries & universities for productivity and economic development.

Service to Society: Service to the region and world through knowledge and compassion.

VISION STATEMENT OF THE SCHOOL OF ELECTRICAL ENGINEERING

To be a leader for academic excellence in the field of electrical, instrumentation and control engineering imparting high quality education and research leading to global competence for the societal and industrial developments.

MISSION STATEMENT OF THE SCHOOL OF ELECTRICAL ENGINEERING

M1: Impart high quality education and interdisciplinary research by providing conducive teaching learning environment and team spirit resulting in innovation and product development.

M2: Enhance the core competency of the students to cater to the needs of the industries and society by providing solutions in the field of electrical, electronics, instrumentation, and automation engineering.

M3: Develop interpersonal skills, leadership quality and societal responsibility through ethical value-added education.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The school of Electrical Engineering has established and sustained a well-defined set of educational objectives and preferred program outcomes. Educational objectives of the program satisfy to the requirements of the stakeholders such as students, parents, employers, alumni, faculty etc. The Program Educational Objectives (PEOs) are as follows.

- **PEO-1:** Graduates will be engineering practitioners and leaders, who would help solve industry's technological problems in electrical engineering and allied disciplines.
- **PEO-2:** Graduates will be engineering professionals, innovators or entrepreneurs engaged in technology development, technology deployment, or engineering system implementation in industry.
- **PEO-3:** Graduates will function in their profession with social awareness and responsibility.
- **PEO-4:** Graduates will interact with their peers in other disciplines in industry and society and contribute to the economic growth of the country.
- **PEO-5:** Graduates will be successful in pursuing higher studies leading to careers in engineering, management, teaching, and research.

PROGRAMME OUTCOMES (POs)

POs are statements that describe what students are expected to know and be able to do upon graduating from the program. These relate to the skills, knowledge, analytical ability attitude and behaviour that students acquire through the program.

NBA has defined the following twelve POs for an engineering graduate. These are in line with the Graduate Attributes as defined by the Washington Accord:

PO_01: Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO_02: Problem Analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.

PO_03: Design / Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO_04: Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions for complex problems:

- that cannot be solved by straightforward application of knowledge, theories and techniques applicable to the engineering discipline as against problems given at the end of chapters in a typical text book that can be solved using simple engineering theories and techniques
- that may not have a unique solution. For example, a design problem can be solved in many ways and lead to multiple possible solutions

- that require consideration of appropriate constraints / requirements not explicitly given in the problem statement such as cost, power requirement, durability, product life, etc.
- which need to be defined (modelled) within appropriate mathematical framework
- that often require use of modern computational concepts and tools, for example, in the design of an antenna or a DSP filter.
- PO_05: Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- PO_06: The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- PO_07: Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO_08: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO_09: Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO_10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO_11: Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO_12: Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of B. Tech. (Electrical and Electronics Engineering) programme, graduates will be able to

- PSO1: Analyze and design electrical and electronics systems for societal and industrial needs.
- PSO2: Design power systems network, power electronic circuits, electric drives and develop control strategies by considering economic and environmental constraints.
- PSO3: Apply and implement intelligent systems using modern tools for electrical engineering applications.

CREDIT STRUCTURE

Category-wise Credit distribution

Category	Credits
University core (UC)	53
Programme core (PC)	59
Programme elective (PE)	36
University elective (UE)	12
Total credits	160

DETAILED CURRICULUM

University Core

S.No.	Course Code	Course Title	L	T	P	J	С	Remarks
1.	CHY1701	Engineering Chemistry	3	0	2	0	4	
2.	CHY1002	Environmental Sciences	3	0	0	0	3	Non
								Credit
								Course
3.	CSE1001	Problem Solving and	0	0	6	0	3	
		Programming						
4.	CSE1002	Problem Solving and Object	0	0	6	0	3	
		Oriented Programming						
5.	EEE1901	Technical Answers for Real	1	0	0	4	2	
		World Problems (TARP)						
6.	EEE1902	Industrial Internship	0	0	0	0	1	
7.	EEE4098	Comprehensive Examination	0	0	0	0	1	
8.	EEE4099	Co-op /Capstone Project	0	0	0	0	12	
9.	ENG1901/	Technical English I	0/	0/	4/	0/		
	ENG1902/	Technical English II	0/	0/	4/	0/	2	
	ENG1903	Advanced Technical English	0	0	2	4		
10.	ENG1000/	Foundation English I	0	0	4	0	2	Non
	ENG 2000	Foundation English II						Credit
								Course
11.	HUM1021	Ethics and Values	2	0	0	0	2	
12.	MAT1011	Calculus for Engineers	3	0	2	0	4	
13.	MAT2001	Statistics for Engineers	3	0	2	0	4	
14.	MGT1022	Lean Start-up Management	1	0	0	4	2	
15.	PHY1701	Engineering Physics	3	0	2	0	4	
16.	PHY1901	Introduction to Innovative	1	0	0	0	1	
		Projects						
17.	EXC4097	Extra & Co- Curricular	0	0	0	0	2	Non
		Activities						Credit
								Course
18.	FLC4097	Foreign Language Courses	2	0	0	0	2	
		Basket						
19.	STS4097	Soft Skills	_	-	-	-	6	

Programme Core

S. No.	Course Code	Course Title	L	Т	P	J	C
1.	EEE1002	Electric Circuits	3	0	0	0	3
2.	EEE1003	Electrical Workshop	0	0	2	0	1
3.	EEE1004	Engineering Electromagnetics	3	0	2	0	4
4.	EEE1005	Signals and Systems	3	0	0	0	3
5.	EEE2001	Network Theory	3	0	0	0	3
6.	EEE2002	Semiconductor Devices and Circuits	2	0	2	4	4
7.	EEE2003	Electromechanical Energy Conversion	3	0	2	0	4
8.	EEE2004	Measurement and Instrumentation	2	0	0	4	3
9.	EEE2005	Digital Signal Processing	2	0	2	0	3
10.	EEE3001	Control Systems	3	0	2	0	4
11.	EEE3002	Analog and Digital Circuits	3	0	2	0	4
12.	EEE3003	Power System Engineering	3	0	2	0	4
13.	EEE3004	Power Electronics and Drives	3	0	2	0	4
14.	EEE4001	Microprocessor and Microcontroller	2	0	2	0	3
15.	MAT2002	Applications of Differential and Difference Equations	3	0	2	0	4
16.	MAT3003	Complex Variables and Partial Differential Equations	3	1	0	0	4
17.	MAT3005	Applied Numerical Methods	3	1	0	0	4

Programme Elective

S. No.	Course Code	Course Title	L	Т	P	J	С
1.	EEE1007	Neural Network and Fuzzy Control	2	0	0	4	3
2.	EEE1008	Bio-Medical Instrumentation	3	0	0	4	4
3.	EEE1011	Automated Test Engineering	2	0	2	0	3
4.	EEE1018	Nanotechnology Fundamentals and its Applications	3	0	0	0	3
5.	EEE1020	Engineering Optimization	2	1	0	4	4
6.	EEE2006	Communication Engineering	3	0	2	0	4
7.	EEE3005	Design of Electrical Apparatus	2	0	0	4	3
8.	EEE3006	Special Electrical Machines	3	0	0	0	3
9.	EEE3007	Finite Element analysis for Electrical Machines	2	0	0	4	3
10.	EEE4002	Power System Protection and Switchgear	3	0	2	0	4
11.	EEE4003	Generation and Utilization of Electrical Energy	2	0	0	4	3
12.	EEE4004	Distributed Generation and Microgrids	3	0	0	4	4
13.	EEE4005	Power System Operation and Control	2	0	0	4	3
14.	EEE4006	Restructured Power Systems	3	0	0	0	3
15.	EEE4007	Energy Management and SCADA	3	0	0	0	3
16.	EEE4008	High Voltage Engineering	3	0	0	0	3
17.	EEE4009	FACTS and HVDC	3	0	0	4	4
18.	EEE4010	Power Quality	2	0	0	4	3
19.	EEE4011	Energy Audit and Conservation	2	0	0	4	3
20.	EEE4012	Renewable Energy Sources	3	0	0	0	3
21.	EEE4013	Smart Grid	3	0	0	4	4
22.	EEE4016	Electric Vehicles	2	0	0	4	3
23.	EEE4017	Industrial Drives and Automation	3	0	0	4	4

24.	EEE4018	Advanced Control Theory	3	0	0	4	4
25.	EEE4019	Advanced Digital System Design With FPGAs	2	0	0	4	3
26.	EEE4020	Embedded System Design	2	0	0	4	3
27.	EEE4027	Robotics and Control	2	0	0	4	3
28.	EEE4028	VLSI Design	3	0	2	0	4
29.	EEE4037	Rapid prototyping with FPGAs	0	0	4	0	2
30.	EEE4038	Testing and Calibration Systems	0	0	2	0	1
31.	ECE3501	IoT Fundamentals	2	0	2	4	4
32.	ECE3502	IoT Domain Analyst	2	0	2	4	4
33.	MEE1006	Applied Mechanics and Thermal Engineering	2	0	2	0	3
34.	PHY1002	Materials Science	3	0	2	0	4

University Elective Baskets

Electrical courses

Sl.No	Code	Title	L	T	P	J	C
1	EEE1021	Electrical Safety	0	0	2	0	1
2	EEE1022	Fundamentals of Reliability Engineering	1	2	0	0	2
3	EEE1023	Industrial Drives	2	0	2	0	3
4	EEE4014	Switched Mode Power Conversion	2	0	0	4	3
5	EEE4015	Power Converters Analysis and Design	2	0	0	4	3

Management courses

Sl.No	Code	Title	L	T	P	J	C
1.	MGT1001	Basic Accounting	3	0	0	0	3
2.	MGT1002	Principles of Management	2	0	0	4	3
3.	MGT1003	Economics for Engineers	2	0	0	4	3
4.	MGT1004	Resource Management	2	0	0	4	3
5.	MGT1005	Design, Systems and Society	2	0	0	4	3
6.	MGT1006	Environmental and Sustainability Assessment	2	0	0	4	3

		(Deemed to be University under section 3 of UGC Act, 1956)					
7.	MGT1007	Gender, Culture and Technology	2	0	0	4	3
8.	MGT1008	Impact of Information Systems on Society	2	0	0	4	3
9.	MGT1009	Technological Change and Entrepreneurship	2	0	0	4	3
10.	MGT1010	Total Quality Management	2	2	0	0	3
11.	MGT1014	Supply Chain Management	3	0	0	0	3
12.	MGT1015	Business Mathematics	3	0	0	0	3
13.	MGT1016	Intellectual Property Rights	3	0	0	0	3
14.	MGT1017	Business Regulatory Framework For Start-ups	3	0	0	0	3
15.	MGT1018	Consumer Behaviour	3	0	0	0	3
16.	MGT1019	Services Marketing	3	0	0	0	3
17.	MGT1020	Marketing Analytics	2	0	2	0	3
18.	MGT1021	Digital and Social Media Marketing	3	0	0	0	3
19.	MGT1022	Lean Start-up Management	1	0	0	4	2
20.	MGT1023	Fundamentals of Human Resource Management	3	0	0	4	4
21.	MGT1024	Organizational Behaviour	3	0	0	4	4
22.	MGT1025	Foundations of Management And Organizational Behaviour	3	0	0	4	4
23.	MGT1026	Information Assurance and Auditing	2	0	0	4	3
24.	MGT1028	Accounting and Financial Management	2	2	0	4	4
25.	MGT1029	Financial Management	2	1	0	4	4
26.	MGT1030	Entrepreneurship Development	3	0	0	4	4
27.	MGT1031	International Business	3	0	0	4	4
28.	MGT1032	Managing Asian Business	3	0	0	4	4
29.	MGT1033	Research Methods in Management	2	1	0	4	4
30.	MGT1034	Project Management	3	0	0	4	4
31.	MGT1035	Operations Management	3	0	0	0	3
32.	MGT1036	Principles of Marketing	3	0	0	4	4
33.	MGT1037	Financial Accounting and Analysis	2	1	0	4	4
		1	1	1	1	1	1

34.	MGT1038	Financial Econometrics	2	0	0	4	3
35.	MGT1039	Financial Markets and Institutions	2	0	0	4	3
36.	MGT1040	Personal Financial Planning	2	0	0	4	3
37.	MGT1041	Financial Derivatives	2	1	0	4	4
38.	MGT1042	Investment Analysis and Portfolio Management	2	0	0	4	3
39.	MGT1043	Applications in Neuro Marketing	3	0	0	4	4
40.	MGT1044	Global Brand Marketing Strategies	3	0	0	4	4
41.	MGT1045	Industrial Marketing	3	0	0	4	4
42.	MGT1046	Sales and Distribution Management	3	0	0	4	4
43.	MGT1047	Social Marketing	3	0	0	4	4
44.	MGT1048	Political Economy of Globalization	3	0	0	4	4
45.	MGT1049	Sustainable Business Models	3	0	0	4	4
46.	MGT1050	Software Engineering Management	2	0	0	4	3
47.	MGT1051	Business Analytics for Engineers	2	2	0	0	3
48.	MGT1052	Bottom of the Pyramid Operations	3	0	0	0	3
49.	MGT1053	Entrepreneurship Development, Business Communication and IPR	1	0	2	0	2
50.	MGT1054	Product Planning and Strategy	2	2	0	0	3
51.	MGT1055	Design Management	2	2	0	0	3
52.	MGT1056	Accounting and Financial Management	3	0	0	4	4
53.	MGT6001	Organizational Behaviour	2	0	0	4	3
		<u>l</u>	1	1	1	<u> </u>	1

Humanities courses

Sl.No	Code	Title	L	T	P	J	C
1	HUM1001	Fundamentals of Cyber Laws	3	0	0	0	3
2	HUM1002	Business Laws	3	0	0	0	3
3	HUM1003	Basic Taxation for Engineers	3	0	0	0	3
4	HUM1004	Corporate Law for Engineers	3	0	0	0	3
5	HUM1005	Cost Accounting for Engineers	3	0	0	0	3

	1	(Deemed to be University under section 3 of UGC Act, 1956)	1	1			
6	HUM1006	Business Accounting for Engineers	3	0	0	0	3
7	HUM1007	Contemporary Legal Framework for Business	3	0	0	0	3
8	HUM1009	International Business	3	0	0	0	3
9	HUM1010	Foreign Trade Environment	3	0	0	0	3
10	HUM1011	Export Business	3	0	0	0	3
11	HUM1012	Introduction to Sociology	3	0	0	0	3
12	HUM1013	Population Studies	3	0	0	0	3
13	HUM1021	Ethics and Values	2	0	0	0	2
14	HUM1022	Psychology in Everyday Life	2	0	0	4	2
15	HUM1023	Indian Heritage and Culture	2	0	0	4	2
16	HUM1024	India and Contemporary World	2	0	0	4	2
17	HUM1025	Indian Classical Music	1	0	2	4	1
18	HUM1033	Micro Economics	3	0	0	0	3
19	HUM1034	Macro Economics	3	0	0	0	3
20	HUM1035	Introductory Econometrics	2	0	2	0	2
21	HUM1036	Engineering Economics and Decision Analysis	2	0	0	4	2
22	HUM1037	Applied Game Theory	2	0	0	4	2
23	HUM1038	International Economics	3	0	0	0	3
24	HUM1039	Community Development in India	2	0	0	4	2
25	HUM1040	Indian Social Problems	3	0	0	0	3
26	HUM1041	Indian Society Structure and Change	3	0	0	0	3
27	HUM1042	Industrial Relations and Labour Welfare in India	3	0	0	0	3
28	HUM1043	Mass Media and Society	2	0	0	4	2
29	HUM1044	Network Society	3	0	0	0	3
30	HUM1045	Introduction to Psychology	2	0	2	0	2
31	HUM1706	Business Accounting for Engineers	3	0	0	0	3

CHY1002	Environmental Sciences	L T P J C
		3 0 0 0 3
Pre-requisite	Chemistry of 12 th standard or equivalent	Syllabus version
Anti-requisite	Nil	v.1.1

- 1. To make students understand and appreciate the unity of life in all its forms, the implications of life style on the environment.
- 2. To understand the various causes for environmental degradation.
- 3. To understand individuals contribution in the environmental pollution.
- 4. To understand the impact of pollution at the global level and also in the local environment.

Expected Course Outcome:

Students will be able to

- 1. Students will recognize the environmental issues in a problem oriented interdisciplinary perspectives
- 2. Students will understand the key environmental issues, the science behind those problems and potential solutions.
- 3. Students will demonstrate the significance of biodiversity and its preservation
- 4. Students will identify various environmental hazards
- 5. Students will design various methods for the conservation of resources
- 6. Students will formulate action plans for sustainable alternatives that incorporate science, humanity, and social aspects
- 7. Students will have foundational knowledge enabling them to make sound life decisions as well as enter a career in an environmental profession or higher education.

Module:1 Environment and Ecosystem

7 hours

Key environmental problems, their basic causes and sustainable solutions. IPAT equation. Ecosystem, earth – life support system and ecosystem components; Food chain, food web, Energy flow in ecosystem; Ecological succession- stages involved, Primary and secondary succession, Hydrarch, mesarch, xerarch; Nutrient, water, carbon, nitrogen, cycles; Effect of human activities on these cycles.

Module:2 Biodiversity 6 hours

Importance, types, mega-biodiversity; Species interaction - Extinct, endemic, endangered and rare species; Hot-spots; GM crops- Advantages and disadvantages; Terrestrial biodiversity and Aquatic biodiversity – Significance, Threats due to natural and anthropogenic activities and Conservation methods.

Module:3	Sustaining	Natural	ral Resources and Environment		7 hours
	Quality				

Environmental hazards – causes and solutions. Biological hazards – AIDS, Malaria, Chemical hazards- BPA, PCB, Phthalates, Mercury, Nuclear hazards- Risk and evaluation of hazards. Water footprint; virtual water, blue revolution. Water quality management and its conservation. Solid and hazardous waste – types and waste management methods.

	(Deemed	d to be University under section 3 of	UGC Act, 1956)			
Module:4	Energy Resources				6 hou	rs
Renewable -	Non renewable energy reso	urces- Advantage	s and disac	lvantages -	oil. Nat	ural gas.
	r energy. Energy efficiency					
	n thermal energy, Wind and		•	0.	•	
revolution.		8	,,		,	
Module:5	Environmental Impact A	ssessment			6 hou	rs
Introduction	to environmental impact an	alysis. EIA guidel	ines, Notif	ication of	Governn	nent of India
	tal Protection Act – Air, wa					
methodologic	es. Public awareness. Enviro	onmental priorities	s in India.			
Module:6	Human Population Chan	ge and Environn	nent		6 hour	S
	-					
Urban enviro	nmental problems; Consum	erism and waste p	roducts; P	romotion of	of econo	mic
development	- Impact of population age	structure - Wome	en and chil	d welfare,	Women	
empowermer	nt. Sustaining human societi	es: Economics, er	vironment	t, policies a	and educ	ation.
Module:7	Global Climatic Change	and Mitigation			5 hou	rs
Carbon credi	uption, Green house effect, G ts, Carbon sequestration me n environment-Case Studies	thods and Montre				
Module:8	Contemporary issues				2 hour	C C
	Industry Experts				2 Hour	5
Lecture by	mustry Experts	7	Cotal Locate	ure Hours	45 hour	rc
		•	otal Lecti	ure mours	4 5 Hou	1.5
Text Books					th —	
	Miller and Scott E. Spooln	nan (2016), Enviro	onmental S	science, 15	" Editio	n, Cengage
learning		1 (2012)				
	Fyler Miller, Jr. and Scott S				ment –	
Principle	es, Connections and Solutio	ns, 17 th Edition, B	brooks/Col	e, USA.		
Reference B	ooks					
1. David Environ	M.Hassenzahl, Mary C mental Science, 4thEdition,	Catherine Hager, John Wiley & So		R.Berg ((2011),	Visualizing
	uation: Internal Assessmen			signments)	& FAT	
	ed by Board of Studies	12/08/2017	-	<u> </u>		
Approved by	Academic Council	46 th AC	Date	24/08/201	17	
				•		

CHY1701	Engineering Chemistry	L T P J C
		3 0 2 0 4
Pre-requisite	Chemistry of 12 th standard or equivalent	Syllabus version
Anti-requisite	Nil	v.1.1

- 1. To impart technological aspects of applied chemistry
- 2. To lay foundation for practical application of chemistry in engineering aspects

Expected Course Outcomes (CO): Students will be able to

- 1. Recall and analyze the issues related to impurities in water and their removal methods and apply recent methodologies in water treatment for domestic and industrial usage
- 2. Evaluate the causes of metallic corrosion and apply the methods for corrosion protection of metals
- 3. Evaluate the electrochemical energy storage systems such as lithium batteries, fuel cells and solar cells, and design for usage in electrical and electronic applications
- 4. Assess the quality of different fossil fuels and create an awareness to develop the alternative fuels
- 5. Analyze the properties of different polymers and distinguish the polymers which can be degraded and demonstrate their usefulness
- 6. Apply the theoretical aspects: (a) in assessing the water quality; (b) understanding the construction and working of electrochemical cells; (c) analyzing metals, alloys and soil using instrumental methods; (d) evaluating the viscosity and water absorbing properties of polymeric materials

Module:1 | Water Technology

5 hours

Characteristics of hard water - hardness, DO, TDS in water and their determination – numerical problems in hardness determination by EDTA; Modern techniques of water analysis for industrial use - Disadvantages of hard water in industries.

Module:2 | Water Treatment

8 hours

Water softening methods: - Lime-soda, Zeolite and ion exchange processes and their applications. Specifications of water for domestic use (ICMR and WHO); Unit processes involved in water treatment for municipal supply - Sedimentation with coagulant- Sand Filtration - chlorination; Domestic water purification - Candle filtration- activated carbon filtration; Disinfection methods-Ultrafiltration, UV treatment, Ozonolysis, Reverse Osmosis; Electro dialysis.

Module:3 Corrosion 6 hours

Dry and wet corrosion - detrimental effects to buildings, machines, devices & decorative art forms, emphasizing Differential aeration, Pitting, Galvanic and Stress corrosion cracking; Factors that enhance corrosion and choice of parameters to mitigate corrosion.

Module:4 | Corrosion Control

4 hours

Corrosion protection - cathodic protection – sacrificial anodic and impressed current protection methods; Advanced protective coatings: electroplating and electroless plating, PVD and CVD.

Alloying for corrosion protection – Basic concepts of Eutectic composition and Eutectic mixtures - Selected examples – Ferrous and non-ferrous alloys.

Module:5 | **Electrochemical Energy Systems**

6 hours

Brief introduction to conventional primary and secondary batteries; High energy electrochemical energy systems: Lithium batteries – Primary and secondary, its Chemistry, advantages and applications.

Fuel cells – Polymer membrane fuel cells, Solid-oxide fuel cells- working principles, advantages,

	1
app	lications.

Solar cells – Types – Importance of silicon single crystal, polycrystalline and amorphous silicon solar cells, dye sensitized solar cells - working principles, characteristics and applications.

Module:6 | Fuels and Combustion

8 hours

Calorific value - Definition of LCV, HCV. Measurement of calorific value using bomb calorimeter and Boy's calorimeter including numerical problems.

Controlled combustion of fuels - Air fuel ratio – minimum quantity of air by volume and by weight-Numerical problems-three way catalytic converter- selective catalytic reduction of NO_X; Knocking in IC engines-Octane and Cetane number - Antiknocking agents.

Module:7 | Polymers

6 hours

Difference between thermoplastics and thermosetting plastics; Engineering application of plastics - ABS, PVC, PTFE and Bakelite; Compounding of plastics: molding of plastics for Car parts, bottle caps (Injection molding), Pipes, Hoses (Extrusion molding), Mobile Phone Cases, Battery Trays, (Compression molding), Fiber reinforced polymers, Composites (Transfer molding), PET bottles (blow molding); Conducting polymers - Polyacetylene- Mechanism of conduction – applications (polymers in sensors, self-cleaning windows)

Module:8 Contemporary issues: 2 hours Lecture by Industry Experts Total Lecture Hours 45 hours

Text Book(s)

- 1. Sashi Chawla, A Text book of Engineering Chemistry, Dhanpat Rai Publishing Co., Pvt. Ltd., Educational and Technical Publishers, New Delhi, 3rd Edition, 2015.
- 2. O.G. Palanna, McGraw Hill Education (India) Private Limited, 9th Reprint, 2015.
- B. Sivasankar, Engineering Chemistry 1st Edition, Mc Graw Hill Education (India), 2008
- Angele Reinders, Pierre Verlinden, Wilfried van Sark, Alexandre Freundlich, "Photovoltaic solar energy: From fundamentals to Applications", Wiley publishers, 2017.

Reference Books

- 1. O.V. Roussak and H.D. Gesser, Applied Chemistry-A Text Book for Engineers and Technologists, Springer Science Business Media, New York, 2nd Edition, 2013.
- 2. S. S. Dara, A Text book of Engineering Chemistry, S. Chand & Co Ltd., New Delhi, 20th Edition, 2013.

Mode of Evaluation: Internal Assessment (CAT, Quizzes, Digital Assignments) & FAT

List of Experiments

	of Emperiments	
	Experiment title	Hours
1.	Water Purification: Estimation of water hardness by EDTA method and its	3 hours
	removal by ion-exchange resin	
	Water Quality Monitoring:	3 hours
2.	Assessment of total dissolved oxygen in different water samples by	
	Winkler's method	
3.	Estimation of sulphate/chloride in drinking water by conductivity method	3 hours
4/5	Material Analysis: Quantitative colorimetric determination of divalent metal ions of	6 hours
	Ni/Fe/Cu using conventional and smart phone digital-imaging methods	
6.	Arduino microcontroller based sensor for monitoring pH/temperature/conductivity	3 hours

	in samples					
7.	Iron in carbon steel by potentiometry		3 hours			
8.	Construction and working of an Z	n-Cu electrochen	nical cell		3 hours	
9.	Determination of viscosity-average	ge molecular weig	tht of diffe	rent	6 hours	
	natural/synthetic polymers					
10.	Preparation/demonstration of a wo	orking model rele	vant to syl	labus. Ex.	Non-contact	
	1. Construction and working of ele	ectrochemical en	ergy syster	n – students	hours	
	should demonstrate working of the					
	2. Model corrosion studies (buckli	oad).				
	3. Demonstration of BOD/COD					
	4. Construction of dye sensitized s	of its				
	working					
	5. Calcium in food samples					
	6. Air quality analysis					
Total Laboratory Hours					30 hours	
Mod	Mode of Evaluation: Viva-voce and Lab performance & FAT					
	ommended by Board of Studies	31/05/2019				
App	roved by Academic Council	55 th AC	Date	13/06/2019		

CSE1001	Problem Solving and Programming	L	T	P	J	C
		0	0	6	0	3
Pre-requisite	Nil	Sy	llabı	ıs v	ers	sion
Anti-requisite	Nil				V	.1.0

- 1. To develop broad understanding of computers, programming languages and their generations
- 2. Introduce the essential skills for a logical thinking for problem solving
- 3. To gain expertise in essential skills in programming for problem solving using computer

Expected Course Outcome:

- 1. Understand the working principle of a computer and identify the purpose of a computer programming language.
- 2. Learn various problem solving approaches and ability to identify an appropriate approach to solve the problem
- 3. Differentiate the programming Language constructs appropriately to solve any problem
- 4. Solve various engineering problems using different data structures
- 5. Able to modulate the given problem using structural approach of programming
- 6. Efficiently handle data using flat files to process and store data for the given problem

I ist of	Challenging Experiments (Indicative)	ven problem
1.	Steps in Problem Solving Drawing flowchart using yEd tool/Raptor Tool	3 Hours
2.	Introduction to Python, Demo on IDE, Keywords, Identifiers, I/O	4 Hours
	Statements.	
3.	Simple Program to display Hello world in Python.	4 Hours
4.	Operators and Expressions in Python	2 Hours
5.	Algorithmic Approach 1: Sequential	2 Hours
6.	Algorithmic Approach 2: Selection (if, elif, if else, nested if else	4 Hours
7.	. Algorithmic Approach 3: Iteration (while and for)	2 Hours
8.	. Strings and its Operations	2 Hours
9.	Regular Expressions	2 Hours
10.	List and its operations.	2 Hours
11.	. Dictionaries: operations	2 Hours
12.	. Tuples and its operations	2 Hours
13.	. Set and its operations	2 Hours
14.	. Functions, Recursions	2 Hours
15.	Sorting Techniques (Bubble/Selection/Insertion)	4 Hours

	16. Searching Techniques: Sequential Search and Binary Search	3 Hours					
	17. Files and its Operations						
	Total Lecture Ho	urs 45 hours					
Tex	xt Book(s)						
1.	John V. Guttag., 2016. Introduction to computation and programming using python to understanding data. PHI Publisher.	: with applications					
Ref	ference Books						
1.	Charles Severance.2016.Python for everybody: exploring data in Python Severance.	thon 3, Charles					
2.	2. Charles Dierbach.2013.Introduction to computer science using python: a computational problem-solving focus. Wiley Publishers.						
Mo	ode of Evaluation: PAT/CAT/FAT						
Rec	commended by Board of Studies 04/04/2014						
Apı	proved by Academic Council 38 th AC Date 23/10/2015						

CSE1002	Problem Solving and Object Oriented Programming	LTPJC
		0 0 6 0 3
Pre-requisite	Nil	Syllabus version
Anti-requisite	Nil	v.1.0

- 1. To emphasize the benefits of object oriented concepts
- 2. To enable the students to solve the real time applications using object oriented programming features.
- 3. To improve the skills of a logical thinking and to solve the problems using any processing elements

Expected Course Outcome:

- 1. Recall the basics of procedural programming and to represent the real world entities as programming constructs
- 2. Enumerate object oriented concepts and translate real-world applications into graphical representations
- 3. Demonstrate the usage of classes and objects of the real world entities in applications
- 4. Discriminate the reusability and multiple interfaces with same functionality based features to solve complex computing problems
- 5. Propose possible error-handling constructs for unanticipated states/inputs and to use generic programming constructs to accommodate different datatypes
- 6. Validate the program against file inputs towards solving the problem

List of Challenging Experiments (Indicative)

1. **Postman Problem**

A postman needs to walk down every street in his area in order to deliver the mail. Assume that the distances between the streets along the roads are given. The postman starts at the post office and returns back to the post office after delivering all the mails. Implement an algorithm to help the post man to walk minimum distance for the purpose.

2. Budget Allocation for Marketing Campaign

A mobile manufacturing company has got several marketing options such as Radio advertisement campaign, TV non peak hours campaign, City top paper network, Viral marketing campaign, Web advertising. From their previous experience, they have got a statistics about paybacks for each marketing option. Given the marketing budget (rupees in crores) for the current year and details of paybacks for each option, implement an algorithm to determine the amount that shall spent on each marketing option so that the company attains the maximum profit.

3. Missionaries and Cannibals

Three missionaries and three cannibals are on one side of a river, along with a boat that can hold one or two people. Implement an algorithm to find a way to get everyone to the other side of the river, without ever leaving a group of missionaries in one place outnumbered by the cannibals in that place.

4. Register Allocation Problem

A register is a component of a computer processor that can hold any type of data and can be accessed faster. As registers are faster to access, it is desirable to use them to the maximum so that the code execution is faster. For each code submitted to the processor, a register interference graph (RIG) is constructed. In a RIG, a node represents a temporary variable and

an edge is added between two nodes (variables) t1 and t2 if they are live simultaneously at some point in the program. During register allocation, two temporaries can be allocated to the same register if there is no edge connecting them. Given a RIG representing the dependencies between variables in a code, implement an algorithm to determine the number of registers required to store the variables and speed up the code execution.

5. Selective Job Scheduling Problem

A server is a machine that waits for requests from other machines and responds to them. The purpose of a server is to share hardware and software resources among clients. All the clients submit the jobs to the server for execution and the server may get multiple requests at a time. In such a situation, the server schedule the jobs submitted to it based on some criteria and logic. Each job contains two values namely time and memory required for execution. Assume that there are two servers that schedules jobs based on time and memory. The servers are named as Time_Schedule_Server and memory_Schedule_Server respectively. Design a OOP model and implement the time_Schedule_Server and memory_Schedule_Server. The Time_Schedule_Server arranges jobs based on time required for execution in ascending order whereas memory_Schedule_Server arranges jobs based on memory required for execution in ascending order.

6. Fragment Assembly in DNA Sequencing

DNA, or deoxyribonucleic acid, is the hereditary material in humans and almost all other organisms. The information in DNA is stored as a code made up of four chemical bases: adenine (A), guanine (G), cytosine (C), and thymine (T). In DNA sequencing, each DNA is sheared into millions of small fragments (reads) which assemble to form a single genomic sequence ("superstring"). Each read is a small string. In such a fragment assembly, given a set of reads, the objective is to determine the shortest superstring that contains all the reads. For example, given a set of strings, {000, 001, 010, 011, 100, 101, 110, 111} the shortest superstring is 0001110100. Given a set of reads, implement an algorithm to find the shortest superstring that contains all the given reads.

7. **House Wiring**

An electrician is wiring a house which has many rooms. Each room has many power points in different locations. Given a set of power points and the distances between them, implement an algorithm to find the minimum cable required.

Total Laboratory Hours: 90 Hours

Text Book(s)

- 1. Stanley B Lippman, Josee Lajoie, Barbara E, Moo, "C++ primer", Fifth edition, Addison-Wesley, 2012.
- 2. Ali Bahrami, Object oriented Systems development, Tata McGraw Hill Education, 1999
- 3. Brian W. Kernighan, Dennis M. Ritchie, The "C" programming Language, 2nd edition, Prentice Hall Inc., 1988.

Reference Books

- 1. Bjarne stroustrup, The C++ programming Language, Addison Wesley, 4th edition, 2013
- 2. Harvey M. Deitel and Paul J. Deitel, C++ How to Program, 7th edition, Prentice Hall, 2010.
- 3. Maureen Sprankle and Jim Hubbard, Problem solving and Programming concepts, 9th edition, Pearson Eduction, 2014

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

Recommended by Board of Studies 29/10/2015			
Approved by Academic Council	39 th AC	Date	17/12/2015

EEE1901	Technical Answers for Real World Problems (TARP)	$ \mathbf{L} \mathbf{T} \mathbf{P} \mathbf{J} \mathbf{C} $
		1 0 0 4 2
Pre-requisite	PHY1901 and 115 Credits Earned	Syllabus version
Anti-requisite	Nil	v. 1.0

- 1. To help students to identify the need for developing newer technologies for industrial / societal needs
- 2. To train students to propose and implement relevant technology for the development of the prototypes / products
- 3. To make the students learn to the use the methodologies available to assess the developed prototypes / products

Expected Course Outcome:

At the end of the course, the student will be able to

- 1. Identify real life problems related to society
- 2. Apply appropriate technology(ies) to address the identified problems using engineering principles and arrive at innovative solutions
 - 1. Identification of real life problems
 - 2. Field visits can be arranged by the faculty concerned
 - 3. 6-10 students can form a team (within the same / different discipline)
 - 4. Minimum of eight hours on self-managed team activity
 - 5. Appropriate scientific methodologies to be utilized to solve the identified issue
 - 6. Solution should be in the form of fabrication/coding/modeling/product design/process design/relevant scientific methodology(ies)
 - 7. Consolidated report to be submitted for assessment
 - 8. Participation, involvement and contribution in group discussions during the contact hours will be used as the modalities for the continuous assessment of the theory component
 - 9. Project outcome to be evaluated in terms of technical, economical, social, environmental, political and demographic feasibility
 - 10. Contribution of each group member to be assessed
 - 11. The project component to have three reviews with the weightage of 20:30:50

Mode of Evaluation: (No FAT) Continuous Assessment the project done – Mark weightage of 20:30:50 – project report to be submitted, presentation and project reviews

Recommended by Board of Studies	05/03/2016		
Approved by Academic Council	40 th AC	Date	18/03/2016

EEE1902	Industrial Internship	L	T	P	J	C
		0	0	0	0	1
Pre-requisite	Completion of minimum of Two semesters	Syl	labı	ıs v	ersi	ion
Anti-requisite	Nil				v.	1.0

1. The course is designed so as to expose the students to industry environment and to take up on-site assignment as trainees or interns.

Expected Course Outcome:

At the end of this internship the student should be able to:

- 1. Have an exposure to industrial practices and to work in teams
- 2. Communicate effectively
- 3. Understand the impact of engineering solutions in a global, economic, environmental and societal context
- 4. Develop the ability to engage in research and to involve in life-long learning
- 5. Comprehend contemporary issues
- 6. Engage in establishing his/her digital footprint

Contents				4	Weeks
Four weeks of work at industry sit	e.				1
Supervised by an expert at the indu	ustry.				
Mode of Evaluation: Internship Re	eport, Presenta	tion and	Project Revie	W	
Recommended by Board of	05/03/2016				
Studies					
Approved by Academic Council	40 th AC	Date	18/03/2016		

EEE4098	Comprehensive Examination	L T P J C
		0 0 0 0 1
Pre-requisite	As per the academic regulations	Syllabus version
Anti-requisite	Nil	v.1.0

Module:1 Electrical Circuits

Voltage and current sources: independent, dependent, ideal and practical; V-I relationships of resistor, inductor, mutual inductor and capacitor; transient analysis of RLC circuits with dc excitation. Kirchhoff's laws, mesh and nodal analysis, superposition, Thevenin's, Norton, maximum power transfer and reciprocity theorems. Peak, average and rms values of ac quantities; apparent, active and reactive powers; phasor analysis, impedance and admittance; series and parallel resonance, locus diagrams, realization of basic filters with R, L and C elements. One-port and two-port networks, driving point impedance and admittance, open-, and short circuit parameters

Module:2 | Signals and Systems

Periodic, aperiodic and impulse signals; Laplace, Fourier and z-transforms; transfer function, frequency response of first and second order linear time invariant systems, impulse response of systems; convolution, correlation. Discrete time system: impulse response, frequency response, pulse transfer function; DFT and FFT; basics of IIR and FIR filters

Module:3 | Control Systems

Mathematical modelling and representation of systems, Feedback principle, transfer function, Block diagrams and Signal flow graphs, Transient and Steady-state analysis of linear time invariant systems, Routh-Hurwitz and Nyquist criteria, Bode plots, Root loci, Stability analysis, Lag, Lead and Lead-Lag compensators; P, PI and PID controllers; State space model, State transition matrix

Module:4 | Analog and Digital Circuits

Characteristics and applications of diode, Zener diode, BJT and MOSFET; small signal analysis of transistor circuits, feedback amplifiers. Characteristics of operational amplifiers; applications of opamps: difference amplifier, adder, sub tractor, integrator, differentiator, instrumentation amplifier, precision rectifier, active filters and other circuits. Oscillators, signal generators, voltage controlled oscillators and phase locked loop. Combinational logic circuits, minimization of Boolean functions. IC families: TTL and CMOS. Arithmetic circuits, comparators, Schmitt trigger, multi-vibrators, sequential circuits, flip-flops, shift registers, timers and counters; sample-and-hold circuit, multiplexer, analog-to-digital (successive approximation, integrating, flash and sigma-delta) and digital-to-analog converters (weighted R, R-2R ladder and current steering logic). Characteristics of ADC and DAC (resolution, quantization, significant bits, conversion/settling time); basics of number systems, microcontroller: applications, memory and input-output interfacing; basics of data acquisition systems.

Module:5 | Electrical and Electronic Instrumentation

SI units, systematic and random errors in measurement, expression of uncertainty - accuracy and precision index, propagation of errors. PMMC, MI and dynamometer type instruments; dc potentiometer; bridges for measurement of R, L and C, Q-meter. Measurement of voltage, current and power in single and three phase circuits; ac and dc current probes; true rms meters, voltage and current scaling, instrument transformers, timer/counter, time, phase and frequency measurements, digital voltmeter, digital multimeter; oscilloscope, shielding and grounding

Module:6 Industrial Instrumentation

Resistive-, capacitive-, inductive-, piezoelectric-, Hall effect sensors and associated signal conditioning circuits; transducers for industrial instrumentation: displacement (linear and angular), velocity, acceleration, force, torque, vibration, shock, pressure (including low pressure), flow (differential pressure, variable area, electromagnetic, ultrasonic, turbine and open channel flow meters) temperature (thermocouple, bolometer, RTD (3/4 wire), thermistor, pyrometer and semiconductor); liquid level, pH, conductivity and viscosity measurement

Module:7 Optoelectronic Instrumentation

Optical sources and detectors: LED, laser, photo-diode, light dependent resistor and their characteristics; interferometer: applications in metrology; basics of fiber optic sensing.

Module:8 | Communication Engineering

Amplitude- and frequency modulation and demodulation; Shannon's sampling theorem, pulse code modulation; frequency and time division multiplexing, amplitude-, phase-, frequency-, pulse shift keying for digital modulation.

Mode of Evaluation: Witten Exam			
Recommended by Board of Studies	5/06/2015		
Approved by Academic Council	37 th AC	Date	16/06/2015

EEE4099	Capstone Project	L T P J C
		0 0 0 0 12
Pre-requisite	As per the academic regulations	Syllabus version
Anti-requisite	Nil	v. 1.0

1. To provide sufficient hands-on learning experience related to the design, development and analysis of suitable product / process so as to enhance the technical skill sets in the chosen field.

Expected Course Outcome:

At the end of the course the student will be able to

- 1. Formulate specific problem statements for ill-defined real life problems with reasonable assumptions and constraints.
- 2. Perform literature search and / or patent search in the area of interest.
- 3. Conduct experiments / Design and Analysis / solution iterations and document the results.
- 4. Perform error analysis / benchmarking / costing
- 5. Synthesise the results and arrive at scientific conclusions / products / solution
- 6. Document the results in the form of technical report / presentation

Contents

- 1. Capstone Project may be a theoretical analysis, modeling & simulation, experimentation & analysis, prototype design, fabrication of new equipment, correlation and analysis of data, software development, applied research and any other related activities.
- 2. Project can be for one or two semesters based on the completion of required number of credits as per the academic regulations.
- 3. Can be individual work or a group project, with a maximum of 3 students.
- 4. In case of group projects, the individual project report of each student should specify the individual's contribution to the group project.
- 5. Carried out inside or outside the university, in any relevant industry or research institution.
- 6. Publications in the peer reviewed journals / International Conferences will be an added advantage

Mode of Evaluation: Periodic reviews, Presentation, Final oral viva, Poster submission

Recommended by Board of Studies	5/06/2015		
Approved by Academic Council	37 th AC	Date	16/06/2015

ENG1901	Technical English - I	L	T	P	J	C
		0	0	4	0	2
Pre-requisite	Foundation English-II	S	yllal	ous '	Vers	ion
Anti-requisite	Nil				v.	1.1

- 1. To enhance students' knowledge of grammar and vocabulary to read and write error-free language in real life situations.
- 2. To make the students' practice the most common areas of written and spoken communications skills.
- 3. To improve students' communicative competency through listening and speaking activities in the classroom.

Expected Course Outcome:

- 1. Develop a better understanding of advanced grammar rules and write grammatically correct sentences.
- 2. Acquire wide vocabulary and learn strategies for error-free communication.
- 3. Comprehend language and improve speaking skills in academic and social contexts.
- 4. Improve listening skills so as to understand complex business communication in a variety of global English accents through proper pronunciation.
- 5. Interpret texts, diagrams and improve both reading and writing skills which would help them in their academic as well as professional career.

Module:1 Advanced Grammar

4 hours

Articles, Tenses, Voice and Prepositions

Activity: Worksheets on Impersonal Passive Voice, Exercises from the prescribed text

Module:2 Vocabulary Building I

4 hours

Idioms and Phrases, Homonyms, Homophones and Homographs

Activity: Jigsaw Puzzles; Vocabulary Activities through Web tools

Module:3 Listening for Specific Purposes

4 hours

Gist, monologues, short conversations, announcements, briefings and discussions

Activity: Gap filling; Interpretations

Module:4 | Speaking for Expression

6 hours

Introducing oneself and others, Making Requests & responses, Inviting and Accepting/Declining Invitations

Activity: Brief introductions; Role-Play; Skit.

Module:5 Reading for Information

4 hours

Reading Short Passages, News Articles, Technical Papers and Short Stories

Activity: Reading specific news paper articles; blogs

Module:6 Writing Strategies

4 hours

Joining the sentences, word order, sequencing the ideas, introduction and conclusion

Activity: Short Paragraphs; Describing familiar events; story writing

Module:7 Vocabulary Building II

4 hours

Enrich the domain specific vocabulary by describing Objects, Charts, Food, Sports and Employment.

Activity: Describing Objects, Charts, Food, Sports and Employment

Module:8 | Listening for Daily Life

4 hours

Listening for statistical information, Short extracts, Radio broadcasts and TV interviews Activity: Taking notes and Summarizing

Module:9 Expressing Ideas and Opinions

6 hours

Telephonic conversations, Interpretation of Visuals and describing products and processes.

Activity: Role-Play (Telephonic); Describing Products and Processes

Module: 10 | Comprehensive Reading

4 hours

Reading Comprehension, Making inferences, Reading Graphics, Note-making, and Critical Reading.

Activity: Sentence Completion; Cloze Tests

Module: 11 | Narration

4 hours

Writing narrative short story, Personal milestones, official letters and E-mails.

Activity: Writing an E-mail; Improving vocabulary and writing skills.

Module:12 | **Pronunciation**

4 hours

Speech Sounds, Word Stress, Intonation, Various accents

Activity: Practicing Pronunciation through web tools; Listening to various accents of English

Module:13 | Editing

4 hours

Simple, Complex & Compound Sentences, Direct & Indirect Speech, Correction of Errors, Punctuations.

Activity: Practicing Grammar

Module:14 | Short Story Analysis

4 hours

"The Boundary" by Jhumpa Lahiri

Activity: Reading and analyzing the theme of the short story.

Text Book / Workbook

Total Lecture Hours | 60 hours

- 1. Wren, P.C.; Martin, H.; Prasada Rao, N.D.V. (1973–2010). *High School English Grammar & Composition*. New Delhi: Sultan Chand Publishers.
- 2 Kumar, Sanjay,; Pushp Latha. (2018) English Language and Communication Skills for Engineers, India: Oxford University Press.

Reference Books

- 1. Guptha S C, (2012) *Practical English Grammar & Composition*, 1st Edition, India: Arihant Publishers
- 2. Steven Brown, (2011) Dorolyn Smith, *Active Listening 3*, 3rd Edition, UK: Cambridge University Press.

3.	Liz Hamp-Lyons, Ben Heas University Pres.	sley, (2010) Stud		UK: Cambridge	
4.	4. Kenneth Anderson, Joan Maclean, (2013) Tony Lynch, <i>Study Speaking</i> , 2 nd Edition, UK: Cambridge, University Press.			2 nd Edition, UK:	
5.	Eric H. Glendinning, Bever Cambridge University Press.	ly Holmstrom,	(2012) Study Reading, (2	2 nd Edition, UK:	
6.	Michael Swan, (2017) <i>Practice</i> Oxford University Press.	al English Usage	(Practical English Usage)	, 4th edition, UK:	
7.	Michael McCarthy, Felicity (Asian Edition), UK: Cambridge	, , ,		Advanced (South	
8.	Michael Swan, Catherine Wal 4 th Edition, UK: Oxford Unive	ter, (2012) <i>Oxford</i> ersity Press.	d English Grammar Cours	se Advanced, Feb,	
9.	Watkins, Peter. (2018) Teach for Language teachers, UK: C			oridge Handbooks	
10.	. (The Boundary by Jhumpa Lan https://www.newyorker.com/r	,	/29/the-boundary?intcid=	inline_amp	
Mode	of evaluation: Quizzes, Presentat	tion, Discussion, l	Role play, Assignments an	d FAT	
List of	f Challenging Experiments (Ind	licative)			
1. S	Self-Introduction			12 hours	
2. S	Sequencing Ideas and Writing a F	Paragraph		12 hours	
3. F	Reading and Analyzing Technica	l Articles		8 hours	
	Listening for Specificity in Interv	riews (Content Sp	ecific)	12 hours	
	dentifying Errors in a Sentence of			8 hours	
6. V	6. Writing an E-mail by narrating life events			8 hours	
	Total Laboratory Hours 60 hours				
	Mode of evaluation: Quizzes, Presentation, Discussion, Role play, Assignments and FAT				
	nmended by Board of Studies	08/06/2019			
Appro	ved by Academic Council	55 th AC	Date: 13/06/2019		

ENG 1902	Technical English - II	L	T	P	J	C
		0	0	4	0	2
Pre-requisite	71% to 90% EPT score	Sy	llabı	ıs V	Vers	ion
Anti-requisite	Nil				v.	1.1

- 1. To acquire proficiency levels in LSRW skills on par with the requirements for placement interviews of high-end companies / competitive exams.
- 2. To evaluate complex arguments and to articulate their own positions on a range of technical and general topics.
- 3. To speak in grammatical and acceptable English with minimal MTI, as well as develop a vast and active vocabulary.

Expected Course Outcome:

- 1. Communicate proficiently in high-end interviews and exam situations and all social situations
- 2. Comprehend academic articles and draw inferences
- 3. Evaluate different perspectives on a topic
- 4. Write clearly and convincingly in academic as well as general contexts
- 5. Synthesize complex concepts and present them in speech and writing

Module:1 Listening for Clear Pronunciation

4 hours

Ice-breaking, Introduction to vowels, consonants, diphthongs.

Listening to formal conversations in British and American accents (BBC and CNN) as well as other 'native' accents

Activity: Factual and interpretive exercises; note-making in a variety of global English accents

Module:2 Introducing Oneself

4 hours

Speaking: Individual Presentations

Activity: Self-Introductions, Extempore speech

Module:3 Effective Writing

6 hours

Writing: Business letters and Emails, Minutes and Memos

Structure/ template of common business letters and emails: inquiry/ complaint/ placing an order;

Formats of Minutes and Memos

Activity: Students write a business letter and Minutes/ Memo

Module:4 Comprehensive Reading

4 hours

Reading: Reading Comprehension Passages, Sentence Completion (Technical and General Interest), Vocabulary and Word Analogy

Activities: Cloze tests, Logical reasoning, Advanced grammar exercises

Module:5 Listening to Narratives

4 hours

Listening: Listening to audio files of short stories, News, TV Clips/ Documentaries, Motivational Speeches in UK/ US/ global English accents.

Activity: Note-making and Interpretive exercises

Module:6	Academic Writing and Editing	6 hours
Module:7	Team Communication	4 hours

Speaking: Group Discussions and Debates on complex/contemporary topics

Discussion evaluation parameters, using logic in debates

Activity: Group Discussions on general topics

Module:8 Career-oriented Writing 4 hours

	(Deemed to be University under section 3 of UGC Act, 1956)	
Writing: Res	sumes and Job Application Letters, SOP	
Activity: Wr	iting resumes and SOPs	
Module:9	Reading for Pleasure	4 hours
Reading: Rea	ading short stories	
Activity: Cla	ssroom discussion and note-making, critical appreciation of the short story	
Module: 10	Creative Writing	4 hours
_	aginative, narrative and descriptive prose	
	ting about personal experiences, unforgettable incidents, travelogues	
	Academic Listening	4 hours
_	istening in academic contexts	
	tening to lectures, Academic Discussions, Debates, Review Presentations, Re	esearch
	t Review Meetings	
	Reading Nature-based Narratives	4 hours
	n Climate Change, Nature and Environment	
•	ssroom discussions, student presentations	
	Technical Proposals	4 hours
	chnical Proposals	
Activities: W	riting a technical proposal	
Module:14	Presentation Skills	4 hours
Persuasive an	nd Content-Specific Presentations	
Activity: Tec	chnical Presentations	
	Total Lecture Hours	60 hours
Text Book /		
	den, Clive and Christina Latham-Koenig. New English File: Advanced Stud	dents Book.
	back. Oxford University Press, UK, 2017.	
2 Rizvi,	Ashraf. Effective Technical Communication. McGraw-Hill India, 2017.	
Reference B	ooks	
· · · · · · · · · · · · · · · · · · ·	nden, Clive and Christina Latham-Koenig, New English File: Advanced:	Tagahan's
	k with Test and Assessment. CD-ROM: Six-level General English Course	
	erback. Oxford University Press, UK, 2013.	ioi Aduits.
Rala	asubramanian, T. English Phonetics for the Indian Students: A Workbo	ook Laymi
/	lications, 2016.	on. Laniii
Phil	ip Seargeant and Bill Greenwell, From Language to Creative Writing. E	Rloomshury
1	demic, 2013.	, 10011150ui y
	hnaswamy, N. <i>Eco-English</i> . Bloomsbury India, 2015.	
Mar	nto, Saadat Hasan. Selected Short Stories. Trans. Aatish Taseer. Random H	ouse India
5. 2012		.case man,
	n, Amitav. <i>The Hungry Tide</i> . Harper Collins, 2016.	
Ghos	h, Amitav. The Great Derangement: Climate Change and the Unthinkable	le. Penguin
/	s, 2016.	Unguin
	ALA Handbook for Writers of Research Papers, 8th ed. 2016.	
	e Sources:	
-	//americanliterature.com/short-short-stories. (75 short short stories)	
_	/www.eco-ction.org/dt/thinking.html (Leopold, Aldo."Thinking like a Mount	tain")
	esl-lab.com/;	
www.b	bc.co.uk/learningenglish/;	

/www.bbc.com/news;

/learningenglish.voanews.com/a/using-voa-learning-english-to-improve-listening-skills/3815547.html

Mode of evaluation: Quizzes, Presentation, Discussion, Role play, Assignments and FAT

1410	de of evaluation. Quizzes, i resenta	ition, Discussio	ii, Role play, Assignments and	1711
	List of Challenging	Experiments (Indicative)	
1.	Self-Introduction using SWOT	12 hours		
2.	Writing minutes of meetings	10 hours		
3.	Writing an abstract	10 hours		
4.	Listening to motivational speech	10 hours		
5.	Cloze Test			6 hours
6.	Writing a proposal			12 hours
	•		Total Laboratory Hours	60 hours
Mod	de of evaluation: Quizzes, Presenta	ation, Discussio	n, Role play, Assignments and	FAT
Rec	ommended by Board of Studies	08/06/2019		
App	proved by Academic Council	55 th AC	Date: 13/06/2019	

ENG1903	NG1903 Advanced Technical English		T	P	J	C
		0	0	2	4	2
Pre-requisite	Greater than 90 % EPT score	S	Syllabus Version		ion	
Anti-requisite	Nil	v. 1.1		1.1		

- 1. To review literature in any form or any technical article
- 2. To infer content in social media and respond accordingly
- 3. To communicate with people across the globe overcoming trans-cultural barriers and negotiate successfully

Expected Course Outcome:

- 1. Analyze critically and write good reviews
- 2. Articulate research papers, project proposals and reports
- 3. Communicate effectively in a trans-cultural environment
- 4. Negotiate and lead teams towards success
- 5. Present ideas in an effective manner using web tools

Module:1 Negotiation and Decision Making Skills through Literary Analysis 5 hours

Concepts of Negotiation and Decision Making Skills

Activity: Analysis of excerpts from Shakespeare's "The Merchant of Venice" (court scene) and discussion on negotiation skills.

Critical evaluation of excerpts from Shakespeare's "Hamlet" (Monologue by Hamlet) and discussion on decision making skills

Module:2 Writing reviews and abstracts through movie interpretations 5 hours

Review writing and abstract writing with competency

Activity: Watching Charles Dickens "Great Expectations" and writing a movie review

Watching William F. Nolan's "Logan's Run" and analyzing it in tune with the present scenario of depletion of resources and writing an abstract

Module:3 Technical Writing

4 hours

Stimulate effective linguistics for writing: content and style

Activity: Proofreading Statement of Purpose

Module:4 Trans-Cultural Communication

4 hours

Nuances of Trans-cultural communication

Activity:

Group discussion and case studies on trans-cultural communication.

Debate on trans-cultural communication.

Module:5 | Report Writing and Content Writing

4 hours

Enhancing reportage on relevant audio-visuals

Activity:

Watch a documentary on social issues and draft a report

Identify a video on any social issue and interpret

Module:6 Drafting project proposals and article writing

4 hours

Dynamics of drafting project proposals and research articles

Activity: Writing a project proposal., Writing a research article.

Module:7 Technical Presentations

4 hours

	- 72	der section 3 of UGC Act, 1956)				
=	_	1 . 1				
ivity: Technical presentations using	PPT and W		10.1			
4 D I. / XX I I.		Total Lecture Hours 3	80 hours			
	hormo Taa	mical Communication: Principles and	Dractice			
		inicai Communication. Frincipies and 1	ractice,			
•	35, 2013.					
	1 Kindle ed	tion				
Arathoon, Anita. Shakespeare's The Merchant of Venice (Text with Paraphrase), Evergreen						
Kumar, Sanjay and Pushp Lata. English Language and Communication Skills for Engineers,						
Frantisek, Burda. On Transcultural Communication, 2015, LAP Lambert Academic						
Geever, C. Jane. <i>The Foundation Center's Guide to Proposal Writing</i> , 5 th Edition, 2007, Reprint 2012 The Foundation Center, USA.						
Young, Milena. <i>Hacking Your Statement of Purpose: A Concise Guide to Writing Your SOP</i> , 2014 Kindle Edition.						
Ray, Ratri, William Shakespeare's	Hamlet, Th	e Atlantic Publishers, 2011.				
C Muralikrishna & Sunitha Mishra, <i>Communication Skills for Engineers</i> , 2 nd edition, NY: Pearson, 2011.						
de of Evaluation: Quizzes, Presenta	ion, Discuss	ion, Role Play, Assignments				
of Challenging Experiments (Ind	icative)					
Enacting a court scene - Speaking	5		6 hours			
Watching a movie and writing a re	eview		4 hours			
Trans-cultural – case studies			2 hours			
Drafting a report on any social iss	ue		6 hours			
Technical Presentation using web	tools		6 hours			
Writing a research paper			6 hours			
Component Sample Projects						
1. Short Films						
1 0						
0 0						
- 1055mg		Total Hours (L-Component) 6	0 hours			
de of evaluation. Onizzes Procents	tion Discuss	` - '	o nours			
proved by Academic Council	55 th AC	Date: 13/06/2019				
	t Book / Workbook Raman, Meenakshi & Sangeeta S 3 rd edition, Oxford University Preserence Books Basu B.N. Technical Writing, 201 Arathoon, Anita. Shakespeare's T. Publishers, 2015. Kumar, Sanjay and Pushp Lata. Endoxford University Press, India, 20 Frantisek, Burda. On Transcultural Publishing, UK. Geever, C. Jane. The Foundation of Reprint 2012 The Foundation Centyoung, Milena. Hacking Your State 2014 Kindle Edition. Ray, Ratri, William Shakespeare's C Muralikrishna & Sunitha Mishra Pearson, 2011. Be of Evaluation: Quizzes, Presentate of Challenging Experiments (Indox Enacting a court scene - Speaking Watching a movie and writing a research paper Component Sample Projects Technical Presentation using web Writing a research paper Component Sample Projects Short Films C. Field Visits and Reporting Case studies Vologging Che of evaluation: Quizzes, Presentation Unique Component Sample Projects Vologging Component Sample Projects Component Sample Projects	Raman, Meenakshi & Sangeeta Sharma. Tech 3rd edition, Oxford University Press, 2015. Erence Books Basu B.N. Technical Writing, 2011 Kindle edi Arathoon, Anita. Shakespeare's The Merchama Publishers, 2015. Kumar, Sanjay and Pushp Lata. English Langu Oxford University Press, India, 2018. Frantisek, Burda. On Transcultural Communic Publishing, UK. Geever, C. Jane. The Foundation Center's Gun Reprint 2012 The Foundation Center USA. Young, Milena. Hacking Your Statement of Puz 2014 Kindle Edition. Ray, Ratri, William Shakespeare's Hamlet, The C Muralikrishna & Sunitha Mishra, Communic Pearson, 2011. The of Evaluation: Quizzes, Presentation, Discuss of Challenging Experiments (Indicative) Enacting a court scene - Speaking Watching a movie and writing a review Trans-cultural - case studies Drafting a report on any social issue Technical Presentation using web tools Writing a research paper Component Sample Projects 1. Short Films 2. Field Visits and Reporting 3. Case studies 4. Writing blogs 5. Vlogging The Communication of Studies of Studies of O8/06/2019	Total Lecture Hours 3 ### Book / Workbook Raman, Meenakshi & Sangeeta Sharma. Technical Communication: Principles and Institute of Evaluation, Oxford University Press, 2015. #### Basu B.N. Technical Writing, 2011 Kindle edition Arathoon, Anita. Shakespeare's The Merchant of Venice (Text with Paraphrase), Every Publishers, 2015. #### Kumar, Sanjay and Pushp Lata. English Language and Communication Skills for Enginoxion University Press, India, 2018. #### Frantisek, Burda. On Transcultural Communication, 2015, LAP Lambert Academic Publishing, UK. #### Geever, C. Jane. The Foundation Center's Guide to Proposal Writing, 5th Edition, 200 Reprint 2012 The Foundation Center, USA. #### Young, Milena. Hacking Your Statement of Purpose: A Concise Guide to Writing Your 2014 Kindle Edition. #### Ray, Ratri, William Shakespeare's Hamlet, The Atlantic Publishers, 2011. #### C Muralikrishna & Sunitha Mishra, Communication Skills for Engineers, 2nd edition, Nearson, 2011. #### de of Evaluation: Quizzes, Presentation, Discussion, Role Play, Assignments #### Of Challenging Experiments (Indicative) #### Enacting a court scene - Speaking #### Watching a movie and writing a review #### Trans-cultural - case studies #### Drafting a report on any social issue #### Technical Presentation using web tools #### Writing a research paper #### Omponent Sample Projects #### Is Short Films #### Case studies #### Writing blogs #### Total Hours (J-Component)			

ENG1000	Foundation English - I	L	T	P	J	C
		0	0	4	0	0
Pre-requisite	Less than 50% EPT score	Syll	labu	ıs V	ersi	ion
Anti-requisite	Nil	v. 1.			1.1	

- 1. To equip learners with English grammar and its application.
- 2. To enable learners to comprehend simple text and train them to speak and write flawlessly.
- 3. To familiarize learners with MTI and ways to overcome them.

Expected Course Outcome:

- 1. Develop the skills to communicate clearly through effective grammar, pronunciation and writing.
- 2. Understand everyday conversations in English
- 3. Communicate and respond to simple questions about oneself.
- 4. Improve vocabulary and expressions.
- 5. Prevent MTI (Mother Tongue Influence) during usual conversation.

Module:1	Es	sentials of grammar	3 Hours
Understand b		grammar-Parts of Speech	
Activity: Gra	amm	ar worksheets on parts of speech	
Module:2	Vo	ocabulary Building	3 Hours
Vocabulary of	deve	lopment; One word substitution	
Activity: Ele	men	tary vocabulary exercises	
Module:3	Aŗ	oplied grammar and usage	4 Hours
Types of sen	tenc	es; Tenses	
Activity: Gra	amm	ar worksheets on types of sentences; tenses	
Module:4	Re	ectifying common errors in everyday conversation	4 Hours
Activity: Cor Colloquialisi		on errors in prepositions, tenses, punctuation, spelling and other parts	s of speech;
Module :5		Jumbled sentences	2 Hours
Sentence stru	ıctur	re; Jumbled words to form sentences; Jumbled sentences to form para	agraph/
short story			
Activity: Un	scrai	mble a paragraph / short story	
Module:6		Text-based Analysis	4 Hours
Wings of Fir	e -A	utobiography of APJ Abdul Kalam (Excerpts)	
Activity: Em	rich	vocabulary by reading and analyzing the text	
Module:7		Correspondence	3 Hours
Letter, Emai	l, Ap	pplication Writing	
Activity: Co	mpo	se letters; Emails, Leave applications	
Module:8		Listening for Understanding	4 Hours

		(Deemed to be University under section 3 of UGC Act, 1956)			
Listening to	imple conver	rsations & gap fill exercises			
Activity: Sir	ple conversat	tions in Received Pronunciation using audio-visual material	s.		
Module:9	Speakin	g to Convey	6 Hours		
		ys; Everyday conversations			
=	=	municate characteristic attitudes, values, and talents; Work	ing and		
interacting v					
Module:10		g for developing pronunciation	6 Hours		
		n pronunciation by watching relevant video materials			
=	_	iation by reading aloud simple texts; Detecting syllables; V	isually		
		own in relevant videos	4		
Module:11	Reading	g to Contemplate	4 Hours		
Reading sho	t stories and p	oassages			
Activity: Re	ding and anal	lyzing the author's point of view; Identifying the central ide	ea.		
Module:12	Writing	to Communicate	6 Hours		
Paragraph W	riting; Essay	Writing; Short Story Writing			
Activity: Wr	ting paragrap	hs, essays and short- stories			
Module:13	Interpre	eting Graphical Data	6 Hours		
Describing g	aphical illust	rations; interpreting basic charts, tables, and formats			
Activity: Int	rpreting and p	presenting simple graphical representations/charts in the for	m of PPTs		
Module:14	Overcon Pronunc	ning Mother Tongue Influence (MTI) in ciation	5 Hours		
Practicing co	mmon varian	ts in pronunciation			
Activity: Ide	ntifying and o	vercoming mother tongue influence.			
		Total Laboratory Hours	60 Hours		
Text Book /	Workbook				
1. Wren	P.C., & Mart	tin, H. (2018). High School English Grammar & Composition	on N.D.V.		
Prasa	laRao (Ed.). N	NewDelhi: S. Chand & Company Ltd.			
, McCa	rthy, M. O'D	ell, F.,& Bunting, J.D. (2010). Vocabulary in Use(High Inte	ermediate		
2. stude	ts book with	answers). Cambridge University Press			
Reference E	ooks				
1. Watk	ns, P.(2018).7	Teaching and Developing Reading Skills: Cambridge Hand	books for		
Lang	Language teachers. Cambridge University Press.				
		likrishna, C. (2014).Communication Skills for Engineers. P	earson		
	tion India				
3 Lewis	, N. (2011). <i>W</i>	Yord Power Made Easy. Goyal Publisher			
4 https:	americanliter	ature.com/short-short-stories			
`		n, A. (1999).Wings of Fire - An Autobiography of Abdul Ka	lam.		
Unive	· ·	India) Private Limited.			
Mode of Eva	luation: Quiz	zes, Presentation, Discussion, Role Play, Assignments			

List of	Challenging Experiments (In	dicative)				
1.	Rearranging scrambled senter		8 hours			
2.	2. Identifying errors in oral and written communication					
3.	3. Critically analyzing the text					
4.	4. Developing passages from hint words				8 hours	
5.	5. Role-plays					
6.	6. Listening to a short story and analyzing it				12 hours	
	•	T	otal Laborate	ory Hours	60 hours	
Mode o	Mode of Evaluation: Quizzes, Presentation, Discussion, Role Play, Assignments					
Recommended by Board of Studies 08/06/2019						
Approved by Academic Council 55 th AC Date 13/06/2019					9	

	Vellore Institute of Technology (Deemed to be University under section 3 of UGC Act, 1956)					
ENG2000	Foundation English - II	L T P J C				
		0 0 4 0 0				
Pre-requisite	51% - 70% EPT Score / Foundation English I	Syllabus version				
Anti-requisite	Nil	v.1.1				
Course Objecti						
1	ice grammar and vocabulary effectively re proficiency levels in LSRW skills in diverse social situations.					
_	ze information and converse effectively in technical communication	\ n				
	•	л.				
Expected Cour						
_	lish a deliberate reading and writing process with proper grammar	and vocabulary.				
2. Comprehend sentence structures while Listening and Reading.						
	nicate effectively and share ideas in formal and informal situations.					
	and specialized articles and technical instructions and write clear te	chnical				
correspo						
5. Critically	y think and analyze with verbal ability.					
		.				
Module:1	Grammatical Aspects	4 hours				
Sentence Pattern	n, Modal Verbs, Concord (SVA), Conditionals, Connectives					
	sheets, Exercises					
Module:2	Vocabulary Enrichment	4 hours				
Active & Passiv	e Vocabulary, Prefix and Suffix, High Frequency Words					
	sheets, Exercises					
Module:3	Phonics in English	4 Hours				
Speech Sounds	 Vowels and Consonants – Minimal Pairs- Consonant Clusters- I 	Past Tense Marker				
and Plural Mark						
Activity: Works	sheets, Exercises					
Module:4	Syntactic and Semantic Errors	2 Hours				
	rticles/ Prepositions/ Punctuation & Right Choice of Vocabulary					
	sheets, Exercises					
Module:5	Stylistic errors	2 Hours				
Dangling Modi	l fiers, Parallelism, Standard English, Ambiguity, Redundancy, Brev					
	sheets, Exercises	, icj				
Module:6	Listening and Note making	6 Hours				
	extensive Listening - Scenes from plays of Shakespeare (Eg: C					
	nice, Disguise Scene in <i>The Twelfth Night</i> , Death of Desdemona					
· ·	Caesar and Balcony scene from Romeo and Juliet)	in omeno, beam				
	narizing; Note-making and drawing inferences from Short videos					
Module:7	Art of Public Speaking	6 Hours				
	portance of Non-verbal Communication, Technical Talks, Dynamic					
	Individual & Group	o or reducational				
	reaking; Extempore speech; Structured technical talk and Group p	resentation				
Activity . ICE D	reaking, Extempore speech, or definited technical talk and Group p	resentation				

Mod	dule:8	Reading Comprehension Skills	4 Hours			
Skin	nming, scar	nning, comprehensive reading, guessing words from context, underst	anding text			
orga	nization, red	cognizing argument and counter-argument; distinguishing between main	information			
and	supporting	detail, fact and opinion, hypothesis versus evidence; summarizing and	note-taking,			
Criti	ical Reasoni	ng Questions – Reading and Discussion				
Acti	vity: Readin	ng of Newspapers Articles and Worksheets on Critical Reasoning from w	eb			
reso	urces					
	lule: 9	Creative Writing	4 Hours			
Stru	cture of an e	essay, Developing ideas on analytical/ abstract topics				
Acti	vity: Movie	Review, Essay Writing on suggested Topics, Picture Descriptions				
Mod	dule: 10	Verbal Aptitude	6 hours			
Wor	d Analogy,	Sentence Completion using Appropriate words, Sentence Correction				
Acti	vity: Practic	ing the use of appropriate words and sentences through web tools.				
Mod	lule: 11	Business Correspondence	4 hours			
Forn	nal Letters-	Format and purpose: Business Letters - Sales and complaint letter				
Acti	vity: Letter	writing- request for Internship, Industrial Visit and Recommendation				
Mod	lule: 12	Career Development	6 hours			
Tele	phone Etiqu	ette, Resume Preparation, Video Profile				
Act	ivity: Prepa	ration of Video Profile				
Mod	dule: 13	Art of Technical Writing - I	4 hours			
Tecl	nnical Instru	ctions, Process and Functional Description				
Acti	vity: Writin	ng Technical Instructions				
Mod	dule: 14	Art of Technical Writing – II	4 hours			
Forr	nat of a Rep	ort and Proposal				
	-	nical Report Writing, Technical Proposal				
		Total Lecture Hours	60 hours			
	t Book / Wo					
1.	Sanjay Ku	mar & Pushp Lata, Communication Skills, 2 nd Edition, OUP, 2015				
2	Wren & M	artin, High School English Grammar & Composition, Regular ed., ND: 1	Blackie			
	ELT Book					
Dof	ronco Rool	76				
Reference Books						
1	Peter Watkins, Teaching and Developing Reading Skills: Cambridge Handbooks for Language Teachers, Combridge 2018					
2	Teachers, Cambridge, 2018 2 Aruna Koneru, Professional Speaking Skills, OUP, 2015.					
2	Alulia NOI	iciu, i fotessionai speaking skins, OUF, 2013.				
3	J.C.Nesfie	ld, English Grammar English Grammar Composition and Usage, Macmil	lan. 2019.			
4	4 Richard Johnson-Sheehan, Technical Communication Today, 6th edition, ND: Pearson, 2017.					

Balasubramaniam, Textbook of English Phonetics For Indian Students, 3rd Edition, S. Chand Publishers, 2013. **Web Resources** 1. https://www.hitbullseye.com/Sentence-Correction-Practice.php 2. https://hitbullseye.com/Critical-Reasoning-Practice-Questions.php Mode of Evaluation: Presentation, Discussion, Role Play, Assignments, FAT **List of Challenging Experiments (Indicative)** Reading and Analyzing Critical Reasoning questions 8 hours 1. Listening and Interpretation of Videos 12 hours 2. Letter to the Editor 6 hours 3. Developing structured Technical Talk 12 hours 4. Drafting SOP (Statement of Purpose) 10 hours 5. Video Profile 12 hours 6. 60 hours **Total Laboratory Hours** Mode of Evaluation: Presentation, Discussion, Role Play, Assignments, FAT Recommended by Board of Studies 08/06/2019 55th AC Approved by Academic Council Date 13/06/2019

HUM1021	Ethics and Values	L	T	P	J	C
		2	0	0	0	2
Pre-requisite	Nil		Sylla	bus v	vers	ion
Anti-requisite	Nil			v. 1.2	2	
0 011 41						

- 1. To understand and appreciate the ethical issues faced by an individual in profession, society and polity
- 2. To understand the negative health impacts of certain unhealthy behaviors
- 3. To appreciate the need and importance of physical, emotional health and social health

Expected Course Outcome:

Students will be able to:

- 1. Follow sound morals and ethical values scrupulously to prove as good citizens
- 2. Understand various social problems and learn to act ethically
- 3. Understand the concept of addiction and how it will affect the physical and mental health
- 4. Identify ethical concerns in research and intellectual contexts, including academic integrity, use and citation of sources, the objective presentation of data, and the treatment of human subjects
- 5. Identify the main typologies, characteristics, activities, actors and forms of cybercrime

Module:1 Being Good and Responsible

5 hours

Gandhian values such as truth and non-violence – Comparative analysis on leaders of past and present – Society's interests versus self-interests - Personal Social Responsibility: Helping the needy, charity and serving the society

Module:2 Social Issues 1

4 hours

Harassment – Types - Prevention of harassment, Violence and Terrorism

Module:3 Social Issues 2

4 hours

Corruption: Ethical values, causes, impact, laws, prevention – Electoral malpractices; White collar crimes - Tax evasions – Unfair trade practices

Module: 4 Addiction and Health

5 hours

Peer pressure - Alcoholism: Ethical values, causes, impact, laws, prevention – Ill effects of smoking - Prevention of Suicides:

Sexual Health: Prevention and impact of pre-marital pregnancy and Sexually Transmitted Diseases

Module:5 Drug Abuse

3 hours

Abuse of different types of legal and illegal drugs: Ethical values, causes, impact, laws and prevention

Module:6 Personal and Professional Ethics

4 hours

Dishonesty - Stealing - Malpractices in Examinations – Plagiarism

Module:7 Abuse of Technologies

3 hours

Hacking and other cyber crimes, Addiction to mobile phone usage, Video games and Social networking

Module:8 Contemporary issues:

2 hours

Guest le	ctures by Experts		
	Total Lecture Hor	urs	30 hours
Referen	ice Books		
1.	Dhaliwal, K.K, "Gandhian Philosophy of Ethics: A Presupposition and Precepts, 2016, Writers Choice,	-	<u> </u>
2.	Vittal, N, "Ending Corruption? - How to Clean up UK. Pagliaro, L.A. and Pagliaro, A.M, "Handbook Substance		
3.	Abuse: Pharmacological, Developmental and Clin Publishers, U.S.A.	ical Cons	siderations", 2012Wiley
4.	Pandey, P. K (2012), "Sexual Harassment and Law Germany.	in India	", 2012, Lambert Publishers,
	f Evaluation: CAT, Assignment, Quiz, FAT and Sen nended by Board of Studies 26/07/2017	ninar	
Approve	ed by Academic Council 46 th AC I	Date	24/08/2017

MAT1011	Calculus for Engineers		L	T	P	J	C
			3	0	2	0	4
Pre-requisite	Nil	S	ylla	bus	Ve	ersi	on
Anti-requisite	Nil					V	.1.0

- **Course Objectives:**
 - 1. To provide the requisite and relevant background necessary to understand the other important engineering mathematics courses offered for Engineers and Scientists.
 - 2. To introduce important topics of applied mathematics, namely Single and Multivariable Calculus and Vector Calculus etc.
 - 3. To impart the knowledge of Laplace transform, an important transform technique for Engineers which requires knowledge of integration

Expected Course Outcome:

At the end of this course the students should be able to

- 1. apply single variable differentiation and integration to solve applied problems in engineering and find the maxima and minima of functions
- 2. understand basic concepts of Laplace Transforms and solve problems with periodic functions, step functions, impulse functions and convolution
- 3. evaluate partial derivatives, limits, total differentials, Jacobians, Taylor series and optimization problems involving several variables with or without constraints
- 4. evaluate multiple integrals in Cartesian, Polar, Cylindrical and Spherical coordinates.
- 5. understand gradient, directional derivatives, divergence, curl and Greens', Stokes, Gauss theorems
- 6. demonstrate MATLAB code for challenging problems in engineering

Module:1 Application of Single Variable Calculus 9 hours

Differentiation- Extrema on an Interval-Rolle's Theorem and the Mean Value Theorem-Increasing and Decreasing functions and First derivative test-Second derivative test-Maxima and Minima-Concavity. Integration-Average function value - Area between curves - Volumes of solids of revolution - Beta and Gamma functions—interrelation

Module:2 Laplace transforms 7 hours

Definition of Laplace transform-Properties-Laplace transform of periodic functions-Laplace transform of unit step function, Impulse function-Inverse Laplace transform-Convolution.

Module:3 Multivariable Calculus 4 hours

Functions of two variables-limits and continuity-partial derivatives —total differential-Jacobian and its properties.

Module:4 Application of Multivariable Calculus 5 hours

Taylor's expansion for two variables—maxima and minima—constrained maxima and minima—Lagrange's multiplier method.

Module:5	Multiple integrals	8 hours

Evaluation of double integrals—change of order of integration—change of variables between Cartesian and polar co-ordinates - Evaluation of triple integrals-change of variables between Cartesian and cylindrical and spherical co-ordinates- evaluation of multiple integrals using gamma and beta functions.

1								
Modu	ıle:6	Vector Differentiation		5 hours				
Scalar and vector valued functions – gradient, tangent plane–directional derivative-divergence and curl–scalar and vector potentials–Statement of vector identities-Simple problems								
Modu	ıle:7	Vector Integration		5 hours				
line, surface and volume integrals - Statement of Green's, Stoke's and Gauss divergence theorems -verification and evaluation of vector integrals using them.								
Modu	Module:8 Contemporary Issues: 2 hours							
		xpert Lecture		_ 110415				
	· · · · · · ·	1						
		Total Lecture Hours		45 hours				
Text I	Book(s							
1	- T-1		T TT 10th	11:1 D 2014				
1.		mas' Calculus, George B.Thomas, D.Weir and						
2.		nnced Engineering Mathematics, Erwin Kreyszi	ig, 10 th Edition	n, Wiley India, 2015.				
Refer	ence B	OOKS						
1.	High	er Engineering Mathematics, B.S. Grewal, 43 rd	Edition Khar	nna Dublichare 2015				
2.		er Engineering Mathematics, B.S. Glewar, 45 er Engineering Mathematics, John Bird, 6 th Ed						
	_							
3.		ulus: Early Transcendentals, James Stewart, 8 th						
4.		neering Mathematics, K.A.Stroud and Dexter J millan (2013)	. Booth, / E	dition, Palgrave				
Mode	of Eva	lluation: Digital Assignments, Quiz, Continuo	us Assessmen	ts, Final Assessment				
Test								
List o	f Chal	lenging Experiments (Indicative)						
1	Intuo di	votion to MATI AD through motions and con-	and Cranton	2 h a				
		action to MATLAB through matrices, and gene		2 hours				
		g and visualizing curves and surfaces in MATI plic computations using MATLAB	LAD —	2 Hours				
		ating Extremum of a single variable function		2 hours				
				2 hours				
	, ,							
	170/2002	<u> </u>	tion)	2 hours				
5.		ntion of Volume by Integrals (Solids of Revolu		2 hours				
5. 6.	Evalua	ntion of Volume by Integrals (Solids of Revoluting maxima and minima of functions of sever		2 hours				
5. 6. 7.	Evalua Apply	ntion of Volume by Integrals (Solids of Revolu- nting maxima and minima of functions of sever- ing Lagrange multiplier optimization method		2 hours 2 hours				
5. 6. 7. 8.	Evalua Apply Evalua	ntion of Volume by Integrals (Solids of Revoluting maxima and minima of functions of sever		2 hours				

11.	Evaluating line integrals in vectors	2 hours		
12. Applying Green's theorem to real world problems				2 hours
		24 hours		
Mod	e of Evaluation: Weekly assessmen	t, Final Assessme	nt Test	
Reco	ommended by Board of Studies			
Appr	roved by Academic Council	16/06/2015		

MAT2001	Statistics for Engineers	L	T	P	J	С
		3	0	2	0	4
Prerequisites	MAT1011		Syllabus Version:			
Anti-requisite	Nil		v.1.0			

Module: 7

- 1. To provide students with a framework that will help them choose the appropriate descriptive methods in various data analysis situations.
- 2. To analyse distributions and relationship of real-time data.
- 3. To apply estimation and testing methods to make inference and modelling techniques for decision making.

Expected Course Outcome:

At the end of the course the student should be able to:

- 1. Compute and interpret descriptive statistics using numerical and graphical techniques.
- 2. Understand the basic concepts of random variables and find an appropriate distribution for analysing data specific to an experiment.
- 3. Apply statistical methods like correlation, regression analysis in analysing, interpreting experimental data.
- 4. Make appropriate decisions using statistical inference that is the central to experimental research.
- 5. Use statistical methodology and tools in reliability engineering problems.

6. demonstrate R programming for statistical data

Reliability

6. demonstrate R programming for statistical data					
Module: 1	Introduction to Statistics	6 hours			
Introduction to statis	stics and data analysis-Measures of	of central tendency -Measures of			
variability-[Moments-	variability-[Moments-Skewness-Kurtosis (Concepts only)].				
Module: 2	Random variables	8 hours			
Introduction -random	variables-Probability mass Function	n, distribution and density functions			
- joint Probability dis	tribution and joint density functions	- Marginal, conditional distribution			
and density functions	s- Mathematical expectation, and it	ts properties Covariance, moment			
generating function –	characteristic function.				
Module: 3	Correlation and regression	4 hours			
Correlation and Regr	Correlation and Regression – Rank Correlation- Partial and Multiple correlation- Multiple				
regression.					
Module: 4	Probability Distributions	7 hours			
Binomial and Poisson	distributions – Normal distribution	– Gamma distribution –			
Exponential distributi	on – Weibull distribution.				
Module: 5	Hypothesis Testing I	4 hours			
Testing of hypothesis	s – Introduction-Types of errors, c	ritical region, procedure of testing			
hypothesis-Large sam	ple tests- Z test for Single Proporti	on, Difference of Proportion, mean			
and difference of means.					
Module: 6	Hypothesis Testing II	9 hours			
Small sample tests- S	tudent's t-test, F-test- chi-square tes	t- goodness of fit - independence of			
attributes- Design of	Experiments - Analysis of variance	– one and two way classifications -			
CRD-RBD- LSD.	•	·			

B.TECH (EEE) Page 48

5 hours

		(Deemed to			
Basic o	concepts-	Hazard function-Relia	bilities of seri-	es and parallel sy	stems- System
Reliabil	ity - Mai	ntainability-Preventive ar	nd repair mainte	nance- Availability.	
Module	e: 8	Contemporary Issues		2 hou	ırs
Industry	Expert l	Lecture			
		•	Lecture Hours	45 ho	urs
Text bo	ok(s)			l	
	, ,	ty and Statistics for engin	eers and scientis	sts. R.E.Walpole, R.I	H.Mvers.
	S.L.Mayers and K.Ye, 9 th Edition, Pearson Education (2012).				
		Statistics and Probability 1			erv. George C.
		5 th Edition, John Wiley &		2	3
	ice book		, ,		
1.	Reliabilit	y Engineering, E.Balagur	usamy, Tata Mc	Graw Hill, Tenth re	print 2017.
		ty and Statistics, J.L.Devo		-	
	(2012).	.,	,	<i>g.</i>	8 8
	` /	ty and Statistics for Engir	neers, R.A.Johns	son, Miller Freund's.	8th edition,
		Hall India (2011).	<u>`</u>		
		ty, Statistics and Reliabili	ty for Engineers	and Scientists Bila	1 M. Ayyub
		ard H. McCuen, 3 rd edition			1 1 v1 . 1 1 y y u o
			<u> </u>		E' 1
	r Evaruat nent Test	ion: Digital Assignments	, Continuous As	sessment Tests, Qui	z, Finai
1.		ents (Indicative)	tyması immantin	ac/overanting data	2 hours
1.	miroduc	ction: Understanding Data	a types; importin	ig/exporting data.	2 Hours
2.	Comput	ting Summary Statistics /	plotting and vis	ualizing data using	2 hours
		ion and Graphical Repres			
3.		ng correlation and simple		n model to real	2 hours
	dataset;	computing and interpreti	ng the coefficier	nt of determination.	
4.	110	ng multiple linear regressi			2 hours
	-	ing and interpreting the m	ultiple coefficie	ent of	
	determi				
5.		the following probability		nomial distribution	2 hours
6.		distribution, Poisson dist			2 hours
7.	_	of hypothesis for One	sample mean ar	nd proportion from	2 hours
0		e problems.	1	1	2.1
8.	_	of hypothesis for Two s	ample means a	nd proportion from	2 hours
0		e problems		4	2 h a s s s
9.		ng the t test for independe			2 hours
10.		ng Chi-square test for go	ouness of fit tes	st and Contingency	2 hours
11.		eal dataset ning ANOVA for real d	ataset for Com	nletely randomized	2 hours
11.					2 110u18
design, Randomized Block design ,Latin square Design Total Laboratory Hours 22 hours					
Mode o	f Evaluat	ion: Weekly Assessment,			22 HOUIS
		y Board of Studies	25/02/2017	1000	
Recoilii	iiciided 0	y Doute of Studies	23/02/201/		
Annrow	ed by Ac	ademic Council	47 th AC	Date: 05/10/2017	,
Thhron	ca by AC	aucinic Council	+/ AC	Date. 05/10/201/	

	(Deemed to be University under section 3 of UGC A	t, 1956)				
MGT1022	Lean Start up Manageme	nt	L T P J C			
			1 0 0 4 2			
Pre-requisite	Nil		Syllabus version			
Anti-requisite	Nil		v.1.0			
	es: To develop the ability to	<u> </u>				
	hods of company formation and management.					
	tical skills in and experience of stating of b	usiness using pre-	-set collection of			
business ic						
Learn basi	ics of entrepreneurial skills.					
Expected Course	e Outcome: On the completion of this course t	he student will be	able to:			
1. Understan	d developing business models and growth driv	/ers				
	isiness model canvas to map out key compone					
	narket size, cost structure, revenue streams, an					
	Foreseeing and quantifying business and financial risks					
	1 , 0					
Module:1			2 Hours			
Creativity and Do	esign Thinking (identify the vertical for busing	ness opportunity,	understand your			
customers, accura	tely assess market opportunity)					
Module:2			3 Hours			
Minimum Viable	Product (Value Proposition, Customer Segme	nts, Build- measur	re-learn process)			
Module:3			3 Hours			
	Development(Channels and Partners, Rev					
	ities and Costs, Customer Relationships and	Customer Develo	pment Processes,			
Business model ca	anvas –the lean model- templates)					
Module:4	4		3 Hours			
	nd Access to Funding(visioning your ventu	re taking the pr				
	plan including Digital & Viral Marketing, s					
	Angel/VC,/Bank Loans and Key elements of	1	Costs/11011ts &			
Losses/ cash now,	Tinger ve, Bunk Bouns and Trey comenes of	uising money)				
Module:5			3 Hours			
	, CSR, Standards, Taxes					
<u> </u>						
Module:6			2 Hours			
Lectures by Entre	preneurs					
Lectures by Entre	Total Lecture Hours		15 hours			
Text Book(s)	Toma Decima Homes					
	Owner's Manual: The Step-By-Step Guide for B	ıilding a Great Co	mpany. Steve			
-	Ranch; 1 st edition (March 1,2012)		_F , , ~			
		and adition (Ivle)	17 2012)			
- The Four Ste	ps to the Epiphany, Steve Blank, K&S Ranch;	Zii editioli (July	17,2013)			

	(De	emed to be University under section	3 of UGC Act, 19	756)		
3	The Lean Startup: How Today's Ent	repreneurs Use Co	ntinuous	Innovation to Cro	eate Radically	
	Successful Businesses, Eric Ries, G	Crown Business; (13 Septer	mber 2011)		
Ref	ference Books					
1.	Holding a Cat by the Tail, Steve Bl	ank, K&S Ranch l	Publishin	g LLC (August 1	4, 2014)	
2	Product Design and Development,	Karal T Ulrich, S	D Epping	ger, McGraw Hill		
3	1 / / /					
4	Lean Analytics: Use Data to Build a	Better Startup Fast	ter(Lean	Series), Alistair C	Croll &	
	Benjamin Yoskovitz, O'Reilly Med	dia; 1 st Edition (M	Iarch 21,	2013)		
5	Inspired: How To Create Products (Customers Love, N	Iarty Cag	gan, SVPG Press;	1st edition	
	(June 18, 2008)					
6	Website References:					
	1. http://theleanstartup.com/					
	2. https://www.kickstarter.com/pr	ojects/881308232	only-on-	kickstarter-the-le	eaders-guide-	
	by-eric-ries					
	3. http://businessmodelgeneratio					
	4. https://www.leanstartupmachin					
	5. https://www.youtube.com/watc					
	6. http://thenextweb.com/entrepre	neur/2015/07/05/v	vhats-wro	ong-with-the-lear	n-startup-	
	methodology/#gref					
	7. http://www.businessinsider.in/\			artup/articleshow	7/53615661.cms	
	8. https://steveblank.com/tools-an					
	9. https://hbr.org/2013/05/why-the	-	_	erything chventu	res.blogspot.in/	
	platformsandnetworks.blogsp	ot.in/p/saas-mode	l.html			
Mo	de of Evaluation: Assignments; l	Field Trips Case	Studies	s: e-learning: Le	earning through	
	earch, TED Talks	ricia Trips, Case	Stadios	,, c rearming, 20	Janning un Jugn	
	oject					
1.	Project		l l		60 hours	
	I J		Total	Project Hours	60 hours	
Rec	commended by Board of Studies	08/06/2015		J		
	proved by Academic Council	37 th AC	Date	16/06/2015		
	· · · · · · · · · · · · · · · · · · ·					

PHY1701	Engineering Physics	L T P J C
		3 0 2 0 4
Pre-requisite	Nil	Syllabus version
Anti-requisite	Nil	v.1.0

- 1. Having an ability to apply mathematics and science in engineering applications
- 2. Having a clear understanding of the subject related concepts and of contemporary issues
- 3. Having Sense-Making Skills of creating unique insights in what is being seen or observed (Higher level thinking skills which cannot be codified)

Expected Course Outcome:

Students will acquire the necessary knowledge about modern physics and its applications in various engineering and technology disciplines. This course meets the following student outcomes

- 1. an ability to apply knowledge of physics in engineering problems
- 2. an ability to design and conduct experiments, as well as to analyze and interpret data
- 3. an ability to identify, formulate, and solve engineering problems

Module:1 Introduction to Modern Physics

6 hours

Planck's concept (hypothesis), Compton Effect, Particle properties of wave: Matter Waves, Davisson Germer Experiment, Heisenberg Uncertainty Principle, Wave function, and Schrodinger equation (time dependent & independent).

Module:2 Applications of Quantum Physics

5 hours

Particle in a 1-D box (Eigen Value and Eigen Function), 3-D Analysis (Qualitative), Tunneling Effect (Qualitative) (AB 205), Scanning Tunneling Microscope (STM).

Module:3 Nanophysics

5 hours

Introduction to Nano-materials, Moore's law, Properties of Nano-materials, Quantum confinement, Quantum well, wire & dot, Carbon Nano-tubes (CNT), Applications of nanotechnology in industry.

Module:4 Laser Principles and Engineering Application

6 hours

Laser Characteristics, Spatial and Temporal Coherence, Einstein Coefficient & its significance, Population inversion, Two, three & four level systems, Pumping schemes, Threshold gain coefficient, Components of laser, Nd-YAG, He-Ne, CO2 and Dye laser and their engineering applications.

Module:5 | Electromagnetic Theory and its application

6 hours

Physics of Divergence, Gradient and Curl, Qualitative understanding of surface and volume integral, Maxwell Equations (Qualitative), Wave Equation (Derivation), EM Waves, Phase velocity, Group velocity, Group index, Wave guide (Qualitative)

Module:6 Propagation of EM waves in Optical fibers

6 hours

Light propagation through fibers, Acceptance angle, Numerical Aperture, Types of fibers - step index, graded index, single mode & multimode, Attenuation, Dispersion-intermodal and intramodal.

	(Deemed to be University under section 3 of UGC Act, 1956)	
Modu	le:7 Optoelectronic Devices & Applications of Optical fibers	9 hours
Source	es-LED & Laser Diode, Detectors-Photodetectors-PN & PIN - Application	s of fiber optics in
	unication- Endoscopy.	
_	al Theory of Relativity:	
	of reference, Galilean relativity, Postulate of special theory of relativity, S	imultaneity, length
contra	ction and time dilation.	
Modu		2 hours
Lectur	re by Industry Experts	
	m	
T 4 T	Total Lecture Hours	45 hours
<u> </u>	Book(s)	
	rthur Beiser et al., Concepts of Modern Physics, 2013, Sixth Edition, Tata	McGraw Hill.
	Villiam Silfvast, Laser Fundamentals, 2008, Cambridge University Press.	
	J. Griffith, Introduction to Electrodynamics, 2014, 4th Edition, Pearson.	1 1 2011
	jafar K. Mynbaev and Lowell L.Scheiner, Fiber Optic Communication Tec	chnology, 2011,
	earson. ence Books	
	Raymond A. Serway, Clement J. Mosses, Curt A. Moyer Modern Physics,	2010 2rd Indian
1.	Edition	2010, Stu Illulali
	Cengage learning.	
2.	John R. Taylor, Chris D. Zafiratos and Michael A. Dubson, Modern Physic	cs for
	Scientists and Engineers, 2011, PHI Learning Private Ltd.	
3.	Kenneth Krane Modern Physics, 2010, Wiley Indian Edition.	
4.	Nityanand Choudhary and Richa Verma, Laser Systems and Applications,	2011, PHI
	Learning Private Ltd.	
6.	S. Nagabhushana and B. Sathyanarayana, Lasers and Optical Instrumentat	ion,
	2010, I.K. International Publishing House Pvt. Ltd.,	,
7.	R. Shevgaonkar, Electromagnetic Waves, 2005, 1st Edition, Tata McGraw	Hill
8.	Principles of Electromagnetics, Matthew N.O. Sadiku, 2010, Fourth Edition	on, Oxford.
9.	Ajoy Ghatak and K. Thyagarajan, Introduction to Fiber Optics, 2010, Cam	hridge University
	Press.	
Mode	of Evaluation: Quizzes, Digital Assignments, CAT-I and II and FAT	
List of	f Challenging Experiments (Indicative)	
1.	Determination of Planck's constant using electroluminescence process (Module 1)	2 hours
2.	Electron diffraction (Module 1)	2 hours
3.	Determination of wavelength of laser source (He -Ne laser and diode laser	s 2 hours
	of different wavelengths) using diffraction technique (Module 4)	
4.	Dispersive power of prism (Module 6)	2 hours
5.	Optical Fiber communication (source + optical fiber + detector) (Modules	2 hours
	7+8)	

6.	Determination of size of fine parti	cle using laser di	ffraction (N	Module 3)	2 hours
7.	Determination of the track width ((Module 4)	2 hours		
8.	PIN diode characteristics (Module	e 8)			2 hours
9.	Black body Radiation (Module 1+	-2)			2 hours
10.	Optical Fiber communication (sou + 8)	r) (Modules 7	2 hours		
11.	Analysis of crystallite size and strain in a nano -crystalline film using X-ray diffraction (Module 3)				2 hours
12.					2 hours
13.	Laser coherence length measurement (Module 4)				2 hours
14.	Proof for transverse nature of E.M. waves (Module 6)				2 hours
15.	5. Quantum confinement and Heisenberg's uncertainty principle (Module 1 + 3)				2 hours
		7	Total Labo	ratory Hours	30 hours
Reco	mmended by Board of Studies	11/08/2017			
Appr	oved by Academic Council	46 th AC	Date	24/08/2017	

PHY1901	Introduction to Innovative Projects	L T P J C
		1 0 0 4 2
Pre-requisite	Nil	Syllabus version
Anti-requisite	Nil	v.1.0
Course Objective	ng•	-

This course is offered to the students in the 1St Year of B.Tech. in order to orient them towards independent, systemic thinking and be innovative.

- 1. To make students confident enough to handle the day to day issues.
- 2. To develop the "Thinking Skill" of the students, especially Creative Thinking Skills
- 3. To train the students to be innovative in all their activities
- 4. To prepare a project report on a socially relevant theme as a solution to the existing issues

Expected Course Outcome: Students will be able to

- 1. Understand the various types of thinking skills.
- 2. Enhance the innovative and creative ideas.
- 3. Find out a suitable solution for socially relevant issues- J component

Module:1 A | **Self Confidence**

1 hour

Understanding self – Johari Window –SWOT Analysis – Self Esteem – Being a contributor – Case Study

Project : Exploring self, understanding surrounding, thinking about how s(he) can be a contributor for the society, Creating a big picture of being an innovator – writing a 1000 words imaginary autobiography of self – Topic "Mr X – the great innovator of 2015" and upload. (4 **non-contact hours**)

Module:1 B | Thinking Skill

1 hour

Thinking and Behaviour – Types of thinking – Concrete – Abstract, Convergent, Divergent, Creative, Analytical, Sequential and Holistic thinking – Chunking Triangle – Context Grid – Examples – Case Study.

Project : Meeting at least 50 people belonging to various strata of life and talk to them / make field visits to identify a min of 100 society related issues, problems for which they need solutions and categories them and upload along with details of people met and lessons learnt. (4 noncontact hours)

Module:1 C | Lateral Thinking Skill

1 hour

Blooms Taxonomy – HOTS – Outof the box thinking – deBono lateral thinking model – Examples

Project: Last weeks - incomplete portion to be done and uploaded

Module:2 A | Creativity

1 hour

Creativity Models – Walla – Barrons – Koberg & Begnall – Examples

Project: Selecting 5 out of 100 issues identified for future work. Criteria based approach for prioritisation, use of statistical tools & upload. (4 non-contact hours)

Module:2 B | **Brainstorming**

1 hour

25 brainstorming techniques and examples

Project: Brainstorm and come out with as many solutions as possible for the top 5 issues identified & upload. (4 non- contact hours)

Module:3 Mind Mapping 1 hour

Mind Mapping techniques and guidelines. Drawing a mind map

Project : Using Mind Maps get another set of solutions forthe next 5 issues (issue 6-10). (4 non-contact hours)

Module:4 A | Systems thinking

1 hour

Systems Thinking essentials – examples – Counter Intuitive condemns

Project: Select 1 issue / problem for which the possible solutions are available with you. Apply Systems Thinking process and pick up one solution [explanation should be given why the other possible solutions have been left out]. Go back to the customer and assess the acceptability and upload. (4 non-contact hours)

Module:4 B Design Thinking

1 hour

Design thinking process – Human element of design thinking – case study

Project: Apply design thinking to the selected solution, apply the engineering & scientific tinge to it. Participate in "design week" celebrations upload the weeks learning out come.

Module:5 A Innovation

1 hour

Difference between Creativity and Innovation – Examples of innovation –Being innovative.

Project: A literature searches on prototyping of your solution finalized. Prepare a prototype model or process and upload. . **(4 non- contact hours)**

Module:5 B Blocks for Innovation

1 hour

Identify Blocks for creativity and innovation – overcoming obstacles – Case Study

Project : Project presentation on problem identification, solution, innovations-expected results – Interim review with PPT presentation. . (4 non- contact hours)

Module:5 C Innovation Process

1 hour

Steps for Innovation – right climate for innovation

Project: Refining the project, based on the review report and uploading the text. . (4 noncontact hours)

Module:6 A Innovation in India

1 hour

Stories of 10 Indian innovations

Project: Making the project better with add ons. . (4 non- contact hours)

Module: 6 B JUGAAD Innovation

1 hour

Frugal and flexible approach to innovation - doing more with less Indian Examples

Project: Fine tuning the innovation project with JUGAAD principles and uploading (Credit for JUGAAD implementation). (4 non- contact hours)

Module:7 A Innovation Project Proposal Presentation

1 hour

Project proposal contents, economic input, ROI – Template

Project: Presentation of the innovative project proposal and upload. (4 non- contact hours)

Module:8 A | Contemporary issue in Innovation

1 hour

Contemporary issue in Innovation

Project: Final project Presentation, Viva voce Exam (4 non- contact hours)

		Total Lecture I	Hours	15 hours
Tex	kt Book(s)			
1.	How to have Creative Ideas, Edwa	ard debone, Verm	ilon public	cation, UK, 2007
2.	2. The Art of Innovation, Tom Kelley & Jonathan Littman, Profile Books Ltd, UK, 2008			
Ref	ference Books			
1.	Creating Confidence, Meribeth Bo	onct, Kogan Pag	e India Lt	d, New Delhi, 2000
2.	. Lateral Thinking Skills, Paul Sloane, Keogan Page India Ltd, New Delhi, 2008			
3.	Indian Innovators, Akhat Agrawa	l, Jaico Books, M	umbai, 20	015
4.	JUGAAD Innovation, Navi Radjo	u, Jaideep Prabhu	, Simone	Ahuja Random house India,
	Noida, 2012.			
Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar Three reviews with weightage of 25 : 25 : 50 along with reports				
Rec	commended by Board of Studies	15/12/2015		
Apı	proved by Academic Council	39 th AC	Date	17/12/2015

EEE1002	Electric circuits	L	T	PJ	C
		3	0	0 0	3
Pre-requisite	Nil	Sy	llab	us vers	
Anti-requisite	Nil			v.	1.0
Course Objecti					
	ne mathematical model of the electric circuits using basic laws				
2. Apply various	us network theorems to solve the electric circuits				
3. Compute an	d analyze the steady state and transient responses of DC and AC of	circuits			
Expected Cour	se Outcome:				
On the completi	on of this course the student will be able to:				
1. Formulate th	ne equations of the electric circuits using basic laws				
Determine tl	ne response of DC circuits using basic analysis methods				
3. Compute the	e response of DC circuits using network theorems				
4. Analyze the	transient behavior of electric circuits with different types of source	ce			
5. Describe the	elements of AC circuits and the phasor concept				
6. Design resor	nance circuits, and solve three phase ac circuits				
7. Solve simple	e magnetic circuits				
	undamentals of Electric Circuits			5 Ho	
	Circuit Elements, Ohms Law and Kirchhoff's Laws. Voltage	and Cu	rrent	Divis	ion,
Star-Delta Trans	sformation and Source Transformation.				
·					
Module:2 Li	inear Circuit Analysis			5 Ho	urs
Nodal and Mesh	Analysis of Linear Network with Independent and Dependent D	C sourc	es.	-	
Modulo 2 N	4 1 701			7 II.	

Module:3	Network Theorems		7 Hours
Thevenin's	Theorem, Norton's Theorem, Maximum Power	Transfer Theorem and Super	position
Theorem for	circuits with independent and dependent sources.		
		_	

Module:4 Transient Circuit Analysis 7 Hours

Dynamic Circuit Elements – L and C. Analysis of Source Free RC, RL and RLC Circuits, Singularity Functions, Step Response of RC, RL and RLC Circuits.

Module:5 Introduction to Phasors 7 Hours

Introduction to Sinusoids and Phasors, Impedance and Admittance with Phasors Representation. RMS and Average Values of Sinusoids, Instantaneous and Average Power, and Complex Power - Real Power, Reactive Power and Apparent Power Calculations and Power Factor.

Module:6 AC Circuits and Resonance 7 Hours

Sinusoidal Steady State Analysis for AC circuits with independent sources. Frequency Response of Circuits with R, L and C Combinations. Resonance in Series and Parallel RLC Circuits. Balanced Three Phase Circuits, Power in a Balanced System, Three Phase Power Measurement.

Module:7	Magnetic Circuits				Hours 5
Magnetically	Coupled Circuits, Self and Mutual Inductance,	Dot 0	Convention,	Energy i	n Coupled
Circuits, Mes	sh Analysis of Magnetically Coupled Circuits.				
Module:8	Contemporary issues:				2 hours

			Total Lecture 1	Hours	45 Hours
Text Bo	ook(s)			•	
1.	Chai	les K Alexander, Mathew N	N O Sadiku, 'Fur	damental	s of Electric Circuits, Tata McGraw
	Hill,	2012.			
Referei	nce B	ooks			
1.	Alla	n R. Hambley, 'Electrical	Engineering-Pri	nciples &	Applications', Pearson Education
	Limi	ited, 7/e, 2017.			
2.	Rob	ert L Boylestad, 'Introductor	ry Circuit Analys	is', Pearso	on Education Limited, 13/e, 2016.
3.	W. I	H. Hayt, J.E. Kemmerly and	l S. M. Durbin, '	Engineeri	ng Circuit Analysis', McGraw Hill,
	New	York, 8/e, 2012.			
4.	Abh	ijit Chakrabarti, 'Circuit T	heory : Analysis	and Syn	thesis', Dhanpat Rai & Co., New
	Delh	i, 6/e, 2014			
5.	Mah	mood Nahvi; Joseph A Edm	ninister, 'Electric	Circuits',	McGraw Hill Education, 6/e, 2015.
Mode o	f Eva	luation: CAT / Assignment /	Quiz / FAT / Pr	oject / Ser	minar
Recomi	nende	ed by Board of Studies	29/05/2015		
Approv	ed by	Academic Council	37 th AC	Date	16/06/2015

EEE10	03	E	Electrical Works	hop		L	T	P	J	C
						0	0	2	0	1
Pre-req	uisite	Nil				S	Sylla	bus	vers	ion
Anti-re	quisite	Nil							v.	1.0
Course	Objectives:									
1. Appl	. Apply the basic concepts of Electrical Engineering in the design and installation of Electrical									
Systems	S.									
_	ed Course O									
On the o	completion o	of this course the stude	ent will be able to):						
		ect experiments, as we		interpret da	ıta					
		Experiments (Indic								
1		ction (i) Convention								
		s, fuse, MCBs (ii)								
		and its testing of d								
	-	ppliances: kettle, far	ı, iron box, refri	gerator, grii	nder, water	heat	ter (v	7i) U	PS a	and
	its maintena									
2	(b) Cable jo		1 C 1.1	1 /						
2		uit for a single lamp a		•						
3		iring circuit layout for	<u> </u>	dings.						
4		ring circuit with buzz	er and lamps.							
5		iring circuit.								
6 7		lamp connections.		1 1	: A.C.	1	.1			
8		nt of single phase pov			a given AC	ioac	1.			
9		rthing and measurement								
10		ation, soldering and te yout for a residential			uoro.					
11		parallel wiring circuit.		g CAD SULLY	vaic.					
12				tmatar math	and					
13		nt of three-phase pow		illeter metr	iou.					
13		nt of grounding resist	•							
14	Practice to t	roubleshoot the elect	ricai equipment.							
			757	4 1 T 1		20				
~ 0			10	tal Labora	tory Hours	30	hou	rs		
	ce Books	TO			1.11.1	3.7		11 '	2000	
1.	11 '	Electrical Wiring Es		<u> </u>						
2.		and S. K. Bhattacha	rya, Electrical De	esign Estima	ting and Co	sting	g, W	iley	East	ern
	Limited, 20	10.								
3.	Indian Electr	icity rules 1956, Law	publishers, Allal	habad.						
4.	National E	Electrical Code 201	1-IS-732-1983,	Code of	practice fo	r e	lectr	ical	wir	ing
		, Indian standards.	- 4		1					J
Mode		: Assignment / FAT								
		oard of Studies	29/05/2015							
			37 th AC	Doto	16/06/2015					
Approv	ed by Acade	IIIIC COUIICII	3/ AC	Date	16/06/2015	•				

EEE1004	Engineering Electr	romagnetics L T P J C	C
		3 0 2 0 4	4
Pre-requisite	MAT1011	Syllabus versio	n
Anti-requisite	Nil	v. 1	.1
· · · · · · · · · · · · · · · · · · ·			

- 1. To convey the basic physical concepts that lie behind all electrical engineering, the interactions between charged particles, whether stationary or in motion.
- 2. To examine the electric and magnetic forces between stationary and steadily moving charged particles.
- 3. To study the various electric & magnetic field concepts both in static and time varying condition.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Explore different coordinate systems related to magnetic fields.
- 2. Define the electric flux density, field intensity and different charge distributions.
- 3. Demonstrate the boundary conditions and method of images.
- 4. Compare the electric and magnetic boundary conditions, calculate the capacitance and inductance.
- 5. Analyze Maxwell equations.
- 6. Summarise the electric magnetic waves and wave propagation in different medium.
- 7. Apply the electric and magnetic field concepts
- 8. Design and Conduct experiments, as well as analyze and interpret data

Module:1 Review of Scalar and Vector Fields

Different Co-ordinate Systems: Cartesian, Cylindrical and Spherical –Differential elements in different coordinate systems – Del Operator: Divergence, Curl and Gradient, Divergence Theorem – Stoke's Theorem - Helmholtz's Decomposition.

6 Hours

Module:2 Electrostatics: Charges 5 Hours

Coulomb's law – Electric Field Intensity – Electric Flux – Gauss's Law – Potential due to Point, Line and Surface Charge Distributions.

Module:3 Electric Fields in Dielectrics and Conductors 8 Hours

Different current flow mechanisms – Continuity equation and relaxation time - Boundary conditions – Laplace and Poisson's equations - Solutions – Analytical Methods – Variables separable methods – Method of images – Numerical Techniques - Finite Difference Method – Electrostatic Energy – Capacitance Calculations

Module:4 Magneto statics 8 Hours

Magnetic Fields – Magnetic Flux – Biot Savart's Law – Ampere's Law – Magnetic Torque and Moment – Forces due to Magnetic Fields – Vector Potential – Magnetic Boundary Conditions – Inductors and Inductances – Calculations - Magnetic Energy

Module:5 Electromagnetic Fields 8 Hours

Faraday's law – Lenz's Law – Maxwell's equations – Displacement current – Maxwell's Equations in Final Forms – Time Varying Fields - Relation between field theory and circuit theory

Mod	lule:6	Electromagnetic Waves	Generation			8 Hours
Prop	agation of w	aves in lossy dielectrics, con	nductors and free s	pace – S	Skin effect – Comple	ex Permittivity-
Pow	er and Poynti	ing Vector.				
		T				
	lule: 7	Application				2 hours
Sour	ces, Effects a	and application of Electroma	agnetic fields			
Mod	lule:8	Contemporary issues:				2 Hours
MIOU	iuic.o	Contemporary issues:	Total Lecture H	ours		45 Hours
3.6.1	CE 1 .	CATE / A : / O				45 110015
		on: CAT / Assignment / Qu		Semina	ar ————————————————————————————————————	T . =
		ing Experiments (Indicative	•			1, 7
1.	•	netic concepts using Matlab				2 hours
2.	•	resentation ,Coordinate Sys		on		2 hours
3.		d surface integration (Vector				2 hours
4.		g electric field distribution f				2 hours
5.		g voltage due to line charge		me chai	ge	2 hours
6.	Energy stor	ed in a region due to electri	c field			2 hours
7.	Solving die	$lectric(\Box r1)$ - $dielectric(\Box r)$	2) boundary condit	ion prol	olem	2 hours
8.	Determinat	ion of electrical field and po	tential inside the p	arallel p	late capacitor.	2 hours
9.	Determinat (Laplace eq	ion of voltage and electric f uation).	ield distribution ins	side the	co-axial cable.	2 hours
10.		g and plotting the magnetic	field due to infinit	e sheet	current	2 hours
11.		ion of an inductance of a sol				2 hours
12.	Determinat rectangular	ion of the mutual inducta	nce between an in	nfinite	line current and a	2 hours
13.		netic wave propagation in g	ood conductors.			2 hours
14.		ion of Electric field and Vo		single o	core cable which is	2 hours
		the presents of a needle inc		_		
15.		ion of static magnetic field				2 hours
	electric mot		J			
				Total 1	Laboratory Hours	30 hours
Mod	e of Evaluati	on: Assignment / FAT				
Text	Book(s)					
	1. Mat	thew N. O. Sadiku & S	S. V. Kulkarni, '	Princip	les of Electromagn	netics', Oxford
		versity Press, New York, Si	•		S	,
Refe	rence Books	<u> </u>	· · · · · · · · · · · · · · · · · · ·			
	1. Har 201	t Hayt, John A. Buck, 'Er 2.	gineering Electron	magneti	cs', McGraw-Hill,	Eighth Edition,
		Edminister, 'Schaum's Outlaion, 2013.	ine of Electromag	netics',	McGraw-Hill Profe	essional, Fourth
	3. Kar	l E. Lonngren, Sava Sav TLAB', 2007.	ov, Randy J. Jos	t, 'Fun	damental of Electo	magnetic with
Reco		Board of Studies	30/11/2015			
	-	demic Council	39 th AC	Date	17/12/2015	

EEE1005	Signals and systems		L	T	P	J	C
			3	0	0	0	3
Pre-requisite	MAT2002	S	ylla	bu	s v	ers	ion
Anti-requisite	Nil					v.	1.0

- 1. To understand the mathematical representations of signals and systems in continuous and discrete domain.
- 2. Analyse and perform various operations with the signals.
- 3. Analyse the response of linear time invariant (LTI) systems in continuous and discrete domain.
- 4. Understand sampling theorem and represent signals in the frequency domain.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Define the term signals and systems, apply translation techniques and classify different types of systems based on their properties
- 2. Analyse LTI systems
- 3. Apply Fourier Series techniques for dealing with periodic continuous and discrete systems
- 4. Differentiate the behaviour of LTI systems as periodic and aperiodic signals using Fourier Transforms
- 5. Construct the original signal from samples.
- 6. Extend the analysis to unstable systems using the Laplace Transforms
- 7. Develop and formulate techniques of dealing with discrete systems using the z-transform.

Module:1 Fundamentals of Signals

5 Hours

Representation of Continuous and Discrete-time Signals, Unit Step, Unit Ramp, Unit Impulse, Sinusoidal and Complex Exponentials. Classification of signals – Periodic and Aperiodic Signal, Even and Odd Signal, Energy and Power Signal, Deterministic and Random signals. Transformation of Independent Variables –Time Shifting, Time Scaling and Time Reversal.

Module:2 Fundamentals of Systems

5 Hours

Representation of Continuous and Discrete Time Systems. Classification of systems - Static and Dynamic, Linear and Nonlinear, Time variant and Time Invariant, Causal and Non–Causal, Stable and unstable, Invertible and non- invertible systems. Block Diagram Representation and Interconnection of Systems

Module:3 | Analysis of LTI System

6 Hours

Impulse Response of Continuous and Discrete Time LTI Systems. Convolution, Basic properties of systems using impulse response.

Module:4 Fourier Representation of Periodic Signals and LTI Systems 6 Hours

Fourier Series Representation of Continuous Time and Discrete-time periodic signals, Properties of Fourier Series, Parseval's relation, Response of LTI Systems to Complex Exponentials.

		(Deeme	ed to be University under section 3 of	UGC Act, 19	056)				
Module	e:5	Fourier Representation of	f Aperiodic Signa	ls	7 H	ours			
		and LTI Systems							
Continu	ious T	ime and Discrete Time Four	rier Transforms, Pr	roperti	es o	f Fourier Transforms,			
Frequer	ncy re	sponse of LTI system. Appli	ications: Modulation	on for	com	munications, Filtering, Time-			
Frequer	ncy re	presentation and uncertainty	principle.						
Module	e:6	Representation of Continits samples	uous time signals	by	5 H	ours			
Samplii	ng Th	eorem, Effects of Sampling	and Aliasing. Sam	pling	of C	ontinuous Time Signals with			
Sample	and I	Hold, Reconstruction of Sign	al from Samples -	- Interp	olat	ion.			
		=		_					
Module	e :7	Analysis of Continuous ar	nd Discrete LTI		9 H	ours			
		Systems with Laplace Tra	ansform and Z-						
		Transform							
Review	of La	place Transform, Region of	Convergence, Cha	aracter	izati	on of LTI systems with			
Laplace	Tran	sforms, transfer functions. N	Mapping of s-plane	to z-p	lane	, Review of Z-Transform,			
Region	of Co	nvergence, Power series exp	pansion, and partia	l fracti	on e	expansion. Characterization of			
LTI sys	tems	using Z -Transforms.							
Madul	0	Lecture by industry expe	omta			2 Hours			
Module	e:0	Lecture by maustry expe							
			Total Lecture H	ours		45 Hours			
Text Bo									
1.			Oppenhein, Alan	S. Will	lsky	and S. Hamid, Pearson 2016.			
Referen	nce B	ooks							
1.	Sign	als and systems by Simon H	laykin, John Wiley	, 2016	•				
2	Fund	lamentals of Signals and Sy	stems Usin Web a	nd MA	TL.	AB, Edward W Kamen, Bonnie			
۷.	2. S. Heck, Pearson, 2014.								
Mode o	of Eva	luation: CAT / Assignment /	Quiz / FAT / Proj	ect / S	emi	nar			
Recomi	mende	ed by Board of Studies	30/11/2015						
Approv	ed by	Academic Council	39 th AC	Date		17/12/2015			

-	
	3 0 0 0 3
Pre-requisite EEE1002, MAT1011	Syllabus version
Anti-requisite Nil	v. 1.0

- 1. Analyse the steady state response of circuits and discuss various theorems and their applications
- 2. Apply Laplace transform and Fourier transform techniques to circuits and obtain the complete response
- 3. Design passive filters and analyse its frequency response.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Apply node voltage and mesh current methods to analyse circuits in steady state.
- 2. Apply Laplace transform techniques for solving problems and discuss the complete response of circuits.
- 3. Derive the transfer function and identify its poles and zeros
- 4. Analyse the harmonics in nonsinusoidal inputs to circuits using Fourier series.
- 5. Apply Fourier transform to circuits with nonsinusoidal inputs
- 6. Design passive filters and analyse the frequency response.
- 7. Evaluate and relate two-port network parameters.

Module:1 | Sinusoidal Steady State Analysis

6 Hours

Review of Phasors. Nodal Analysis, Mesh Analysis, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer Theorem and Superposition Theorem for circuits with independent and dependent sinusoidal sources

Module:2 Modeling of Network in s-Domain

6 Hours

Circuit Models of R, L and C in s-Domain. Application of Laplace Transforms to integro-differential equations of RL, RC and RLC circuits. Transfer Function. Impulse Response of RL and RC Circuits and Response to any other sources using convolution integral.

Module:3 Complete Response of Networks

6 Hours

Circuit Analysis with zero and non zero initial conditions in s-domain. Pole-Zero Maps. Network Stability.

Module:4 Networks with Periodic Non-Sinusoidal Excitation

7 Hours

Trigonometric Fourier Series for Non-Sinusoidal Functions. Circuit Analysis. Average Power and RMS Values using Fourier Coefficients. Exponential Fourier Series.

Module:5 Network Analysis using Fourier Transform

7 Hours

Fourier Transform for commonly used periodic and aperiodic functions. Circuit Analysis in frequency domain. Energy in the signal using Parseval's Theorem.

Module:6 Design of Filters

4 Hours

Review of Frequency Response of RL, RC and RLC circuits. Passive Filters—Low Pass, High Pass, Band Pass and Band Stop. Magnitude and Frequency Scaling.

Module	:7	Two Port Networks			6 Hours				
Introduc	ction	to Two-Port Networks - In	mpedance and A	dmittan	ce parameters, Transmission and				
Hybrid l	Paran	neters. Relationship between	parameter, Interco	onnectio	n of Networks.				
Module	:8	Contemporary issues:			2 hours				
			Total Lecture H	lours	45 Hours				
Text Bo	ok(s))							
1.	Chai	rles K Alexander, Mathew 1	N O Sadiku, "Fu	ndamen	tals of Electric Circuits", Tata				
	McC	Graw Hill, 2012.							
Referen	ce B	ooks							
1.	Alla	n R. Hambley, 'Electrical En	gineering-Princip	les & A	pplications' Pearson Education,				
	First	Impression, 6/e, 2013.							
2.	Rob	ert L Boylestad, 'Introductor	y Circuit Analysis	s' Pearso	on Education Ltd, 12th Edition,				
	2010).							
3.	Н.	Hayt, J.E. Kemmerly and S	. M. Durbin, 'Er	ngineerin	ng Circuit Analysis', 6/e, Tata				
	McC	Graw Hill, New Delhi, 2011.							
Mode of	Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar								
Recomn	nende	ed by Board of Studies	29/05/2015						
	Approved by Academic Council 37 th AC Date 16/06/2015								

	(Deemed to be University under section 3 of UGC Act, 1956)						
EEE2002	Semiconductor Devices and Circuits		L	T	P	J	C
			2	0	2	4	4
Pre-requisite	EEE1002	Sy	llat	ous	ve	rsi	on
Anti-requisite	Nil				,	v. 1	.0
Course Objective	s:						
1. To apply the kn	owledge of solid state devices principles to analyze electronic	c circu	its.				

- 2. To design amplifiers under different configurations and study their responses
- 3. To have hands on learning experience and software knowledge by doing practical exercises and projects.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Understand the behavior of semiconductor devices
- 2. Analyze diode circuits
- 3. Relate the characteristics of various transistors with DC sources
- 4. Compare the various configurations of BJT
- 5. Understand the various configurations of MOSFET
- 6. Analyze the high speed response of semiconducting devices.
- 7. Compare and contrast the negative and positive feedback in amplifiers
- 8. Design and conduct experiments, as well as analyze and interpret data
- 9. Design a component or a product applying all the relevant standards with realistic constraints

Module:1	Semiconductor Device Physic	s				2 Hours		
Semi-conduc	tors, charge carriers, intrinsic	and	extrinsic	semi-conductors,	carrier	generation,		
recombination, injection of carriers, Drift and diffusion, carrier mobility, conductivity.								

Module:2 Diode Circuit Analysis

4 Hours PN junction diode - Formation of Junction, Junction Capacitance, characteristics, Diode equations, Diode Circuits - Clipper and Clamper, rectifiers with and without filters, other multiple diode circuits, Regulated power supplies.

Transistor DC Analysis Module:3 5 Hours

BJT Characteristics, current gains, h-parameters, MOSFET Characteristics, Load line and Operating point analysis, DC analysis and biasing of BJTs and MOSFETs.

Module:4 **BJT Amplifiers**

Small signal analysis of BJT amplifiers, Calculation of Gain, Input Impedance and Output Impedance. Basic BJT amplifier Configurations (CE, CC and CB). Power Amplifiers.

MOSFET Amplifiers Module:5

4 Hours

5 Hours

Small signal analysis of MOSFET amplifiers. Calculation of Gain, Input Impedance and Output Impedance. Basic MOSFET amplifier configurations - (CS, CD and CG) amplifiers.

Module:6 **Frequency response**

5 Hours

Amplifier Frequency Response, System Transfer Functions, Frequency Response of Transistor Amplifier with Circuit Capacitors, Frequency Response of the FET, High-Frequency Response of

Transi	stor C	ircuits.	d to be University under section 3 of	'UGC Act, 1956)				
			0 111					
Module		Feedback Amplifiers and				3 Hours		
	_	ts of feedback-Negative fee			_	nt Series/Shunt,		
Positive	e feedl	back, Stability, Conditions for	or Oscillations RC	and LC o	scillators.			
Module	e:8	Contemporary issues:				2 Hours		
			Total Lecture H	ours	30 Hour			
Text Bo	ook(s)							
1.		A.S.Sedra, K.C. Smith, "N Oxford University Press, 20		rcuits: Th	neory with Appl	ications", 6Ed,		
Referen	nce Bo	ooks						
1.		D.A. Neamen, Electronic C	Circuits – Analysis	and Desig	gn, 3Ed, McGrav	v Hill, 2011.		
2.		David A. Bell, "Electronic	Devices and Circu	iits", 5ed,	Oxford Univers	ity Press, 2008.		
3.		Behzad Razavi, Fundament	tals of Microelectr	onics, 3Ec	l, Wiley, 2013.			
4.		Ben Streetman, Sanjay Ban	erjee, Solid State	Electronic	Devices, 7ED,	Pearson, 2014.		
Mode o	of Eval	uation: CAT / Assignment /	Quiz / FAT / Proj	ect / Semi	nar			
List of	Chall	enging Experiments (Indic	eative)					
		tion of logic gates using dio				2 hours		
2. D	esign	line and load voltage regula	tion circuits using	Zener dio	de	2 hours		
3. D	esign	a capacitor for a rectifier cir	cuit			2 hours		
		various clamping circuits us	-			2 hours		
5. D	esign	various clipping circuits usi	ng diode			2 hours		
		the circuit using BJT as a s				2 hours		
		the h-parameters for different characteristics	rent configuration	s in BJT	using input –	2 hours		
	_	the circuit for a verificatio ton pair	n of BJT as a sw	itch and a	amplifier using	2 hours		
		the circuit to perform DC a	nalysis of a BJT			2 hours		
		ng characteristics of MOSF				2 hours		
		the circuit for verifying UJT		itch		2 hours		
		a RC coupled amplifier				2 hours		
13. D	esign	a common collector amplifi	er			2 hours		
		a common source FET amp				2 hours		
•		•	7	Total Lab	oratory Hours	30 hours		
		uation: Assignment /FAT						
		d by Board of Studies	29/05/2015		,			
Approv	ed by	Academic Council	37 th AC	Date	16/06/2015			

Vellore Institute of Technology (Deemed to be University under section 3 of UGC Act, 1956)						
EEE2003 Electromechanical Energy Conver		L	T	P	J	C
		3	0	2	0	4
Pre-requisite	e-requisite EEE1002/EEE1001 Syllabus		s ver	version		
Anti-requisite Nil v			. 1.0			
Course Objectives:						
1. To analyze the basic principles of DC Machines						
2. To derive the various relations of electrical and mechanical parameters in AC Machines						
3. Evaluate the characteristics and testing of AC Machines						
Expected Course Outcome:						
On the completion of this course the student will be able to:						

- 1. Illustrate the basic principles of electromechanical energy conversion
- 2. Comprehend the basic operation & characteristics of DC generator
- 3. Analyze the various starting technologies and performance characteristics of DC Motor
- 4. Apply magnetic circuit concepts and analyze performance of transformers
- 5. Solve the various torque equations and analyze the starting methods of Induction Motor
- 6. Design the equivalent circuit and circle diagram of Induction Motor
- 7. Analyze the effect of change in electrical and mechanical parameters of Synchronous Machine
- 8. Design and Conduct experiments, as well as analyze and interpret data

Module:1	2:1 Principle of Electromechanical Energy Conversion 4 Ho			
Magnetic circuits - Singly excited systems - doubly excited systems - Force and Torque.				
Module:2	D.C. Generator	6 Hours		
Construction – Windings- Armature Reaction – Commutation-EMF Equation – Types of Generators-				
Magnetization and load characteristics - Voltage Regulation - Parallel operation - Applications.				

D.C. Motor 5 Hours Module:3

Methods of excitation - Equivalent circuit - Torque equation - Performance characteristics - Losses and efficiency - Speed control and starting techniques - Applications

Module:4 Transformers 7 Hours

Construction – types-EMF Equation-Transformer on No load and load-phasor diagram –Efficiency and Voltage Regulation - Transformer testing- Equivalent Circuit - predetermination of Efficiency and Voltage Regulation-Parallel Operation –3 Phase Transformers Applications.

Module:5 6 Hours **Induction Motor**

3 phase induction motor: Construction Rotating Magnetic Field -Working principle-Power Transferred across air gap, Torque and Power output-Starting methods - Single phase induction motors -Applications.

Module:6 **Testing of Induction Machines** 6 Hours Determination of Equivalent Circuit parameters – performance characteristics Circle Diagram –Speed Control –Induction Generator Applications. Module:7 **Synchronous Machines** 9 Hours

Synchronous Generator (Alternator): Construction-Induced EMF - Synchronous reactance - Phasor Diagram and Voltage regulation - Parallel operation - Synchronizing of alternator Effects of change in

excitation and mechanical input. Synchronous Motor: Three-phase synchronous motor - Types -Principle of operation - Methods of starting - Hunting and Damper windings - synchronous condenser -

Applications. (Deemed to be University under section 3 of UGC Act, 1956)							
	Applications.						
Mod	Module:8 Contemporary issues						
	1				2 hours		
T 4	D 1()			Total Lecture Hours	45 Hours		
Text	Book(s)						
1.	I. J. Nagrath and D. P. Kothari, "Electric Machines" (Sigma Series), III edition, Tata McGraw Hill 2010.						
Refe	rence Bo	oks					
1.	P. S. Bi	mbhra, "Electrical machi	nery", Seventh Edition	on, Khanna Publication	s, 2014.		
2.	P.C.Ser	n, "Principles of Electric I	Machines and Power	Electronics", Wiley, 20	013.		
3.	Stephen J.Chapman, "Electric Machinery Fundamentals', "McGraw Hill Intl. Edition, New Delhi, 6 th Edition, 2012.						
4.		Egune Fitzgerald; Charle w-Hill, 7 th Edition, 2014.	s Kingsley; Stephen	D Umans, "Electric m	achinery", New York:		
Mod	e of Eval	uation: CAT / Assignmen	t / Quiz / FAT / Proje	ect / Seminar			
List	of Challe	enging Experiments (Ind	licative)				
1.	Speed control of DC shunt motor and predetermination of performance				2 hours		
		eristics of DC shunt mach					
2.	Performance characteristics of DC traction motor. 10. Voltage Regulation 2 hours				2 hours		
		ee phase induction genera					
3.	Performance characteristics of DC motor used for rolling mills.				2 hours		
4.		ization and Load characte			2 hours		
5.	Performance test and connection assessment of a 3 phase transformer.				2 hours		
6.	Open circuit and short circuit test on a 3 phase transformer.			ormer.	2 hours		
7.	Parallel operation of transformers.			2 hours			
8.	Equivalent circuit and Performance evaluation of 3 phase industrial pump motor.				2 hours		
9.	Load test on 3 phase motor used for lift applications.			2 hours			
10.	Load test on single phase fan motor.			2 hours			
11.	Voltage Regulation of a three phase induction generator.			2 hours			
12.	Predetermination of Voltage Regulation in 3 phase alternator by EMF and MMF method.			2 hours			
13.	Synchronization of a 3 phase alternator to the busbar.			2 hours			
14.	1				2 hours		
Total Laboratory Hours				30 hours			
Mode of Evaluation: Assignment /FAT							
Reco	mmende	d by Board of Studies	30/11/2015				
Approved by Academic Council 39 th AC Date					17/12/2015		

EEE2004	Measurement and Instrumentation	L	T	PJ	C
		2	0	0 4	3
Pre-requisite	EEE1002	Sylla	abus	vers	sion
Anti-requisite	Nil	·		v.	1.0

- 1. To provide basic understanding of electrical and electronic measurement systems.
- 2. To give a thorough knowledge of varieties of measuring instruments, its operating principles, and limitations.
- 3. To provide basic understanding of data acquisition systems and virtual instrumentation

Expected Course Outcome:

On the completion of each module the student will be able to:

- 1. Explain the functions of instrumental elements and evaluate the errors in the process
- 2. Design a meter for measurement of electrical variables like voltage, current and power
- 3. Design DC bridges for measurement of various level of resistances,
- 4. Design AC bridges for measurement of various levels of Inductance, capacitance and frequencies
- 5. Analyze and apply various transducers for measurement process based on the applications
- 6. Outline the importance and working of digital instruments
- 7. Develop a Virtual Instrumentation system through LabVIEW software.
- 8. Design a component or a product applying all the relevant standards with realistic constraints.

Module:1 Introduction 4 Hours

Functional elements of an instrument, Static and dynamic characteristics of zero and first order instruments – sources of Errors in measurement, – Techniques for reducing error, – loading effect of instruments, Statistical evaluation of measurement data.

Module:2 | Electrical and Electronic Instruments

4 Hours

Classification of instruments,— Working Principle of potentiometer, Design of analog voltmeter, ammeter using PMMC and MI and its loading effect.—Principle of working power factor meter—Single phase wattmeter, analog energy meter, Use of Instrument transformers.

Module:3 D.C bridges

4 Hours

Design of deflection bridges – Wheatstone bridge, Kelvin bridge, Kelvin double bridge and their merits and demerits.

Module:4 A.C bridges

4 Hours

Maxwell bridge, Anderson bridge, Schering Bridge, Wien Bridge and their Merits and Demerits.

Module:5 | Transducers and Display devices

4 Hou

Classification of transducers – Selection of transducers – Resistive, capacitive & inductive transducers – Piezoelectric and digital transducers. Working principle and specifications of the Analog CRO and digital CRO, LED and LCD.

Module:6 Digital Instruments:

4 Hours

Comparison of analog and digital techniques – digital voltmeter – millimeter's – Energy meter – frequency counters – measurement of frequency and time interval – extension of frequency range – Automation in digital instruments, Automatic polarity indication, automatic ranging, automatic zeroing, fully automatic digital instruments, Computer controlled test systems, Virtual instruments.

Module:7 Data acquisition using LabVIEW:

4 Hours

Elements of digital data acquisition system—interfacing of transducers—multiplexing—data loggers—computer controlled instrumentation—IEEE 488 bus -DAQ cards and accessories, NI ELVIS, Data

Acquisition with LabVIEW-Interfacing a sensor to LabVIEW-Interfacing an actuator to LabVIEW.							
Module:8		Lecture by industry experts.		2 hours			
			Total Lecture H	ours	30 Hours		
Text	Text Book(s)						
1.	E.O. Doebelin, "Measurement Systems – Application and Design", 5th /e, Tata McGraw						
		ıblishing, 2012.					
Refe	rence B						
1.	D.V.S	. Moorthy,,,Transducers & Ir	nstrumentation",2r	nd/e, Pren	tice Hall of India Pvt Ltd, 2010.		
2.	Gary	W. Johnson, Richard Jenr	ning, "LabVIEW	Graphic	al Programming", 4th /e, Tata		
	McGra	aw Hill, New York, 2006.					
3.			_		Electronic Instrumentation and		
		rement Techniques, Pearson					
4.	Golding E.W and Widdis F.G., "Electrical Measurements and Measuring Instruments", Fifth						
		n, AH Wheeler and Co., Nev					
5.	H.S. Kalsi, "Electronic Instrumentation", 3rd /e, Tata McGraw Hill, 2015.						
6.	James W. Dally, William F. Riley, Kenneth G. McConnell, Instrumentation for Engineering				Instrumentation for Engineering		
		rements, 2nd Edition, John					
7.	E.O. Doebelin, "Measurement Systems - Application and Design', Tata McGraw Hill						
		ning company, 2012.					
8.	John G. Webstar, "The measurement Instrumentation and sensors handbook- Two volume						
	set", CRC press, 2014.						
9.	David A. Bell, Electronic Instrumentation and measurements, Prentice Hall of India Pvt Ltd,						
	2010.						
10.							
Dhanpat Rai & Co 2001.							
Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar							
Recommended by Board of Studies 30/11/2015							
Approved by Academic Council 39 th AC Date 17/12/2015					17/12/2015		

EEE2005	Digital Signal Processing	L	T	PJ	C
		2	0	2 0	3
Pre-requisite	EEE1005	Syll	abu	s vei	sion
Anti-requisite	Nil			7	. 2.0

- 1. To recognize Linear Time-Invariant (LTI) discrete-time systems
- 2. To design IIR filters using impulse invariance & bilinear transformation techniques
- 3. To design FIR filters using various window functions
- 4. To obtain knowledge and ability to use the appropriate tools like digital signal processors to build DSP systems for real time problems

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Understand the transform- domain signal and analyze the frequency response
- 2. Analyze and design analog filters
- 3. Design and implement IIR filtering operations with the real time constraints
- 4. Design a FIR filter for specific digital signal applications.
- 5. Compose and realize the structures of digital filters.
- 6. Estimate the adaptive filters for performance improvement.
- 7. Identify the techniques, skills and modern technical tools necessary for engineering practice to design and simulate a DSP system.
- 8. Design and Conduct experiments, as well as analyze and interpret data

Module:1 Frequency Analysis of Signals and Systems 6 Hours

Review of discrete -time signals and systems – Classification, Z- transform – ROC-stability/causality analysis, DTFT- Frequency domain sampling - DFT-Properties-Frequency analysis of signals using DFT-FFT Algorithm-Radix-2 FFT algorithms-Applications of FFT.

Module:2 Theory and Design of Analog Filters 4 Hours

Design techniques for analog low pass filter -Butterworth and Chebyshev approximations, frequency transformation, Properties.

Module:3 Design of IIR Digital Filters 4 Hours

IIR filter design - Bilinear and Impulse Invariant Transformation techniques - Spectral transformation of digital filters.

Module:4 Design of FIR Digital Filters 4 Hours

FIR Filter Design - Phase and group delay - Design characteristics of FIR filters with linear phase – Frequency response of linear phase FIR filters – Design of FIR filters using Rectangular, Hamming, Hanning, Bartlett and Blackmann window functions.

Module:5	Realization of Digital Filters	4 Hours				
Direct Forms I and II, Cascade, Parallel and Lattice structures.						
Module·6	Filters for removal of artefacts and	4 Hours				

		(Deemed to be University under section 3 of UGC Act, 195		
		interference		
Opt	timum Fi	lter - The Wiener Filter, Adaptive filters and their app	olications.	
Mod	lule:7	Digital Signal Processors		2 Hours
		ose digital signal processors - Fixed point and float	ing point DCD	
		AC, filter operation in different DSP architectures		_
	rithms.	te, inter operation in universit 1991 arcinicetures	- typicar impici	inclitation of DSI
uigo	ittiiiis.			
Mod	lule:8	Contemporary issues:		2 Hours
		Total Lecture Hours		30 Hours
Text	t Book(s))		
1.		John G. Proakis, D.G. Manolakis and D.Sharr	na, "Digital Sig	nal Processing
		Principles, Algorithms and Applications", 4th edition		ion, 2012.
2.		Sanjit K. Mitra, Digital Signal Processing, 4th edition	on, TMH, 2013.	
Refe	erence B	ooks		
1.		Sophocles J. Orfanidis, "Introduction to Signal Phall, Inc, 2010	rocessing" 2nd e	dition, Prentice
2.		Oppenhiem V.A.V and Schaffer R.W, "Discrete	– time Signal P	rocessing", 3rd
		edition, Pearson new international edition, 2014.	8	8, -
3.				
	Processing", Pearson India Education Services, 2016.			
4.	Emmanuel C. Ifeachor, "Digital Signal Processing- A Practical Approach" 2nd edition, Prentice Hall, 2011.			
Mod	le of Eva	luation: CAT / Assignment / Quiz / FAT / Project / Se	eminar	
List	of Chall	enging Experiments (Indicative)		
1.	Analys	sis of continuous time and discrete time signals.		2 hours
2.		er a symmetric square wave with frequency 100 Hz.		2 hours
		n and 25-term Fourier series approximations. Co		
		imations with the actual square wave. Observe the	e approximation	
_		or at the points of discontinuity.		
3.		program to convolve two discrete time square pulse	signals. Observe	2 hours
4		ects of repeated convolution with a square pulse.	·	2.1
4.	-	he effects of signal length and windowing on the speced with FFT.	ctrum of a signal	2 hours
5.	1		2 hours	
	low-pass filter.			
6.	Analyze the effect of the following window functions on the magnitude of 2 hours		2 hours	
		uency response: Rectangular, Hamming and Blackma		
7.		te a sinusoidal signal which contains 50Hz, 70Hz, 10		2 hours
	_	cies. Analyse the frequency components present in	_	
		thout AWGN for a SNR of 0.6. Obtain the plot and	comment on the	
0	results.	on IID filter to filter and union for the filter	1 sign -1 f. (1	2 h ave-
8.	Design	an IIR filter to filter out noise from the sinusoida	ai signal for the	2 hours

	following specifications. Plot the sp	our results.				
	Type of filter: Butterworth					
	Pass band frequency: 100 H	z; Stop band frequ	ency: 150	Hz		
	Pass band ripple: 0.1 dB; St	top band ripple: 40) dB			
9.	Design a FIR filter and estimate	the filter coeffici	ents for t	he following	2 hours	
	specifications. Plot, comment and in	nfer your results.				
	Type of filter: Band stop					
	Order of the filter: 10					
	Pass band frequency: 200 H					
10.	Design Chebyshev Type 1 and Typ	e 2 high pass and	band pass	analog filters	2 hours	
	for the following specifications.					
	Passband ripple =0.04dB;					
	Stopband attenuation= 30dl					
	Passband frequency = 400H	00Hz				
	Sampling frequency = 2000					
	Plot their magnitude and phase characteristics.					
11.	Signal processing methods for Mus	2 hours				
12.	Signal processing mechanisms for I	2 hours				
Total Laboratory Hours					30 hours	
Mode of Evaluation: Assignment /FAT						
Recommended by Board of Studies 05/03/2016						
Appı	roved by Academic Council	40 th AC	Date	18/03/2016		

EEE3001	Control Systems	L T P J C			
		3 0 2 0 4			
Pre-requisite	EEE2001, MAT2002/EEE1001	Syllabus version			
Anti-requisite Nil v. 1.0					
Course Objectives:					

- 1. To present a clear exposition of the classical methods of control engineering, physical system modelling, and basic principles of frequency and time domain design techniques.
- 2. To teach the practical control system design with realistic system specifications.
- 3. To provide knowledge of state variable models and fundamental notions of state feedback design

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Formulate the mathematical model and transfer function of physical systems
- 2. Analyze the system performance by applying various input signals
- 3. Determine the stability of linear systems in time domain
- 4. Perform frequency domain analysis using bode and polar plot
- 5. Analyze the stability of linear system in the frequency domain
- 6. Design compensators and controllers for the given specifications
- 7. Design and analyze state space model
- 8. Design and Conduct experiments, as well as analyze and interpret data

Systems and their Representations Module:1 6 hours Basic elements in control systems - open loop & closed loop - Transfer functions of mechanical,

electrical and analogous systems. Block diagram reduction - signal flow graphs.

Module:2 | Time Response Analysis 6 hours

Standard test signals, Time response of first and second order system, Time domain specifications, Steady state error, error constants, generalized error coefficient.

Module:3 | Stability Analysis and Root Locus 6 hours

Stability - concept and definition, Characteristic equation - Location of poles - Routh Hurwitz criterion - Root locus techniques: construction, properties and applications.

Module:4 | Frequency Response Analysis 6 hours

Bode plot - Polar plot - Correlation between frequency domain and time domain specifications

Module:5 | Stability in Frequency Domain 6 hours

Relative stability, Gain margin, Phase margin, stability analysis using frequency response methods, Nyquist stability criterion.

Module:6 | Compensator and Controller 7 hours

Realization of basic compensators, cascade compensation in time domain and frequency domain, feedback compensation - Design of lag, lead, lag-lead series compensator (using Bode plot), P, PI and PID controllers in frequency domain.

Module:7 | State Space Analysis 6 hours

Cor	Concepts of state variable and state model, Solution of state equation, State space to transfer						
fund	ction conversion, Controllability, Ob	servability, Pole	placemen	control			
Mo	dule:8 Contemporary issues:				2 hours		
		Total Lecture H	ours		45 hours		
Tex	t Book(s)						
1.							
2.	Benjamin C Kuo "Automatic Contr	rol System" John	Wiley & S	ons, 8 th Edition	i, 2007.		
Ref	erence Books						
1.	K. Ogata, "Modern Control Engine	ering", Pearson, 5	5 th Edition,	2010.			
2.	R.C. Dorf & R.H. Bishop, "Modern						
3.	M. Gopal, "Control Systems-Princi	iples And Design"	', Tata Mc	Graw Hill –4 th 1	Edition, 2012.		
4.	Graham C. Goodwin, Stefan F. Gra Hall, 2003'	nebe, Mario E. Sag	gado, " Co	ntrol System D	esign", Prentice		
5.	J.Nagrath and M.Gopal," Control S 4 th Edition, 2006.	System Engineerin	g", New A	Age Internationa	al Publishers,		
Mo	de of Evaluation: CAT / Assignment	t / Quiz / FAT / Pr	roject / Sei	ninar			
List	of Challenging Experiments (Ind	icative)					
1.	Block Diagram Reduction	·	'		2 hours		
2.	Determination of Time Domain S	pecifications			2 hours		
3.	Stability analysis of linear systems	8			2 hours		
4.	PID Controller Design using Bode	Plot			2 hours		
5.	PID Controller Design using Root	Locus			2 hours		
6.	Compensator Design in Frequency	and Time Domai	ins		2 hours		
7.	Transfer Function to State Space Observability Tests	Conversion with C	Controllabi	lity and	2 hours		
8.	Lag compensator design for linear	servo motor for s	peed cont	rol	2 hours		
	application						
9.	Pole placement controller design f	<u>1</u>			2 hours		
	10. PD controller design for position control of servo plant						
11. Cascade control design for ball and beam system					2 hours		
12. PID controller design for magnetic levitation system					2 hours		
13. Transfer function of Separately excited DC generator					2 hours		
14. Transfer function of Field Controlled DC Motor					2 hours		
15. Study of First and Second order systems					2 hours		
		T	otal Labo	ratory Hours	30 hours		
	de of evaluation: CAM/ FAT						
	ommended by Board of Studies	30/11/2015		,			
App	proved by Academic Council	39 th AC	Date	17/12/2015			

	EEE3002	Analog and Digital Circuits	L	T	P	J	C
			3	0	2	0	4
Anti-requisite Nil	Pre-requisite	EEE2002	Syllabus version		sion		
Anti-requisite 101	Anti-requisite	Nil	v.2.0			7.2.0	

- 1. To introduce the functional building blocks, characteristics and applications of Analog ICs
- 2. To understand different methods for design and implementation of Digital circuits
- 3. To introduce the various applications of digital and analog ICs

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Analyze the performance characteristics of Op-Amp.
- 2. Design Op-Amp based circuits for engineering applications.
- 3. Identify the power supply requirements for electronic circuit applications.
- 4. Design a basic logic circuit for arithmetic operations in computers.
- 5. Design complex digital circuits for real time applications.
- 6. Design registers for memory applications in computers.
- 7. Apply analog/digital ICs for industrial control applications.
- 8. Design and Conduct experiments, as well as analyze and interpret data.

Module:1 Operational Amplifier

6 Hours

DC Performance - The operational amplifier, Input resistance, Output resistance, Open loop gain, Bias currents, Offset currents, Offset voltage, Common mode rejection ratio. Negative feedback Amplifier, closed loop gain, Differential amplifier.AC Performance - Frequency response, Transient response, Stability, Compensation, Poles and zeros cancelation

Module:2 OPAMP Applications

7 Hours

Linear applications of op-amp – summing, subtracting, averaging amplifier, voltage to current converter, current to voltage converter, differentiator and integrator. Nonlinear applications – comparator, Multivibrators, Schmitt Triggers, Precision Diode, Half wave and full wave rectifiers, Peak detector, Wave form generators and Active Filters.

Module:3 | Timer and Power Supplies

5 Hours

555 Timer and its applications, monostable multivibrator, Astable multivibrator. Linear voltage regulator, 78XX and 79XX family, 723 IC voltage regulator, Switching regulators.

Module:4 Digital Techniques

6 Hours

Number systems - Binary, octal and hexadecimal numbers. Binary codes, Logic Gates, Boolean algebra - Conversion and operations. De Morgan's laws, Truth tables, Karnaugh's map, Min term, Max term, SOP, POS, Synthesis of Boolean functions, Quine Mccluskey method.

Module:5 | Combinational Circuit Design

6 Hours

Arithmetic circuits, Parity generator, Seven-segment display, Analysis and Design Procedure - Multiplexer, Decoder, Encoder, Design using programmable logic Devices.

(Deemed to be University under section 3 of UGC Act, 1956)					
Mod	ule:6 Synchronous Sequential Circuit Design			6 Hours	
Flip I	Flip Flops - SR, D, T and JK Flip-flops, Master slave Flip Flops, Counters, Registers. Design using				
State	machin	es-Moore and Mealy machines, Design Examples.			
Mod	ule:7	Asynchronous Sequential Circuit Design		6 Hours	
Desig	gn Proc	edure- Asynchronous Sequential Circuits-State Di	agram-State assign	nment-implication	
table-	-Design	examples. APPLICATIONS: Temperature Indica	tor and Controller,	Speed control of	
DC M	Motor us	sing Analog/Digital ICs			
Mod	ule:8	Contemporary issues:		2 Hours	
		Total Lecture Hours		45 Hours	
Text	Book(s)			
1.		Op-Amps & Linear Integrated Circuits by Ramal	kant Gayakwad, P	rentice Hall of	
		India, New Delhi, 4th edition, 2002.			
2.		Digital Design by M. Morris Mano and Mictae	l Ciletti, Pearson	Education, 5 th	
		Edition, 2013.			
	rence B				
1.		Operation Amplifiers & Linear Integrated Circuits	•	hlin and Frederick	
_		F. Driscoll, Prentice Hall of India, New Delhi, 6 th E			
2.		Design with Operational Amplifiers & Analog In	itegrated Circuits b	by Sergio Franco,	
		Tata McGraw Hill Education, 4 rd Edition, 2015.	4.4th Paris	2016	
3.		Digital Fundamentals by Floyd, Madrid Pearson Ed			
4.		Digital System Design using Verilog by Charles R	oth, Lizy John and	Byeong Kil Lee,	
		Cengage Learning, 1 st Edition, 2016.	D	TT'11 TO 1	
5.		Electronic Principles by Albert Malvino, David.J.	Bates, Tata Megra	w Hill Education,	
3.6.1	C.E.	8 th Edition, 2016.			
Mode	e of Eva	lluation: CAT / Assignment / Quiz / FAT / Project / S	eminar		
T.	0.01.1				
		lenging Experiments (Indicative)	1' 0'	2.1	
1.		and implementation of inverting and non-inverting a		2 hours	
2.		and implementation of precision rectifier using op-a	mp	2 hours	
3.	Design and implementation of low pass and high pass filter			2 hours	
4.	Design of implementation of integrator and differentiator using op-amp 2 hours				
5.				2 hours	
6.	Design and implementation of summing and difference amplifier			2 hours	
7.	Design and implementation of astable multivibrator		2 hours		
8.	Design and implementation of half and full adder circuit		2 hours		
9.	Design and implementation of multiplexer		2 hours		
10.	Design and implementation of magnitude comparator			2 hours	
11.		and implementation of BCD to 7 segment display		2 hours	
12.		and implementation of code converters		2 hours	
13.		and implementation of J,K and D flip flops		2 hours	
14.	Design	and implementation of shift registers		2 hours	

15. Design and implementation of sync	2 hours				
	30 hours				
Mode of Evaluation: Assignment /FAT					
Recommended by Board of Studies	05/03/2016				
Approved by Academic Council	40 th AC	Date	18/03/2016		

EEE3003	Power System Engineering	L	T P	J	C
		3	0 2	0	4
Pre-requisite	EEE2001	Sy	llabus	ver	sion
Anti-requisite	Nil			V.	. 1.1

- 1. To gain adequate knowledge on various aspects, issues related to power systems and identifying suitable solution methods.
- 2. To apply the concepts in solving practical power system problems.

Expected Course Outcome:

On completion of the course the student will be able to

- 1. Estimate the transmission line parameters.
- 2. Solve and calculate voltage regulation and efficiency of transmission line.
- 3. Categorize various components of transmission network and study the distribution system
- 4. Construct equivalent per unit model of three phase transmission line
- 5. Formulate various techniques to solve power flow problems.
- 6. Identify and classify various faults of power system network.
- 7. Analyze the impact of stability issues in power systems.
- 8. Design and Conduct experiments, as well as analyze and interpret data

Module:1 Transmission Line parameters:

9 Hours

Resistance, Inductance of transmission lines, Inductance of a single phase two wire line, Inductance of three phase lines with symmetrical and unsymmetrical spacing-Capacitance of a single phase two wire line-Capacitance of a three phase line with symmetrical and unsymmetrical spacing.

Module:2 | **Modelling of Transmission lines**:

6 Hours

Representation of lines-Short –Medium lines, Equivalent Circuits, Calculation of Voltage regulation and transmission efficiency- long transmission lines-Equivalent Circuit- Surge Impedance loading.

Module:3 Insulators and Cables:

5 Hours

Types, Potential distribution over a string of suspension insulators- Improvement of string efficiency-Underground Cables-Types- Grading in cables. **Distribution Systems:** A.C. distribution System-connection schemes-radial and ring main –Interconnected System.

Module:4 Network Modelling:

7 Hours

Need for system studies in planning and operation of power system-Per phase analysis of symmetrical three phase system-per unit representation-Bus Admittance Matrix-Equivalent circuit of transformer with off nominal tap ratio- Modeling of generator, load, shunt capacitor, transmission line, shunt reactor for power flow and short circuit studies.

Module:5 | Power Flow Studies:

7 Hours

The power Flow Problem- Bus Classification-Derivation of Power Flow Equation, Newton Raphson and FDPF methods.

Module:6 Fault Analysis:

6 Hours

Approximations in Short Circuit Analysis, Calculation for radial networks-Symmetrical Short Circuit Analysis-Symmetrical Component Transformation- Zbus in phase frame and sequence frame-

		(Deemed to be University under section 3 of UGC Act, 1956)						
Unsymmetr	ical Fault Analysis.							
24.11.7	D C4 C4-1-114				2 11			
Module:7	Power System Stability: to different types of stab	vility problems 7	The Swin	a Equation I	3 Hours			
	o a single machine infinite by		ine Swing	g Equation-1	Equal Area Criterion			
иррпецион и	o a single machine minite of	as system.						
Module:8	Contemporary issues:				2 hours			
			Total Lec	ture Hours	45 Hours			
Text Book(s)							
1.	John J. Grainger and Will International Editions, 2013		Jr "Powe	r System An	alysis", Mcgraw Hill			
2.	Hadi Saadat, "Power Syste		McGraw	Hill, 2015.				
Reference B	· ·	,						
1.	D.P.Kothari and I.J. Nagr Fourth Edition, New Delhi		wer Syste	m Analysis"	, Tata McGraw Hill,			
2.	C.L.Wadhwa, "Electrical 2016.	•			nal, Seventh Edition,			
Mode of Eva	luation: CAT / Assignment /	/ Quiz / FAT / Pro	ject / Semi	inar				
List of Chal	lenging Experiments (Indic	cative)						
1. Determ	nining the voltage profile of a	a transmission line	;		2 Hours			
2. Constr	uction of power circle diagra	m			2 Hours			
3. Determ	nination of compensator ratin	g using power circ	cle diagrar	n	2 Hours			
4. Determ	nination of Ybus with tap cha	anging transformer	•		2 Hours			
5. Determ	nination of String efficiency				2 Hours			
6. Determ	nining the size of a graded ca	ble			2 Hours			
	7. Power flow solution with tap changing transformer using Gauss-Seidel 2 Hours method							
8. Voltag	8. Voltage in ring main distribution system with interconnection							
9. Symme	9. Symmetrical fault analysis using Thevenin's theorem							
10. Determining the critical clearing time using equal area criterion					2 Hours			
Total Laboratory Hours 30 hours								
Mode of Evaluation: Assignment / FAT								
Recommend	Recommended by Board of Studies 05/03/2016							
Approved by Academic Council 40 th AC Date 18/03/5016								

EEE3004	Power Electronics and Drives	L T P J C
		3 0 2 0 4
Pre-requisite	EEE2001,EEE2002	Syllabus version
Anti-requisite	Nil	v. 1.0

- 1. To explain basic concepts of Power semiconductor devices
- 2. To analyze converters its load and drive interaction
- 3. To analyze speed control concepts of ac and dc drives, speed reversal, regenerative braking aspects, design methodology

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Explain basic concepts of power semiconductor devices including operating characteristics, firing circuits and protection circuits.
- 2. Analyze and design DC-DC and AC-DC power converters and estimate its performance as per the requirements and constraints specified.
- 3. Analyze and design various DC-AC and AC-AC converters.
- 4. Determine the basic concepts of electric drives including electrical and mechanical parameters.
- 5. Design and analyze power converter fed Separately Excited DC Motor Drive.
- 6. Design and analyze power converter fed Induction Motor Drive.
- 7. Design and analyze power converter fed Synchronous Motor Drive.
- 8. Design and Conduct experiments, as well as analyze and interpret data

Module:1 Introduction to Power Semiconductor Devices:

Structure, and operating characteristics of power Diode SCR, power BJT, MOSFET and IGBT, SiC devices, Switching characteristics, Snubber designs, firing and protection circuits, basic concepts of PWM control and phase angle control.

6 Hours

7 Hours

Module:2 DC-DC & AC-DC Power Converter

2-pulse, 3-pulse and 6-pulse converters – performance parameters: harmonics, ripple, distortion, power factor – effect of source impedance and overlap- DC-DC chopper circuit using BJT and IGBT - problems, design and operation, control strategies.

Module:3 DC-AC & AC-AC Power Converter 6 Hours

Single phase, three phase Bridge inverters, Current source inverters, Multi-level inverter concepts, Single phase AC voltage controllers, AC chopper; single phase cyclo converters

Module:4 Fundamental concepts of Drives: 6 Hours

Fundamentals of Drive dynamics- Power and Torque - Efficiency and losses - Typical Operating Conditions - Reversing - Torque Control - Dynamic brake operation - Static brake operation - Motor Heating and Thermal monitoring -Rating of the Frequency Converters from Motor Specification - Overload Capacity - Control Range - Derating of Converters - Regenerative Energy - Motor Cables

Module:5 | Separately Excited DC Motor Drive: 6 Hours

Single phase and three phase converter fed D.C motor drive. Chopper fed drives, input filter design. Braking and speed reversal of DC motor drives using choppers.

Module:6	Induction Motor Drives:			6 Hours			
Speed Con	trol Methods- variable volta	ge, V/f control, r	otor res	istance, pole changing, cascaded			
induction n	nachines, slip power recovery	- voltage source	and cur	rent source inverter fed induction			
motor drive	es						
Module:7	Synchronous Motor Drive	s:		6 Hours			
Synchronous motor control – analysis with electronic commutation – concept of self-control – stator							
current contr	ol and marginal angle control						
Module:8 Contemporary issues:				2 Hours			
		Total Lecture H	ours	45 Hou			
Text Book(s			<u> </u>				
1. Mul	hammad H. Rashid, Power	Electronics: Cir	cuits, I	Devices & Applications, Pearson			
Edu	cation, 2013.						
2. Ion	Boldea and Syed A. Nasar, E.	lectric Drives, Thi	rd Edition	on, CRC Press, 2016.			
Reference B	ooks						
1. Ned	l mohan, Power electronics A	A first course, Jol	ın Wiley	y & Sons Inc 2011			
		nines, Drives and	Power S	Systems 6th Edition, Pearson India			
201							
Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar							
Recommend	ed by Board of Studies	05/03/ 2016					
Approved by Academic Council 40 th AC Date 18/03/2016							

EEE4001	Microprocessor and Microcontroller		L	T	P	J	C
			2	0	2	0	3
Pre-requisite	EEE3002	S	ylla	bus	s ve	ersi	ion
Anti-requisite	Nil					v.	2.0

- 1. To emphasis on the hardware functionality of Intel 8051 and ARM
- 2. To create the essential knowledge on operating modes of I/O ports ,Timers/Counters, control registers and various types of interrupts.
- 3. To analyse various interfacing techniques.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Interpret the architecture of microprocessor and classify the different modes of ARM
- 2. Classify the instructions and differentiate the instruction under various categories
- 3. Solve real time problems using ARM
- 4. Develop a broad knowledge on the complete architecture of 8051 microcontroller
- 5. Analyse the instructions and write simple programs using 8051 microcontroller
- 6. Summarize various interrupts and write programs to handle interrupts
- 7. Design a microcontroller based embedded systems by interfacing external devices
- 8. Design and Conduct experiments, as well as analyze and interpret data

Module:1	Introduction to ARM Processor	4 Hours					
	to RISC processor – Comparison between CISC	C and RISC - Overview of ARM					
	- Different modes of ARM processor – Program stat						
	1 0						
Module:2	ARM Instruction Set	3 Hours					
Data transfer	r instruction – Arithmetic instruction - Logical In	nstruction – Multiply instruction –					
Branch instru	action – Load/Store instruction – Swap instruction.						
Module:3	Programming using ARM Processor	2 Hours					
Solving an si	mple equation – generation of square wave form – N	Memory operations					
Module:4	8051 Microcontroller Architecture	4 Hours					
Architecture	of 8051 Micro controller - Program Status Regis	ster – Structure of Random Access					
Memory – S	Special Function Registers - Pin diagram of 805	1 Microcontroller – Ports of 8051					
microcontrol	ler.						
Module:5	Instruction set of 8051 microcontroller	3 Hours					
Data transfer	: Instructions – Arithmetic and Logical Instruction	s – Boolean Instructions – Control					
transfer Insti	ructions – Programming using 8051 microcontro	ller – Demonstration of HEX file					
generation and program execution.							
Module:6	8051 Microcontroller Programming	5 Hours					

B.TECH (EEE) Page 85

Programming I/O ports - Different modes of timer programs - Counters - Transferring data

serially – Receive data serially - Interrupts and Interrupt Handling – Interrupt priority

		1			Deemed to be Un	iversity under section 3 of UC			
	lule:7		facing Te					~	7 Hours
	_		_	-		-	-		ensor Interface –
				tertace:	/ segmer	nt interface –	LCD.Comn	nunication I	nterface: GSM -
Xbe	e – GPS	– Bluei	tooth.						
Mod	lule:8	Con	temporar	y issues	:				2 Hours
					Tota	al Lecture Ho	urs		30 Hours
Text	t Book(s)					•		
1.									eveloper's Guide:
	Design	ing and	l Optimizi	ng Syste	m Softw	are ", Morgan	Kaufmann l	Publishers, 1	1 st edition, 2009.
2.							ne 8051 Mi	crocontrolle	er and Embedded
			arson educ	cation, 2 ¹	^{1d} Editior	n, 2014.			
	erence B							,	
1.						ro controller",			
2.						er 8051, O			
3.						ture System or	•		ess, 2013.
Mod	le of Eva	luation	: CAT / A	Assignme	ent / Quiz	z / FAT / Proje	ct / Seminar		
			g Experin			2)			1
1.			arithmeti						2 hours
2.			am to solv	_	-				2 hours
	D = (A.B.C2 + A2B + AB2 - A3B2)/(A+B+C)								
2			3 & C are			1			
3.	Write a				tollowing	g data transfer			2 hours
			AM to RA						
			OM to RA		TDNIAI				
			TERNAI		EKNAL				
	. 1		M to EX						2.1
<u>4.</u>			llowing E						2 hours
5.			am to perf	orm the		Ī			2 hours
		ption	0 A + D	¹ ∼B +1	2 A*B	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9		
	l —	ask	A + B	~B +1	6 A*B	$AB + \sim A \sim B$	~A +1		
		option Sask	A A to	55H	A ^ B	~A	~B		
	1	ask	P1	to P1	Anb	~A	~Б		
6.	Write	nrogra			followin	g wave forms.			2 hours
0.	a.		_			0.0. use Timer		1 Assume	2 Hours
	XTAL			square w	ave on i	o.o. use Timei	1 III IIIouc	1. Assume	
	b.		ate step w	ave form	on PO				
7.						h 8051 microc	ontroller als	so generate	2 hours
			ing LED'		5 1110			- 531101410	
8.) Hz san	are wave on	P1.1 norma	ally. When	2 hours
			_		-	wave on P1.1		•	
		_	$\Gamma AL = 11$		_				

9.	Write a program to display the follo	t display.	2 hours				
	0-2-4-6-8						
10.							
	$Ab^2 + c^2d$ where, a,b,c,d are 16 bit 1						
	Total Laboratory Hours						
			t Otal Labo	natury mours	30 hours		
Mod	e of Evaluation: Assignment / FAT		I Otal Labo	ratory mours	30 Hours		
	e of Evaluation: Assignment / FAT ommended by Board of Studies	05/03/2016	Total Labo	ratory flours	30 Hours		

MAT2002	Applications of Differential and Diffe	L	T	P	J	C	
	Equations						
			3	0	2	0	4
Pre-requisite	MAT1011	Syllabus Version					ersion
Anti-requisite	Nil			v.1	.0		

The course is aimed at

- 1. Presenting the elementary notions of Fourier series, which is vital in practical harmonic analysis
- 2. Imparting the knowledge of eigenvalues and eigen vectors of matrices and the transform techniques to solve linear systems, that arise in sciences and engineering
- 3. Enriching the skills in solving initial and boundary value problems
- 4. Impart the knowledge and application of difference equations and the Z-transform in discrete systems, that are inherent in natural and physical processes

Expected Course Outcome

At the end of the course the student should be able to

- 1. Employ the tools of Fourier series to find harmonics of periodic functions from the tabulated values
- 2. Apply the concepts of eigenvalues, eigen vectors and diagonalisation in linear systems
- 3. Know the techniques of solving differential equations
- 4. understand the series solution of differential equations and finding eigen values, eigen functions of Strum-Liouville's problem
- 5. Know the Z-transform and its application in population dynamics and digital signal processing

6. demonstrate MATLAB programming for engineering problems

Module:1Fourier series:6 hoursFourier series - Euler's formulae - Dirichlet's conditions - Change of interval - Half range
series - RMS value - Parseval's identity - Computation of harmonics

Module:2 Matrices: 6 hours

 $\label{lem:condition} \begin{tabular}{ll} Eigen values and Eigen vectors - Properties of eigenvalues and eigen vectors - Cayley-Hamilton theorem - Similarity of transformation - Orthogonal transformation and nature of quadratic form \\ \end{tabular}$

Module:3 Solution of ordinary differential equations: 6 hours

Linear second order ordinary differential equation with constant coefficients – Solutions of homogenous and non-homogenous equations - Method of undetermined coefficients – method of variation of parameters – Solutions of Cauchy-Euler and Cauchy-Legendre differential equations

Module:4 Solution of differential equations through Laplace transform and matrix method 8 hours

Solution of ODE's - Nonhomogeneous terms involving Heaviside function, Impulse function - Solving nonhomogeneous system using Laplace transform - Reduction of nth order differential equation to first order system - Solving nonhomogeneous system of first

order differential equations (X' = AX + G) and X'' = AX

Module:5 Strum Liouville's problems and power series Solutions: 6 hours

The Strum-Liouville's Problem - Orthogonality of Eigen functions - Series solutions of differential equations about ordinary and regular singular points - Legendre differential equation - Bessel's differential equation

3.6.1	1 ((De	eemed to	be University	und	er section 3 o	of UGC AC	et, 195	,6)			
Modu			-Tra				1.0	<u> </u>	•			7 .				1	6 hours
						standa	ard t	unct	ions -	ln	verse Z	L-tra r	nsto	orm:	by p	partial	fractions
	convolu					4.											
						uatio			1:00					•.,			5 hours
	-	-										-					coefficients
																	function -
		_		•					ndeter	mı	ned c	oeffi	cie	nts	- 80	olutior	of simple
	ence equ	•			_			n					2.1	1			
					orar	y Issi	ues						21	hour	'S		
inaust	try Expe	ert	Lect	ure				Tr - 4	I T	.4	II						45 1
T4 1	D l-(-)	-7						101	ai Lec	tu	re Ho	urs					45 hours
	Book(s)		г .			N f . (1			г.		17	• .	10th	1 -	11.4.	т 1	XX 7°1
	Advance			neer	ıng	Math	iema	atics,	, Erwi	n	Kreysz	Z1g,	10	E	ditio	on, Jol	nn Wiley
	ndia, 20																
	rence Bo				N / - 4	1	41	D (7 (1 42rd	T2 424		171.		. D1-1	-1
	Higher E ndia, 20	_		ing	Mati	nema	tics,	, В. Х	s. Grev	wa	1, 43	Ean	ion	ı, Kn	anna	a Publi	isners,
				neeri	ng N		mat	ics b	v Mic	had	el D C	ireen	hei	ro 2 ¹	nd E	dition	Pearson
	2. Advanced Engineering Mathematics by Michael D. Greenberg, 2 nd Edition, Pearson Education, Indian edition, 2006																
Mode of Evaluation																	
Digital Assignments (Solutions by using soft skills), Continuous Assessment																	
	, Quiz, F							55	SOIL S		15), 00		uot		.5505.	31110111	
								2 hours									
	problen	_		5					1			,	6-		8		
	Solving		on-ho	omos	gene	ous d	liffe	renti	al equ	ati	ons an	d Ca	uch	ıy, L	egen	ndre	2 hours
	equation	_			_				1					•	U		
3.	Applyir	ing	the t	echn	ique	of L	apla	ice tr	ansfor	m	to solv	e dif	ffer	entia	al		2 hours
	equation				•		•										
4.	Applica	atio	ns o	f Sec	cond	orde	r di	ffere	ntial e	qua	ations	to M	ass	spri	ng		2 hours
	system	ı (da	ampe	d, u	ndan	nped,	For	rced	oscilla	itic	ons), L	CR c	circ	uits e	etc.		
5.	Visualiz	izin	g Ei	gen v	value	e and	Eig	en v	ectors								2 hours
6.	Solving	g sy	sten	of	diffe	rentia	al ec	quati	ons ari	sir	ng in e	ngine	eeri	ng			2 hours
	applicat																
	Applyir	_					neth	od to	solve	di	fferent	tial e	qua	ition	s ari	sing	2 hours
	in engir																
	Applyir	_					hod	to so	olve di	ffe	rential	equa	atic	ons a	risin	g in	2 hours
	enginee																
	Visualis									als	5						2 hours
10. Evaluating Fourier series-Harmonic series						2 hours											
11. Applying Z-Transforms to functions encountered in engineering							2 hours										
12. Solving Difference equations arising in engineering applications						2 hours											
															ry F	Hours	24 hours
Mode of Evaluation: Weekly Assessment, Final Assessment Test																	
Recommended by Board of Studies 25/02/2017																	
Appro	oved by	γA	cadei	nic (Cour	ncil		37 th	AC		Date			05/	10/2	017	

MAT3003	Complex Variables and Partial Differential Equation	L	T	P	J	C
		3	2	0	0	4
Pre-requisite	MAT2002	S	yllal	ous	vers	ion
Anti-requisite	Nil				V	.1.1

The aim of this course is to present a comprehensive, compact and integrated treatment of two most important branches of applied mathematics for engineers and scientists namely the functions of complex variable and Partial differential equations in finite and infinite domains

Expected Course Outcome:

At the end of the course the student should be able to

- 1. construct analytic functions and find complex potential of fluid flow and electric fields
- 2. find the image of straight lines by elementary transformations and
- 3. able to express analytic functions in power series
- 4. evaluate real integrals using techniques of contour integration
- 5. analyze partial differential equations, and its applications, design the boundary value problems (one dimensional heat and wave equations) and find Fourier series, Fourier transform techniques in their respective engineering problems.

Module:1 | Analytic Functions

6 hour

Complex variable-Analytic functions and Cauchy – Riemann equations - Laplace equation and Harmonic functions - Construction of Harmonic conjugate and analytic functions - Applications of analytic functions to fluid-flow and Field problems.

Module:2 | Conformal and Bilinear transformations

5 hours

Conformal mapping - Elementary transformations-translation, magnification, rotation, inversion. Exponential and Square transformations ($w = e^z$, z^2) - Bilinear transformation - Cross-ratio-Images of the regions bounded by straight lines under the above transformations.

Module:3 | Power series

4 hours

Functions given by Power Series - Taylor and Laurent series -singularities - poles - Residues.

Module:4 | Complex Integration

5 hours

Integration of a complex function along a contour - Cauchy-Goursat theorem- Cauchy's integral formula -Cauchy's residue theorem - Evaluation of real integrals - Indented contour integral.

Module:5 | Partial Differential equations of first order

6 hours

Formation and solution of partial differential equation - General, Particular, Complete and Singular integrals - Partial Differential equations of first order of the forms: F(p,q)=0, F(z,p,q)=0, F(x,p)=G(y,q) and Clairaut's form - Lagrange's equation: Pp+Qq=R.

Mo	odule:6	Applications of Partial	72			10 hours
		Equations				
Lin	near parti	al differential equations of h	igher order v	vith cor	stant coef	ficients. Solution of
		ferential equation by separat				
din	nensiona	wave and heat equations- F	ourier series	solutio	n.	
Mo	dule:7	Fourier transforms				7 hours
		ourier transform and properti				
traı	nsforms	 Fourier sine and cosine tra 	ansforms –	Convol	ution The	orem and Parseval's
ide	ntity.					
Mo	odule:8	Contemporary issues:				2 hours
Ind	lustry Ex	pert Lecture				
			re Hours	45 hours		
Tu	torial	1. A minimum of 10 p			ked out	30 hours
by students inventory Tutorial Class 2. Another 5 problems per Tutorial Class to be						
		given as home work	ζ			
	xt Book(4 oth Paris	
1.		ced Engineering Mathematic		eyszıg,	10 th Editi	ion, John Wiley &
	· · · · · · · · · · · · · · · · · · ·	Wiley student Edison) (2015))			
	ference 1		2 2 2 1	4 ord	E 11.1 (2	040) 77
1	_	Engineering Mathematics, I	B. S. Grewal,	43"	Edition (2	(019), Khanna
		ers, New Delhi	*.1 1*	.•	<u> </u>	711 5 1 5 01 1
2		= = = = = = = = = = = = = = = = = = = =				s Zill, Patrick D. Shanahan,
		tion, 2013, Jones and Bartle				
3		ced Engineering Mathematic	s, Michael, I	O. Gree	nberg, 2 nd	Edition, Pearson
		ion (2006)			th	
4		ced Engineering Mathematic	s, Peter V. C	o' Neil,	7 th Edition	on, Cengage Learning
	(2012)					th
5		ex Analysis for Mathematic	es and Engine	eers, JF	I Mathews	s, R. W. Howell, 5 th
		, Narosa Publishers (2013)				
Mo	ode of Ev	aluation:				
Dig	gital Assi	gnments, Quiz, Continuous	Assessments	, Final	Assessme	nt Test.
Red	commen	led by Board of Studies	25/02/2017			
		y Academic Council	47 th AC	Date	05/10/20	17
4 Y D	pro rou U	, a soudcime Council	.,	-uu	- JULIULEU	. .

MAT3005	Applied Numerical Methods		L	T	P	J	C
			3	2	0	0	4
Pre-requisite	MAT2002		Sylla	abu	s V	ersi	on
Anti-requisite	nti-requisite Nil v.1.1						
Cauras Objectives	<u>. </u>						

The aim of this course is to

- 1. cover certain basic, important computer oriented numerical methods for analyzing problems that arise in engineering and physical sciences.
- 2. use MATLAB as the primary computer language to obtain solutions to a few problems that arise in their respective engineering courses.
- 3. impart skills to analyse problems connected with data analysis,
- 4.solve ordinary and partial differential equations numerically

Expected Course Outcome

At the end of the course the student should be able to

- 1. Observe the difference between exact solution and approximate solution.
- 2. Use the numerical techniques to find the solution of algebraic equations and system of equations.
- 3. Fit the data using interpolation technique and spline methods.
- 4. Find the solution of ordinary differential equations, Heat and Wave equation numerically.
- 5. Apply calculus of variation techniques to extremize the functional and also find approximate series solution to ordinary differential equations

Module:1	Algebraic and Transcendental Equations	5 hours						
General iterative method- rates of convergence- Secant method - Newton - Raphson method-								
System of non-linea	r equations by Newton's method.							

Module:2	System of Linear Equations and Eigen	6 hours
	Value Problems	

Gauss —Seidel iteration method. Convergence analysis of iterative methods-LU Decomposition -Tri diagonal system of equations-Thomas algorithm- Eigen values of a matrix by Power and Jacobi methods.

Module:3 Interpolation 6 hours

Finite difference operators- Newton's forward-Newton's Backward- Central differences-Stirling's interpolation - Lagrange's interpolation - Inverse Interpolation-Newton's divided difference-Interpolation with cubic splines.

Module:4 Numerical Differentiation and Integration 6 hours

Numerical differentiation with interpolation polynomials-maxima and minima for tabulated values-Trapezoidal rule, Simpsons $1/3^{rd}$ and $3/8^{th}$ rules. –Romberg's method. Two and Three point Gaussian quadrature formula.

Module:5	Numerical	Solution	of	Ordinary	8 hours
	Differential I	Equations			

First and second order differential equations - Fourth order Runge - Kutta method. Adams-Bashforth-Moulton predictor-corrector methods. Finite difference solution for the second order ordinary differential equations.

(Deemed to be University under section 3 of UGC Act, 1956)									
Module:6	Numerical Solution	of Partial Differen	ntial	6 hours					
~ 1 a 1 a	Equations	1 1100		. ~					
	cond order linear partia	-	-	-					
	e dimensional heat equ		-	hod-Crank-Nicolson					
implicit methodOr	ne dimensional wave equ	uation–Explicit me	thod.						
Module:7	Variational Methods			6 hours					
	ional –variational probl			· ·					
	t derivative- functional	0 0	order deriva	atives- Isoperimetric					
problems- Galerkins	s- Rayleigh Ritz method	S.							
	T .		T						
Module:8	Contemporary Issues	S		2 hours					
Industry Expert Lec	ture								
	T		T						
		Total Lecture H		45 hours					
Tutorial	1. A minimum of 10	1		30 hours					
	out by students in 6								
	2. Another 5 problem		ss to						
Text Book(s)	be given for practis	se.							
	ical Methods for Scient	ific and Engineering	ng M K I	ain S R K Ivengar					
	K. Jain, New Age Interr								
	d Numerical Analysis, (
	ion, 2004.			-					
Reference Books	,								
	ctory Methods of Nur	nerical Analysis.	S.S. Sastry.	PHI Pvt. Ltd., 5th					
	, New Delhi, 2009.	,	<i>3</i> /	,					
2. Applied	d Numerical Methods U	Jsing MATLAB, V	V.Y. Yang,	W. Cao, T.S. Chung					
and		_							
3. J. Mor.	ris, Wiley India Edn., 20	007.							
	ical Methods for Engine								
	C. Chapra and Ra P. Ca								
	ical Analysis, R.L. Burd		•	·					
	ical Methods: Principles	, Analysis and Algorithms	orithms, Sri	manta Pal, Oxford					
Univers	sity Press India, 2009.								
7.1.07									
Mode of Evaluation	: Digital Assignment	ts, Continuous Ass	essment Tes	sts, Final					
Assessment Test		I ==							
Recommended by E		25/02/2017	_						
Approved by Acade	emic Council	47 th AC	Date	05/10/2017					

EEE1007	Neural Networks and Fuzzy Control	L	T	P	J	C
		2	0	0	4	3
Pre-requisite	MAT1011	Sylla	abu	s v	ers	ion
Anti-requisite	Nil				v.	1.1

- 1. Apply the design concepts of feed forward and feedback neural networks for solving Engineering problems
- 2. Select appropriate weight and learning constant values for every learning
- 3. Formulate and analyze the real time system with the knowledge of fuzzy logic control

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Design the mathematical model for single and multi-layer Perceptron for real time systems.
- 2. Demonstrate the concepts of feed forward and re-current neural networks to find the optimal solution.
- 3. Explore the concepts of Recurrent and feedback networks in multilayer neurons.
- 4. Design the competitive learning neural networks for solving the engineering problems.
- 5. Estimate the performance of Self organizing networks.
- 6. Design of fuzzy systems for non-linear simulation with extension principle.
- 7. Apply membership functions with suitable Defuzzification method and apply neuro-fuzzy inference system concepts to modern controllers.
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1 Introduction to Artificial Neural Networks and Learning Laws 7 Hours

Artificial neural networks and their biological motivation – Terminology – Models of neuron – Topology – Characteristics of artificial neural networks – Types of activation functions.

Learning Laws: Learning methods – Error correction learning – Hebbian learning – Perceptron – XOR problem – Perceptron learning rule convergence theorem – Adaline – Madaline.

Module:2 Feed Forward Networks

4 Hours

Multilayer Perceptron – Delta Learning – Back Propagation learning algorithm – Universal function approximation – Associative memory: auto association and hetero association.

Module:3 Recurrent Neural Networks

2 Hours

Bi-directional associative memory – Hopfield neural network – Travelling Salesman Problem.

Module:4 Unsupervised Learning

3 Hours

Competitive learning neural networks – Max net – Maxican Hat – Hamming net.

Module:5 | Self Organizing Networks

5 Hours

Kohonen Self organizing Feature Map – Counter propagation – Learning Vector Quantization – Adaptive Resonance Theory – Concept of support vector machines – Applications of neural networks in image processing, signal processing, modeling and control.

Module:6 Fuzzy Sets and Fuzzy Relations

5 Hours

Introduction – Classical sets and fuzzy sets – Classical relations and fuzzy relations – Membership functions – Fuzzy to Crisp conversion, Fuzzy Arithmetic, numbers, vectors and extension principle.

Module:7	Fuzzy Decision Making				2 Hours			
Fuzzy rule b methods.	ased systems – Fuzzy nonlir	near simulation –	Fuzzy con	trol systems and Def	uzzification			
Neuro Fuzz	y: Mathematical formulation	of adaptive Neur	o – Fuzzy	inference systems.				
Module:8	Contemporary issues:				2 Hours			
Text Book	s)							
1.	Jacek. M. Zurada, "Intro House, 2006.	oduction to Artif	icial Neur	ral Systems", Jaico	Publishing			
2.	Simon Haykin, Neural Networks and learning Machines", Mac Millen College Pubco., New York, 2016.							
Reference B	ooks							
1.	Laurene Fausett, Fundame applications, Pearson Educ		Networks	- Architectures, algo	orithms and			
2.	Timothy J.Ross, Fuzzy L. 2017.	ogic with Engine	ering App	lications, John Wiley	y and sons,			
3.	J.S.R. Jang, C.T. Sun, E. Mizutani, "Neural Fuzzy and Soft Computing – A computational Approach to learning and Machine Intelligence", Pearson Education Inc., 2010.							
Mode of Eva	luation: CAT / Assignment	Quiz / FAT / Pro	ject / Semi	nar				
Recommend	ed by Board of Studies	05/03/2016						
Approved by Academic Council 40 th AC Date 18/03/2016								

EEE1008		Bio-Medical Instrumentation		L	T	P	J	C
				3	0	0	4	4
Pre-requisite	Nil		S	Syll	abı	ıs v	ver	sion
Anti-requisite	Nil						V	2.0
Course Objective	200							

- 1. To give an understanding of the biological signals and signal acquisition
- 2. To provide the design concepts of bioelectric amplifiers
- 3. To learn the principle and operation of various biomedical systems

Expected Course Outcomes:

On the completion of this course the student will be able to:

- 1. Evaluate and analyse the different physiological signals
- 2. Relate the knowledge to select appropriate medical instruments
- 3. Design the bio electric devices used for diagnostic equipment
- 4. Develop and analyse the therapeutic devices.
- 5. Understand the procedure for blood analysis in medical laboratory
- 6. Analyze the process involved in blood cell counters and sensors
- 7. Differentiate the advanced diagnostic techniques.
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1 Introduction to Biomedical Instrumentation and Measurement Sources of bioelectric potentials, cardiovascular system, Central nervous system, Muscular System, linear/nonlinear analysis of different physiological signals (ECG, EEG, EMG), Electrode theory-mathematical analysis including Nernst equation, Goldman equation, Electrical conductivity of electrode, Electrodes for ECG, EEG &EMG.

Module:2 General Considerations of Medical Instruments 8 Hours

Operational Amplifiers, Bioelectric Amplifiers, Selection of biomedical amplifiers – Isolation amplifiers, Charge amplifiers and Chopper amplifier. Characteristics of biomedical recorder amplifiers, Physiological effects of electric currents, Electric shock hazards and leakage currents, Methods of accident prevention.

Module:3 Diagnostic Equipment 7 Hour

ECG Lead Configuration, Vector cardiograph, Phono-cardiograph, EEG and EMG Electrode system, Recorders, Measurement of various volumes/capacity of lungs, Spirometer. Measurement of cardiac output, blood flow and blood pressure.

Module:4Therapeutic Equipment6 Hours

Cardiac pacemakers, cardiac defibrillators, nerve & muscle stimulators, diathermy-types, ventilators, Dialyzer.

Module:5Medical Laboratory Instrumentation5 Hours

Analysis of Blood-Measurement of pH, pO2 and pCO2 value of blood using pH/gas analyzers

Module:6 Medical Laboratory Measurement 4 Hours

Photometers, Hematology, Blood cell counters, Electrophoresis- Serum detection and classification, Blood Glucose Sensors, GSR measurements.

Module	:7	Advanced	Diagnostic Tec	hniques			5 Hours		
2D, 3D	Anal	ysis and Vi	sualization (X-R	ay, MRI, CT), Bi	omedical	Spectroscopy, Op	tical coherence		
tomogra	iphy,	Fluorescene	ce based Bio-d	etection & Bio-in	naging- C	Case study: Telen	nedicine based		
health c	are m	onitoring sy	stem.						
25.11									
Module	e:8	Contemp	orary issues:				2 hours		
					Total	Lecture Hours	45 hours		
Text Bo	ok(s))							
1	Les	slie Cromwe	ell, Fred J, Weib	ell & Erich A and	P Feiffer,	'Biomedical Instr	umentation and		
1.	Me	Measurements', 2 nd Edition, PHI, 2011.							
2	J.J.	J.J. Carr & J.M. Brown, 'Introduction to biomedical Equipment Technology', Prentice Hall,							
2.	4^{th}	4 th Edition, 2011.							
Refere	ence l	Books							
1	R.	R. S. Khandpur, 'Handbook of Biomedical Instrumentation', Tata Mc-Graw Hill, 2nd							
1.	edi	tion, 2014.							
2	Joh	n.E. Hall, (Guyton and Hal	l, Textbook of M	edical Phy	vsiology, Saunders	s; 13 th Edition,		
2.	2015.								
	Ra	Rangaraj M. Rangayyan, 'Biomedical Signal Analysis', A Case-Study Approach, Wiley, 2 nd							
3.	Edition, 2015.								
Mode of	Mode of Evaluation: CAT I & II – 30%, DA I & II – 20%, Quiz – 10%, FAT – 40%								
Recomm	nende	ed by Board	of Studies	30/11/2015					
Approve	Approved by Academic Council 39 th AC Date 17/12/2015								

EEE1011	Automated Test Engineering				I C
		2	0	2 () 3
Pre-requisite	EEE3002	Sylla	bus	ver	sion
Anti-requisite	Nil			V	. 1.0

- 1. Aims to provide knowledge about the testing of IC's using automated Testing Equipment (ATE).
- 2. Providing hands-on in Simulation software's used to simulate the evaluation conditions.
- 3. Practical knowledge imparted on LabVIEW usage in PCBA testing for its full functional behaviour

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Discover the possible component faults that can occur in electronic manufacturing.
- 2. Classify the faults that occur in PCBs.
- 3. Analyze and develop practical skills involved in troubleshooting.
- 4. Test the Various parameters involved in ATE
- 5. Understand the board functional testing.
- 6. Design and analyze the board functional Testing.
- 7. Distinguish the Boundary Scan and Board Testing to understand the equipment used in automated testing.
- 8. Design and conduct the experiments, as well as analyze and interpret data

Module:1 Introduction to PCB Assemblies:

3 Hours

Printed Circuit Board (PCB)-types of PCB-multilayer PCBs-Plat Plated though Hole Technology - Surface Mount Technology (SMT) – Ball Grid Array (BGA) Technology – PCB Bare board manufacturing process – Bare board testing– PCB Inspection methods – Visual, Optical and X-ray Inspection systems– Electrical tests in PCBs

Module:2 PCBA Troubleshoot Methods:

2 Hours

PCB assembly troubleshoot – locating faults & Manual troubleshoot – Online & Offline troubleshoot – Fault types and causes in circuits – Tools and instruments for usage – DMM(Digital Multimeter) – CRO (Cathode Ray Oscilloscope) - Logic probes – Logic pulser – Logic Analyzer.

Module:3 PCBA Troubleshoot Methods:

2 Hours

Automated Testing of PCBs – Out-circuit & In-circuit test methods – VI Trace Technique – signature analysis – Board Functional Testing Techniques– Boundary Scan Test Strategy & methods – External Instrumentation in Automated Testing – PCB diagnostic testers – Diagnostic Testing technique.

Module:4 Automated Test Techniques:

5 Hours

Automated Test Techniques – Various parameters – AC – DC Parametric testing– QA testing– Identify and troubleshoot the failures of parameters– Environmental, Electrical Standards & Requirements for IC testing – In-circuit Testing methodologies – Back Driving – functional test– Digital, Analog and Mixed Signal ICs– Guarding Technique – VI Trace Technique of components – Boundary Scan Test for components on board – In-circuit measurement of passive components –

Kelvin measurement – Test Fixtures – Types of Test Fixtures – Bed of Nails Fixtures – Card Edge Test Fixtures – Reverse Engg to rebuild the Schematic Diagram using ATE and Software.

Test Fixture	es – Reverse Engg to rebuild the Schematic Diagram u	ising ATE and Soft	ware.				
Module:5	Board Functional Testing (BFT):		6 Hours				
Backtracki Comprehentesting— B	nctional Test (BFT) techniques — Go-No-go Testing Technique — Simulators — Online and Offline insiveness of Board program — Fault Dictionary— A CSS— Interface adaptor or personality adaptor(Pod) External Instrumentation used for board testing — Pagents.	e Simulation - Fau nalysis – BS and i - Sample board pro	alt Simulation— Non-BS device ogramming and				
Module:6	DFT:		4 Hours				
	testability (DFT)- test issues – Fault Models — Bour	ıdary Scan Test– Se					
Module:7	DFM:		6 Hours				
Design for manufacturability (DFM) - Manufacturing phases in industry oriented Production process – strategies – new strategy for DFM – benefits of new strategies – ATE for manufacturing – Various applications.							
Module:8	Contemporary issues:		2 Hours				
	Total Lecture Hours		30 Hours				
Text Book(<u>s)</u>						
	R Sabapathi, "Test Engineering for Electronic Hard	ware", Tata McGra	aw Hill, First				
	ition, 2011.						
Reference 1		- d	2000				
	ordon Rogers and Yon Mayheq, "Engineering Thermodyd, "The Fundamentals of Digital Semiconductor						
	p-2005	resting, realson	Education maia,				
	llenging Experiments (Indicative)						
	ional Test Using Boundary Scan Tester		2hours				
-	er Test Using Boundary Scan Tester		2 hours				
	Fircuit Functional Test		2 hours				
+	cuit Functional Test		2 hours				
5. QSM	VI Signature Test		2 hours				
6. Scan	Chain Test		2 hours				
7. Contin	nuity Test Using Short Locater		2 hours				
8. Analo							
9. Param	2 hours						
10. VLSI	high speed Testing using ATE		2 hours				
	Total I	Laboratory Hours	20 hours				
Mode of Ev)uiz – 10%, FAT – 4	40%				
Recommend	ded by Board of Studies 05/03/2016						

B.TECH (EEE) Page 99

40th AC

18/03/2016

Date

Approved by Academic Council

EEE1018	Nano Technology Fundamentals and its Applications	L	T	P	J	C
		3	0	0	0	3
Pre-requisite	PHY1001/PHY1701	S	ylla	bus	s ve	ersion
Anti-requisite	Nil					v. 1.0

- 1. To understand the basic concepts involved in Nanoscience
- 2. To gain knowledge about various methods of synthesis, characterization and applications in Nanotechnology.

Expected Course Outcomes:

On the completion of this course the student will be able to:

- 1. Understand the fundamental aspects of nanoscience
- 2. Identify various types of nanomaterials, their properties and applications
- 3. Compare the different nano fabrication processes
- 4. Synthesize and understand the properties & application of Carbon Nanotubes
- 5. Characterize nanoscale particles using various characterization techniques
- 6. Understand the limitations of current technology and advancements of nanoscale electronic devices
- 7. Apply nanotechnology in photonic devices

Module:1 Basic Concepts

8 Hours

Basic properties of Conductors, Insulators and Semiconductors; Band diagram concept of typical semiconductors; Basic Chemistry Concepts; Physical aspects, Bonding, Wave-particle duality, Heisenberg Uncertainty Principle, Schrödinger wave equation, Quantum confinement in 1-D, 2-D and 3-D; Effects of the nanometer length scale- Change in properties.

Module:2 Nanomaterials

6 Hours

Basic Types of Nanostructures- Quantum wells, Quantum Wires-Carbon Nanotubes, Nanowires; Quantum Dots, Nanoclusters; Nanoparticles- Colloidal nanoparticle crystals, Functionalized nanoparticles

Module:3 | Fabrication Methods

5 Hours

Top-down processes, Bottom-up processes, Nanolithography techniques, Arc discharge method, Laser Ablaton method, Ion Implantation, Chemical Vapour deposition.

Module:4 | Carbon Nanotubes & its applications

6 Hours

Synthesis of CNTs, Electronic properties, Mechanical properties; Applications- CNTs as interconnects, CNTFETs, CNTs for solar cell and energy storage applications

Module:5 | Characterization Techniques

8 Hours

Classification of characterization methods, Different Microscopy techniques-Light Microscopy, Principle & Resolution, Electron Microscopy- Scanning Electron Microscopy (SEM), Principle & Resolution, Scanning Probe Microscopy- Scanning Tunneling Microscopy (STM) & Atomic Force Microscopy (AFM), Principle & Resolution.

Module:6 Nanoelectronics

5 Hours

Si Technology and its limitations, Nanoscale Devices, Single Electron Devices, Organic Field-effect transistors, Spintronics.

Mo	dule:7	Nanophotonics				8 Hours				
Pho	tonic Cry	stals and their applications,	Plasmonics, Near fi	ield optics	, Q-Dot Lasers					
Mo	dule:8	Contemporary issues:				2 Hours				
			Total Lecture Hours				Total Lecture Hours			
Tex	t Book(s)								
1	Jeremy J. Ramsden, Nanotechnology-An Introduction, Second Edition, Elseiver, 2016									
2	Amreta	Amretashis Sengupta, Chandan Kumar Sarkar (Eds.) "Introduction to Nano-Basics to								
	Nanosc	ience and Nanotechnology"	, Springer, 2015							
Ref	erence B	ooks								
1	Chr	is Binns , "Introduction to N	anoscience and Nar	notechnolo	ogy", Wiley, 2010					
Mod	de of Eva	luation: CAT / Assignment	/ Quiz / FAT / Proje	ect / Semir	nar					
Rec	ommend	ed by Board of Studies	05/03/2016							
App	proved by	Academic Council	40 th AC	Date	18/03/2016					

EEE1()20	Engineering Optimization					J	C
			2	,	2	0	4	4
Pre-re	quisite	Nil	Syllabus ve					
Anti-re	equisite	Nil	v. 1					v. 1.1
Course	e Objectives:							
1.	-	o and learning of engineering optimization concepts applied angineering curriculum	across	th	e s	peo	etru	ım of

Expected Course Outcome:

On the completion of each module the student will be able to:

- 1. Understand the basic concepts of engineering optimization
- 2. Analyze the 1- D search methods in optimization
- 3. Design gradient based optimization method for various algorithms
- 4. Formulate and analyze systems using conjugate direction methods
- 5. Program and analyze dynamic optimization techniques
- 6. Apply mathematics and science in engineering applications
- 7. Understand genetic algorithm and PSO algorithm
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1 Classical Optimization basics

7 Hours

Taylor's series, Single-variable optimization, Multivariable optimization without and with equality and inequality constraints, Definitness of matrices, Sylvester's criterion, Convex programming problem.

Module:2 1-D search methods

5 Hours

Golden Section Search, Fibonacci Search, Inexact line search.

Module:3 Gradient based optimization

7 Hours

Gradient descent method, method of steepest descent, Newton's Method, Levenberg-Marquardt algorithm.

Module:4 Conjugate Direction Methods:

7 Hours

Conjugate directions and conjugate gradient method, Fletcher-Reeves formula. Convergence analysis of all algorithms.

Module:5 | **Miscellaneous topics**

6 Hours

Dynamic programming. Dynamic optimization. Sample applications of gradient based and gradient free methods in engineering.

Module:6 Application of optimization methods to neural networks

5 Hours

NN basics, capabilities and limitations of single perceptron, multilayer perceptron. Training by gradient based and gradient free methods.

Module:7 Gradient-free Optimization

6 Hours

Direct and indirect methods, Limitations of gradient based methods, metaheuristic algorithms, Introduction to the genetic algorithm, particle swarm optimization. Simulated annealing.

Modul	e:8	Contemporary issues:				2 Hours		
				Total I	Lecture Hours	45 hours		
Text B	ook							
1.	Intro	oduction to Optimization by	Chong and Zak, J	ohn Wiley	& Sons, Inc., IV	V Ed., 2013.		
Refere	nce B	ooks						
1.	Engineering Optimization, Theory and Practice by S S Rao, John Wiley & Sons, Inc., IV Ed.,							
	200	Э.						
2.	Prac	tical Methods of Optimization	on, by Fletcher, J	ohn Wiley	& Sons, Inc., II	Ed., 2006		
	Cur	ent literature.						
Mode o	of Eva	luation: CAT / Assignment /	Quiz / FAT / Pro	ject / Semi	inar			
Recom	Recommended by Board of Studies 17/08/2017							
Approv	Approved by Academic Council 47 th AC Date 05/10/2017							

EEE2006	Communication Engineering			J	C		
		3	0 2	2 0	4		
Pre-requisite	EEE1005	Sylla	bus	vers	sion		
Anti-requisite	Nil		v. 2.0				

- 1. To equip students with the knowledge of analog and digital communication engineering fundamentals.
- 2. To teach the students various communication systems and its analysis & applications
- 3. To provide basic understanding of appropriate tools and technologies to develop communication-engineering solutions.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Demonstrate the need for modulation.
- 2. Examine the presence of noise in communication systems.
- 3. Analyze modulation techniques for analog and digital Signals.
- 4. Design transmitters and receivers for communication systems
- 5. Assess various shift keying techniques.
- 6. Demonstrate spread spectrum techniques and channel assignment strategies.
- 7. Analyze and design modern communication systems.
- 8. Design and Conduct experiments, as well as analyze and interpret data

Module:1 Introduction to Communication System

6 Hours

Communication systems: Introduction, need, importance, elements, block diagram and role of each block, types, frequency ranges – bandwidth– pre-emphasis and de-emphasis –modulation and its need– applications of electronic communications.

Module:2 Noise in CW Modulation System

4 Hours

Internal noise – external noise – noise voltage – signal-to-noise ratio – noise figure – noise temperature – noise in CW modulation systems.

Module:3 | **Amplitude Modulation**

8 Hours

Representation and generation of analog modulation systems including AM, SSB, DSB,VSB – frequency spectrum, power relation—different types of modulators – AM transmitter: low level and high level modulation – SSB transmitter – AM demodulators: Square-law detector, envelope detector, rectifier detector, synchronous detector – characteristics of receivers – Super heterodyne principle – AM super heterodyne receiver – SSB receiver – comparison of different AM systems.

Module:4 Phase Modulation:

10 Hours

Representation and generation of frequency and phase modulation (FM and PM) – generation of NBFM and WBFM – FM transmitters – comparison of AM and FM – comparison of FM and PM – conversion of FM to PM and PM to FM – TRF Receivers – Choice of IF and oscillator frequencies – AVC – AFC – FM super heterodyne receiver – slope detectors – HF Communication Receiver – diversity reception.

Module:5 Pulse Modulation Systems

5 Hours

Pulse modulations— sampling theorem — pulse amplitude modulation— pulse width modulation — pulse position modulation — signal to noise ratio of pulse modulation systems — delta modulation —

		ed to be University under section 3 o				
pulse code	modulation					
	Digital modulation system				5 Hours	
_	Amplitude shift keying - frequency shift keying - phase shift keying - advantages and					
disadvantag	ges of digital communication s	systems.				
Module:7	Cellular concept				5 Hours	
	signment strategies – interfer	ence and system of	canacity –	spread spectri		
	ence spread spectrum – Frequence	•		•		
	wireless communication – Bro				1 &	
Module:8					2 Hours	
		Total Lecture He	ours		45 Hours	
Text Book	(s)		•			
1. Sin	non Haykin; Michael M	loher, "An Intr	oduction	to Analog	and Digital	
	mmunications.", Hoboken: V					
	on W Couch, "Digital and an	alog communicati	on system	s", Upper Sado	dle River, N.J,	
	entice Hall, 2013					
	ppaport T.S., "Wireless Com	munications", Pear	rson Educ	ation, 2010.		
Reference						
	erbert Taub; Donald L Sch			inciples of co	ommunication	
	stems", New Delhi : McGrew				· • •	
	mjee Prasad, "OFDM for	wireless commun	nications	systems", Bos	ston; London:	
	tech House, 2004.	C	C4	F1	. 4 - 1 - 41 1	
	ayne Tomasi, "Electronic vanced", 4th edition, Pearson		Systems	– Fundamei	itais tiirougii	
	nn G Proakis; Masoud Sal	•	mmunicat	ion'' 5th edit	ion New Vork	
	cGraw-Hill 2014.	ciii, Digitai Co	mmumcat	ion , sur cur	ion, new rork	
	ennedy and Davis, "Electronic	Communication S	Systems".	4th edition. Ta	nta McGraw Hill.	
	08.		,	in carrien, 10	ita ivio ora vi iiini,	
Mode of Ev	valuation: CAT / Assignment	Quiz / FAT / Pro	ject / Sem	inar		
List of Cha	allenging Experiments (Indicate)	cative)				
	itude Modulation	<u>, </u>	•		2 hours	
2. Pre-E	mphasis and De-Emphasis				2 hours	
3. Pulse	Amplitude Modulation				2 hours	
4. Pulse Width Modulation					2 hours	
5. Frequency Modulation/Mixer					2 hours	
6. Generation of Shift Keying Methods					2 hours	
7. DSB, SSB Modulation and Detection					2 hours	
8. FM and PM Modulation and Detection					2 hours	
9. Pulse Code Modulation and Delta Modulation					2 hours	
10. Gener	ration and Detection of spread				2 hours	
_			otal Labor	ratory Hours	30 hours	
	ded by Board of Studies	30/11/2015		T . =		
Approved b	by Academic Council	39 th AC	Date	17/12/2015		

EEE3005		Design of Electrical Apparatus		L	T	P	J	C
				2	0	0	4	3
Pre-requisite		EEE2003	Syllabus version					
Anti-requisite Nil		Nil					v.	1.0
Course Objectives:								
1. Apply theoretical concepts in designing electrical machines.								
2. Select appropriate values for designing electrical machines.								
3. Estimate the machine performance based on the design outcome by data interpretation								

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Determine electric and magnetic field strengths and their effects in and around electrical machinery, including effects of magnetic induction on moving parts.
- 2. Design stator and rotor parts of the d.c machines and predict the performance of DC machine using design values.
- 3. Design a transformer and estimates its performance as per the requirements and constraints specified.
- 4. Design the stator and cage rotor of an Induction machine.
- 5. Design the wound rotor of induction machine.
- 6. Calculate the main dimension and air gap length of Synchronous Machines.
- 7. Design the stator and cage rotor of Synchronous Machines.
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1 Magnetic Circuits and Cooling of Electrical Machines: 4 Hours

Concept of magnetic circuit – MMF calculation for various types of electrical machines – real and apparent flux density of rotating machines – leakage reactance calculation for transformers, induction and synchronous machine - thermal rating: continuous, short time and intermittent short time rating of electrical machines-direct and indirect cooling methods – cooling of turbo alternators

Module:2 D.C. Machines 5 Hours

Constructional details – output equation – main dimensions - choice of specific loadings – choice of number of poles – armature design – design of field poles and field coil – design of commutator and brushes – losses and efficiency calculations.

Module:3 Transformers 5 Hours

Constructional details of core and shell type transformers – output rating of single phase and three phase transformers –design of core, yoke and windings for core and shell type transformers – equivalent circuit parameter from designed data – losses and efficiency calculations – design of tank and cooling tubes of transformers.

Module:4 Squirrel Cage Induction Motors 4 Hours

Constructional details of squirrel cage motor – output equation – main dimensions – choice of specific loadings – design of stator – design of squirrel cage rotor – equivalent circuit parameters from designed data – losses and efficiency calculations.

			SE					
Module		Slip Ring Induction Moto				3 Hours		
Constructional details of slip ring motor – output equation – main dimensions – choice of specific								
loadings – design of stator – design of slip ring rotor – equivalent circuit parameters from designed								
data – lo	osses	and efficiency calculations.	slip ring design -	effect of sk	rewing			
Module		General Aspects of Synch				4 Hours		
	Constructional details of cylindrical pole and salient pole alternators – output equation – choice of							
specific	e load	dings - main dimensions - si	hort circuit ratio					
Module		Design of Synchronous M				3 Hours		
Design of	of Sy	rnchronous Machines: of sta	tor and rotor of c	ylindrical p	pole and salient p	ole machines -		
design o	of fie	ld coil - performance calcu	lation from design	ned data -	introduction to o	computer aided		
design.								
Module	:8	Contemporary issues:				2 Hours		
<u> </u>				Total	Lecture Hours	30 Hours		
Text Bo	ok(s							
1.		. Sawhney, 'A Course in	Electrical Machin	e Design'	, Dhanpat Rai a	nd Sons, New		
		ni, 2012.						
2.		Sen, 'Principles of Electri			Computer Prograi	nmes', Oxford		
		IBH Publishing Co. Pvt Ltd.	., New Delhi, 2010).				
Referen								
1.		. Agarwal, 'Principles of I	Electrical Machin	e Design',	, S.K.Kataria an	d Sons, Delhi,		
	2012							
2.		. Mittle and A. Mittle, 'Desi	gn of Electrical M	achines', S	Standard Publicat	ions and		
	Distributors, Delhi, 2010.							
3.	3. M.V.Deshpande, "Design and Testing of Electrical Machines" Eastern Economy Edition,							
2011.								
4. M.G.Say, "Performance and Design of Alternating Current Machines" CBS Publisher, 3rd								
Edition 2010.								
5. Clayton and Hancock, "Performance and Design of Direct Current Machines", 2010.								
Mode of	f Eva	luation: CAT / Assignment /	Quiz / FAT / Pro	ject / Semi	nar			
Recomn	nende	ed by Board of Studies	29/05/2015					
Approve	ed by	Academic Council	37 th AC	Date	16/06/2015			

(Deemed to be University under section 3 of UGC Act, 1956)							
EEE3006	Special Floatrical Machines	L T P J C					
EEESUUU	Special Electrical Machines	3 0 0 0 3					
Pre-requisite	Pre-requisite EEE2003 Syllabus ver						
Anti-requisite Nil							
Course Objectives:							
1. To impart knowledge on special type electrical machines and their importance.							

Expected Course Outcome:

characteristics-applications.

On the completion of this course the student will be able to:

- 1. Understand the properties of permanent magnetic materials
- 2. Analyze the performance of stepper motor and design its controller
- 3. Distinguish switched reluctance motor from synchronous reluctance motor
- 4. Analyze square wave and sine wave permanent magnet brushless motor drives.
- 5. Comprehend various linear motors
- 6. Analyze the advanced synchronous motor
- 7. Select the appropriate drive for controlling the operations of special electrical machines

Module:1 Stepper Motors: 6 Hours

Constructional Features-principle of operation types and torque equations-modes of excitation, characteristics, driver circuits, and microprocessor control of stepper motors, concept of lead angle, applications.

Module:2 Switched Reluctance Motors: 7 Hours

Constructional feature – principle of operation – torque production –Power converters and their controllers – methods of rotor position sensing sensor less operation-characteristics- closed loop control applications.

Module:3 Synchronous Reluctance Motors:

Constructional feature -Axial and Radial flux motor- operating principles-voltage and torque equation – Phasor diagram --performance characteristics -applications.

6 Hours

Module:4 Permanent Magnet Brushless DC Motors: 7 Hours

Permanent Magnet materials-Magnet Characteristics-Permeance coefficient-Permanent magnet Vs. Electromagnet. Magnetic circuit analysis – EMF and torque equations – Commutation – Power Converter and their controllers – Characteristics – Applications.

Module:5 Permanent Magnet Synchronous Motors: 7Hours

Principle of operation-Ideal PMSM -EMF and Torque equations-Armature MMF--Synchronous reactance-sine wave motor with practical windings-phasor diagram-characteristics- power converter and their controllers-converter volt ampere requirements-applications.

Module:6Advanced Synchronous Machines:4 HoursFlux switching motors-flux reversal motors-claw pole alternators-construction and working-

(Deemed to be University under section 3 of UGC Act, 1956)						
Module:7	Linear Motors:	6 Hours				
Linear D	C motors-Linear induction motor-linear synchronou	s motors-linear switched reluctance				
motors-co	onstructions and working-applications.					
Line Sta	rt Synchronous Motors: Line start permanent mag	net synchronous motor - line start				
synchrono	ous reluctance motor - line start permanent magn	et synchronous reluctance motor -				
applicatio	ns.					
Module:8	B Lecture by industry experts.	2 Hours				
Wiodule.						
	Total Lecture Hours	45 Hours				
Text Boo	k(s)					
1. Т	I.J.E Miller, "Brushless Permanent Magnet and Re	luctance Motor Drives", Clarendon				
P	Press, Oxford 1989.					
2. T	7. Kenjo, A. Sugawara, 'Stepping Motors and their M	icroprocessor Controls', Clarendon				
F	Press London, 1994.					
3. F	R. Krishnan, "Permanent Magnet and Brushless DC Mo	tors Drives", CRC Press, New York,				
2	010.					
4. I	Ion Boldea, 'Linear Electric Machines, Drives, and MAGLEVs Handbook', CRC Press,					
I	London, 2013.					
Reference	e Books					

2010

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

Edition, Peter Peregrinus, London, 2007.

London, 1988.

Recommended by Board of Studies	29/05/2015		
Approved by Academic Council	37 th AC	Date	16/06/2015

P. P. Acarnley, 'Stepping Motors - A Guide to Motor Theory and Practice', Fourth

T. Kenjo and S. Nagamori, 'Permanent Magnet and Brushless DC Motors', Clarendon Press,

R. Krishnan, 'Permanent Magnet and Brushless DC Motors Drives', CRC Press, New York,

EEE3007	Finite Element Analysis for Electrical Machines		L	T	P	J	C
EEESOO7	Finite Element Analysis for Electrical Machines		2	0	0	4	3
Pre-requisite EEE2003		Sy	lla	bus	s ve	ers	ion
Anti-requisite	Nil					v.	1.0

- 1. To expose the students to the concept of finite element analysis
- 2. To study the basic electromagnetic theory and its importance to electrical machines
- 3. To design any electro-magnetic devise
- 4. To perform electromagnetic analysis using finite element methods
- 5. To do electromagnetic coupled thermal analysis
- 6. To do electromagnetic coupled structural analysis

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Apply basic electromagnetic field equations to electrical machine design.
- 2. Learn the importance of finite element method through field equations.
- 3. Study the performance assessment and improvement in electrical machines.
- 4. Design various electro-mechanical devices
- 5. Analyze coupled field circuits
- 6. Use machine tools to find torque and errors
- 7. Optimize the air gap region to improve the performance of the electrical machine
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1	Outline of Electromagnetic Fields:		4 Hours			
Vector Analysis - Electromagnetic Fields - Fundamental Equations.						
Module:2	Principles of Finite Element Methods:		5 Hours			
Field Proble	ms with Boundary Conditions - Classical Method	d for the Fiel	ld Problem Solution -			
Classical Re	sidual Method - Classical Variational Method - Finit	te Element Mo	ethod.			
Module:3	Computation of Losses:		2 Hours			
Computation	of Eddy Current Loss - Losses in Winding.					
Module:4	Computation of Resistance and Inductance:		4 Hours			
Inductance a	nd Reactance - Poynting Vector - Nonlinear Probler	ns.				
Module:5	Analysis of Electrical Machines Using Fini		4 Hours			
	Method -I:					
Ampere's Fo	rce Law - Boundary Conditions - Computation of the	e Solved Stru	cture - Maxwell Stress			
Method - V	Virtual Work Method - Using Machine Models	to find Torq	ue - Errors in Force			
Computation	- Convergence of Force.					
M. 1.1. (A I C. Ell A I N.M I II El		7 II			
Module:6	Analysis of Electrical Machines Using Finite		5 Hours			
TT: 34 1	Element Method:-II	:	C.E.			
Using Mac	nine Models to find Torque - Errors in Force Compu	tation - Conv	ergence of Force.			
Module:7	Air-gap Elements for Electrical machines:		4 Hours			
Introduction	- Description of the air gap element method - Finite	Element Dis	cretization - Analytical			
	oupling Scheme – Applications.		•			
Module:8	Contemporary issues:		2 Hours			

			Total Lecture H	ours	30 Hours	
Text Bo	ook(s)			II.		
1.	Nico	ola Bianchi, Electrical Ma	chine Analysis U	sing Finite	Elements', CRC Press, Taylor	
	and l	Francis, 2015				
2.	P. P	. Silvester, R. L. Ferrari,	'Finite Element	Analysis	and Design of Electromagnetic	
	Devi	ices', Cambridge University	Press, Cambridge	e, England	, Third Edition, 2006.	
3.	S. J.	Salon, 'Finite Element An	alysis of Electrica	l Machine	b', Kluwer Academic Publishers,	
	Bost	on, MA, 2009.				
Referei	nce B	ooks				
1.	M.V	. K. Chari, S. J. Salon. 'N	Iumerical Method	ls in Elect	romagnetism', Academic Press,	
	2000).				
2.	J. P.	A. Bastos, N. Sadowsky,	'Electromagnetic	Modellin	g By Finite Element Methods',	
	Marc	cel-Decker, 2003.				
3.	M. N	N. O. Sadiku, ' Numerical T	echniques in Elec	romagneti	ics', CRC press, 2001.	
Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar/ Mode of assessment						
Recomi	mende	ed by Board of Studies	05/03/2016			
Approv	ed by	Academic Council	40 th AC	Date	18/03/2016	

	Vellore Institute of Technology (Deemed to be University under section 3 of UGC Act, 1956)				
EEE4002	Power System Protection and Switchgear	L T P J C 3 0 2 0 4			
Pre-requisite	EEE3003	Syllabus version			
Anti-requisite Nil v					
Course Objectives	•				
 Apply theoretical concepts in designing relays and circuit breakers. identify appropriate switch gears for providing protection to power system components. 					
3. analyse the performance of the protection schemes during both pre-fault and post-fault conditions.					
Expected Course Outcome:					
On completion of the course the student will be able to					

- 1. Apply the symmetrical components method for analyzing the different types of faults
- 2. Identify appropriate protection scheme to provide protection to different power system components.
- 3. Design relays used in the protection schemes
- 4. Analyze the types of relays based on their characteristics
- 5. Sketch the various types of circuit breakers
- 6. Discuss the various ratings of the circuit breakers
- 7. Identify an appropriate type of circuit breaker based on voltage and current ratings in the system
- 8. Design and Conduct experiments, as well as analyze and interpret data.

Module:1	Introduction to Faults and Protection:	6 Hours				
Electrical fa	ults - nature and causes of faults - types of fault	s – fault current calculation using				
symmetrical	symmetrical components – Principles and need for protective schemes – Equipment earthing and					
neutral grounding.						
N/L 1 1 . A	D. A. A. D. L.	(II				

Module:2 | Protective Relays Basic properties of relay - Electromagnetic relays – Over current, directional - Static relays.

protection – other schemes of protection- Under frequency relays and Negative sequence relays

Module:3 **Different Protection Schemes** 5 Hours Applications of instrument transformers in protection schemes, Differential protection, Distance

Module:4 Protection of transformer, generator and 6 Hours motor:

Differential scheme for protection of transformer, generator, motor.

Module:5 **Protection of bus bars, transmission lines:** 6 Hours Protection of bus bars-Application of differential scheme for bus bar protection, Transmission lines

protection using distance scheme.

Theory of Circuit Interruption : 6 Hours Module:6

Physics of arc phenomena and arc interruption. Restriking voltage & Recovery voltage, rate of rise of recovery voltage, resistance switching, current chopping and interruption of capacitive current – DC circuit breaking.

Module:7 | Circuit Breakers: 8 Hours

Difference between circuit breakers and isolators- making and breaking capacity - Types of Circuit Breakers - Air blast, Air break, Oil, SF6 and Vacuum circuit breakers- comparative merits of different circuit breakers - Testing of circuit breakers. Earth leakage circuit breakers and

measu	rement	S.				
Modu	le:8	Contemporary issues:				2 Hours
		•	Total Lecture Ho	ours		45 Hours
Text I	Book(s)	Y .		l		
1.	` ` `	Ravindranath, and N. Chand	ler, 'Power Systen	n Protect	ion & Switc	hgear', New Age
		national., 2012.	,			
2.	Badı	i Ram ,B.H. Vishwakarma	, 'Power System	Protectio	n and Switch	hgear', New Age
		national Pvt Ltd Publishers,				
3.	Bhav	esh Bhalja, R.P. Maheshwa	ri, Nilesh G. Chot	ani,'Prot	ection and Sv	witchgear' Oxford
	Univ	versity Press, 2011.				
Refere	ence Bo					
1.	JBO	Gupta, "A Course in Electrica	al Power ", New De	elhi, India	ı : Kataria, 20	14.
	CI	W- 11 UF14-:1 D	74	1:- C	T1.	2017
2.	C.L.	Wadhwa, "Electrical Power S	Systems", New Aca	idemic So	cience, Londo	n, 2017.
3.	M.L	Soni, P.V. Gupta, V.S. Bl	natnagar. A.Chakra	barti. "A	Text Book	on Power System
		neering", Dhanpat Rai & Co.	_	,		
4.		Paithankar and S.R.Bhide, "		Power Sy	stem Protecti	on", Prentice Hall
	of In	dia Pvt., Ltd., 2014.		•		
Mode	of Eval	uation: CAT / Assignment /	Quiz / FAT / Projec	ct / Semi	nar	
List of	f Chall	enging Experiments (Indica	ative)			
1. ((i) Perfe	ormance characteristics of cu	rrent transformers			2 hours
((ii) Earth leakage protection using core balance transformers					
2. ((i) Stud	y of Zonal Protection Schem	e			2 hours
((ii)Test	ing of breakdown voltage str	ength of the given s	sample of	f transformer	
		g Transformer oil testing kit				
		lectrode resistance and soil	resistivity measure	ements us	sing Megger	2 hours
	Earth T					
		fault protection for a 3-φ inc				2 hours
		rocontroller based over and u			relay.	
		rmer protection using differe		ieme.		2 hours
		rmer protection using over co	•			2 hours
		nance characteristics over cur		• •	; ID) (T	2 hours
		on of three phase induction	motor against ear	th fault	using IDMT	2 hours
		rth Fault Over current relay				2.1
		tor Protection using				2 hours
		Reverse Power Relay				
	(ii) Differential relay 10 Time graded protection for Padial Feeders			2 hours		
	C 1			2 hours		
		·	c protective relays	s over o	rurrent over	2 hours
	12. Generator protection using numeric protective relays, over current, over voltage and under voltage relay.					2 nours
	· ortuge	and under voicuge relay.	Tota	al Lahor	atory Hours	30 hours
Recon	nmende	ed by Board of Studies	05/03/2016	ar Eleboti	acory mound	- Conouis
		Academic Council	41.	Date	18/03/2016	
	J		-0 110		10,00,2010	

EEE4003	Generation and Utilization of Electrical Energy		L	T	P	J	C
			2	0	0	4	3
Pre-requisite	EEE3003	Syl	lat	ous	ve	rsi	ion
Anti-requisite	Nil					v.	1.0

- 1. Analyze the concepts and phenomenon of different sources of Power Generation.
- 2. Discuss the fundamental concepts in traction and comprehend different issues related to heating and welding.
- 3. Design the illumination and to discuss various Tariff methods for optimum utilization of electrical energy.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Identify and critically evaluate the generation and demand scenario worldwide
- 2. Discuss various sources for the generation of electrical power
- 3. Design the different types of electric illumination for indoor and outdoor area.
- 4. Discuss various types of Electric Traction based on the motors used and mechanics of train movement.
- 5. Analyze energy consumption and tariff rates.
- 6. Evaluate the energy conservation and identify the economic choice of equipment.
- 7. Design the heating elements for various application and discuss about the process of welding.
- 8. Design a component or a product applying all the relevant standards with realistic constraints.

Module:1 Introduction: 2 Hours

Generation and demand-worldwide scenario- Types of Conventional and nonconventional sources, Energy sources and their availability in India, Introduction to the concept of distributed generation and effect on system operation.

Module:2 Generation from non-renewable sources: 3 Hours

Power generation from non-conventional sources -layout and working of steam, diesel, low and high head hydro power plants-pumped storage plants- nuclear plants.

Module:3 Generation from renewable sources: 5 Hours

Need for alternate energy sources—Power generation from tidal, wind, magneto hydro dynamics (MHD), geothermal and solar sources-solar thermal and solar photovoltaic, Fuel cells.

Module:4 Economic Generation and Utilization: 5 Hours

Comparison between AC and DC systems for transmission efficiency, Load and load duration curve, demand and diversity factors, Plant capacity and plant use factors, choice of type of generation, choice of size and number of unit cost of energy generated, Tariffs-KW demand constant and KVA demand constant. Introduction to Energy conservation –Economic choice of

equipment-Tools for Energy auditing, Causes of low power factor-methods of improving power factor. Case studies.

Module:5 Illumination: 5 Hours

Nature of radiation, definition, laws, photometry, lighting calculations, design of illumination systems (for residential, industrial, commercial, health care, street lightings, sports, administrative complexes), types of lamps-energy efficiency comparison.

Module:6 **Heating and Welding:**

4 Hours

Methods of heating, requirement of heating material, design of heating element, Types, Applications-furnaces, Ovens, , welding generator, welding transformer characteristics, welding types.

Module:7 | **Electric Traction:**

Recommended by Board of Studies

Approved by Academic Council

4 Hours

Introduction, requirements of an ideal traction system, supply systems for track electrification, types of traction system and comparison, mechanics of train movement, traction motors and control, multiple units, braking, current collection systems and recent trends in electric traction.

Modul	e:8 Contemporary issues:	2 Hours				
	Total Lecture Hour	s 30 Hours				
Text B	ook(s)					
1.	S Sivanagaraju; M Balasubba Reddy; D Srilatl	a, "Generation and utilization of				
	electrical energy", Noida, India: Pearson, 2010.					
2.	J.B. Gupta, 'Utilization of Electric Power and Elect	ric Traction', S.K.Kataria and Sons,				
	second edition, 2012.					
Refere	nce Books					
1.	C.L. Wadhwa, 'Generation, Distribution and Utili	zation of Electrical Energy', 3rd/e,				
	New Age International Pvt. Ltd, 2012.					
2.	James L Kirtley, "Electric power principles: source	s, conversion, distribution and use",				
	Hoboken, N.J.: Wiley, 2013.					
3.	Chakrabarti. A, Soni M I, Gupta P V, "Textboo	ok on power system engineering",				
	Dhanpat Rai & Co, 2008.					
Mode	Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar					

05/03/2016

Date

18/03/2016

40th AC

Page 115 B.TECH (EEE)

EEE4004	Distributed Generation and Microgrid	I	. T	P	J	C
		3	0	0	4	4
Pre-requisite	EEE3004	Syl	labu	IS V	ers	ion
Anti-requisite	Nil				v.	1.1

- 1. Obtain knowledge of different distributed generations, energy storage devices and Microgrid system.
- 2. Understanding the concepts of system development and relevant issues.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Understand the need for DG's and various types
- 2. Understand the synchronization of distributed resources such as energy storage and fuel cell
- 3. Comprehend the issues of interfacing DG's in regulatory market
- 4. Understand the types of microgrid and its configuration
- 5. Apply power electronic equipment's in Microgrid and acquire the knowledge of multifunction grid connected converters
- 6. Analyze the various types of control in micro grid in islanded and grid connected mode
- 7. Apply energy management concept in grid connected and islanded microgrid
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1 Introduction to Distributed Generation

DG Units - Micro turbines, reciprocating engines, wind generators, photovoltaic generators, fuel cells, biomass, and tidal sources - Need for Distributed generation, renewable sources in distributed generation, current scenario in Distributed Generation, Planning of DGs – Siting and sizing of DGs – optimal placement of DG sources in distribution systems.

Module:2 Grid integration of DGs

6 Hours

7 Hours

Synchronization - Different types of interfaces - Inverter based DGs and rotating machine based interfaces - Aggregation of multiple DG units - Distributed resources to electric power systems: IEEE 1547. Energy storage elements: Batteries, ultra-capacitors, flywheels.

Module:3 | Economics and Regulatory Aspects of DGs

6 Hours

Selection of sources, regulatory standards/ framework, Standards for interconnecting DG installation classes, security issues in DG implementations. Economic and control aspects of DGs –Market facts, issues and challenges - Limitations of DGs.

Module:4 Introduction to Microgrid

5 Hours

Microgrid Configurations – CERTS Microgrid Test Bed – DC Microgrid-HFAC Microgrid –LFAC Microgrid – Hybrid DC- and AC- Coupled Microgrid

	(Deeme	ed to be University under section 3 o	f UGC Act, 1956)		
Module:5	Power Electronics in Mic	rogrid		6 Hours	
Power Elect	ronics based Microgrid - G	rid Connected Me	ode – Isla	anded mode – Battery Charging	
mode – desig	gn of parallel inverters – Mic	rogrid application	- Brick B	susses Software Frame work.	
	-				
Module:6	Control in Microgrid			7 Hours	
Impact of lo	oad characteristics – Loca	al control – Cent	ralized C	Control- Decentralized Control-	
Microgrid (control for islanded oper	ration – PQ C	ontrol -	Droop control methods -	
Frequency/V	Voltage Control – Control of 1	Inverter Output Im	pedance.	-	
Module:7	Microgrid Energy Manag	gement Systems		6 Hours	
Introduction	- Load Sharing and Power	Management Str	ategy in	Microgrid - Stand-alone - Grid	
connected –	energy storage - Voltage Cor	ntrol and Active P	ower Mar	nagement.	
Module:8	Contemporary issues:			2 Hours	
		Total Lecture H	ours	45 Hours	
Text Book(s)		•		
1.	N. Jenkins, J.B.Ekanayake	and G.Strbac, 'D	stributed	Generation', IET Press, 2010	
2.	Nikos Hatziargyiou, "Mici	ogrids: Architectu	res and C	Control", Wiley-IEEE Press	
	December 2013	_		•	
Reference B	Books				
			~ ~		
1.				eorgios I. Orfanoudakis, Babar	
_	Hussai, "Power Electronic				
2.	_	•	•	rogrids and Active Distribution	
	Networks" ISBN 978-1-84	919-014-5, IET re	newable I	Energy series, 2009	
Mode of Eva	Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar				
Recommend	Recommended by Board of Studies 05/03/2016				
	Academic Council	40 th AC	Date	18/03/2016	
				1	

EEE4005	Power System Operation and Control		L	T	P	J	C
EEE+003	Tower System Operation and Control			0	0	4	3
Pre-requisite	EEE 3003	Sy	lla	bu	s ve	ers	ion
Anti-requisite	Nil					v.	1.0

- 1. This course will provide the student with power generation systems, their operation in an economic mode and their control.
- 2. Introduce students to the important terminal characteristics for hydroelectric and thermal power generation systems.
- 3. Introduce current topics in the system development and methods are used in modern control systems for power system network.

Expected Course Outcome:

On successful completion of the module, students will be able to:

- 1. Analyze the basic structure of power system and the effect of load characteristics on system operation
- 2. Analyze key managerial issues in operating states of the power system
- 3. Model AGC and ALFC mathematically
- 4. Analyze the relationship between voltage and reactive power.
- 5. Explain the constraints in unit commitment problem and issues to be addressed in the solution of unit commitment problem.
- 6. Formulate the model for operating cost of fossil-fuel plants and solve the economic dispatch problems
- 7. Understand Energy Management System
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1 Power System Performance

System load characteristics, load curves, load-duration curve, load factor, diversity factor. Reserve requirements: Installed reserves, spinning reserves, cold reserves, hot reserves.

2 Hours

Module:2 Power System Operation 4 Hours

Load forecasting, unit commitment, load dispatching. Governor control, LFC, EDC, AVR, system voltage control, security control.

Module:3 Automatic Generation Control 7 Hours

Speed-load characteristics, Load sharing concept of control area, LFC control of a single-area system: Static and dynamic analysis of uncontrolled and controlled cases, Economic Dispatch Control, Multi-area systems modeling, static analysis, uncontrolled case and tie line with frequency bias control of state variable model

Module:4 Automatic voltage control 7 Hours

Typical excitation system, modeling, static and dynamic analysis, stability compensation, generation and absorption of reactive power, Relation between voltage, power and reactive power; Injection of

reactive power and MVAR injection of switched capacitors-maintain voltage profile - minimize

transmis	•	•	i switched capaci	.t015-11	ianitani voitage prome - ininimize
Module:		it Commitment(UC)			3 Hours
					e, thermal, hydro, fuel and other
constrair	its, UC	solution methods, Prior	ity-list methods, f	forwar	d dynamic programming approach,
numerica	al proble	ns.			
Module:		onomic Dispatch (ED)			2 Hours
		•			with loss, solution by direct method
		ethod, Base point and	participation facto	rs and	Economic dispatch controller with
LFC con					
Module:		ergy Management Syst		~	3 Hours
		-		•	n hardware configuration, SCADA
		1 0.			ation, security analysis and control,
	_				is and restorative, State transition
diagram	showing	various state transitions	and control strate	gies	
N/L 1 1	0 0	ontonno no vez i gazzaga			2.11
Module:	88 C	ontemporary issues:	T. 4 . 1 T 4 TT	:	2 Hours
			Total Lecture H	ours	30 Hours
Text Bo					
		hari, I J Nagrath, "Mod	lern Power System	n Anal	ysis", Publisher Name, 3rd Edition,
	2011				
			lenberg, 'Power G	enerat	ion, Operation and Control', 3rd/e,
	John Wi	ley & Sons, Inc., 2013.			
Referen					
			ontrol in Power Sy	ystems	', BS Publications ; Leiden : CRC
	Press, co	1			
		- •	er Engineering Ha	nd Bo	ok', 3rd/e, CRC Press &IEEE
	Press, 20		~ 1 '1'		
			em Stability & Co	ntrol',	Third edition, Boca Raton, Fla.:
		ess, 2012	/Oniz / EAT / Dec	ioot / S	lominor
wiode of	Evaluati	on: CAT / Assignment	Quiz/FA1/Proj	jeci / S	emmar
Recomm	ended by	Board of Studies	05/03/2016		
Approve	d by Aca	demic Council	40 th AC	Date	18/03/2016

B.TECH (EEE) Page 119

EEE4006	Restructured Power Systems	L T P J C
		3 0 0 0 3
Pre-requisite	EEE 3003	Syllabus version
Anti-requisite	Nil	v. 1.0

- 1. This course will provide the student with an overview of the restructuring and different restructuring models.
- 2. Explain the students to stranded costs, market operations, and transmission pricing and congestion management.
- 3. Introduce the various restructuring models of power systems
- 4. Introduce the restructuring process taken place in international scenario with pricing concepts.
- 5. Introduce the current scenario of deregulation in Indian Power sector.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Identify the need of restructuring / deregulation in power system network.
- 2. Explain the technical and Non-technical issues in deregulated power exchange market.
- 3. Explain and specify the various pricing mechanisms in electrical power sector
- 4. Analyze the congestion management, stability aspects, and power quality issues in deregulated environment.
- 5. Design the market architecture and power market aspects
- 6. Develop effective and efficient market pricing schemes followed in Indian power sector.

Module:1 Power System Restructuring 3 Hours

Typical Structure of a deregulated electricity system ,Comparison with Vertically integrated electric utility, Motivaton for restructuring of power system-Different entities-Benefits from a competitive environment.

Module:2 Operations in Power Market 5 Hours

Restructuring Models-poolco, bilateral, hybrid models-ISO, Role of ISO, Power exchange-Market Clearing Price-Single Auction and Double Auction Power Pool.

Module:3 Transmission and Congestion Pricing 6 Hours

Transmission Pricing, Transmission cost allocation methods: Postage stamp rate method, contract path method, MW Mile method with examples, Congestion Pricing, Congestion pricing methods, Transmission rights.

Module:4	Congestion Management	6 Hours

Management of Inter-zonal and intra-zonal congestion, solution procedure, Formulation of Inter-zonal congestion sub problem with examples, Formulation of Intra-zonal congestion sub problem

with e	xampl	es				
Modul	e:5	Available Transfer Capa	bility (ATC)			5 Hours
Definit	ions, (DASIS, Methods of ATC De	etermination, ATC	calculation	n using MATLAB/P	WS.
Modul	e:6	Ancillary service Manage	ement			9 Hours
servic	es – '	on of Ancillary services as Voltage control and reactive lards CPS1 and CPS2 –Case	e power support	_	_	
Modul	e:7	Reforms in Indian Power	Sector			9 Hours
Electric	city ac	– Framework of Indian poet 2003 – players in the Indian enear future			•	
Modul	e:8	Lecture by industry exp	erts.			2 Hours
				Tot	tal Lecture Hours	45 Hours
Text B	ook(s))				
1.		ammad Shahidepour Mue er systems Operation, Tradi				
2.		kar Bhattacharya, Math H.J. ems ", Kluwer Academic pu	-	Daadler, "	Operation of restruc	ctured power
Refere	nce B	ooks				
1.		Lei Lai ,John, " Power Systemation Technology ", John	_	_	_	ormance and
2.		ija Illic, Francisco Galiana Economics ", Kluwer Acade		•	stem Restructuring	Engineering
3.		enkatesh, B.V.Manikantan, deregulation ", PHI Learnin				vsis, security
Mode	of Eva	luation: CAT / Assignment	t / Quiz / FAT / Pr	oject / Sem	inar	
Recom	mende	ed by Board of Studies	05/03/2016			
·			40 th AC	Date	18/03/2016	

EEE4007 Energy Management Systems and SCADA					1
		3	0	0 () (
Pre-requisite	EEE3003	Sylla	bus	ver	sio
Anti-requisite	Nil			V	. 1.

1. The course aims to make the students familiar with the preparatory work necessary for meeting the next day's operation and the various automatic control actions to be implemented on the system to meet the Minute-to-minute variation of system load in power systems.

Expected Course Outcome:

On completion of the course the student will be able to

- 1. Outline the function of Energy Management System(EMS) and load flow methods
- 2. Diagnose the factors influencing fuel scheduling.
- 3. Solve hydro thermal coordination and load scheduling
- 4. Analyze the techniques for power/energy interchange and apply the wheeling concept in deregulated Environment.
- 5. Apply state estimation techniques in power system prediction/analysis.
- 6. Discuss the SCADA architecture and functional requirements
- 7. Apply the SCADA concept in power system automation.

Module:1 Overview of Load Flow Methods 6 Hours

Energy Management Centres and their functions – Recent Developments.

Module:2 Economic Dispatch 6 Hours

Take or pay Fuel supply contract – Composite Generation and solution – Fuel scheduling Problems.

Module:3 Hydrothermal Coordination

Short term hydro scheduling – Pumped storage hydro plant. Unit Commitment – Solutions techniques of unit commitment.

Module:4 Interchange of power and energy

6 Hours

7 Hours

Interchange of power and energy, Economic aspects, Energy Interchange with unit commitment, Power Pool, Transmission effects and Issues, Wheeling, Transaction involving non-utility Parties.

Module:5 State Estimation

7 Hours

Need for State estimation, Power System State Estimation, Maximum likely hood concept, Weight list Square state estimation (WLS), WLS by DC Analysis, Concept of observability, problems.

Module:6 | Supervisory Control and Data Acquisition

6 Hours

Introduction to Supervisory Control and Data Acquisition – SCADA Functional requirements and Components – Structure of a SCADA communication Protocol - General features, Functions and Applications, Benefits.

Module	e:7	Power Systems SCADA			5 Hours			
Introduc	ction	to Power Systems SCADA a	and SCADA in Po	wer Syster	n Automation.			
Module	Module:8 Contemporary issues:				2 Hours			
			Total Lecture H	ours	45 Hours			
Text Bo	Text Book(s)							
1.	Woo	od, A. J and Wollenberg, B.	F, "Power Gener	ation Ope	ration and Control", 2 nd Edition			
	John	Wiley and Sons, 2013.		_				
2.	Min	S.Thomos & John D.Mcdo	onald, "Power syst	em SCAD	A and smart grids", CRC press,			
	2015	Ď.						
Referen	nce B	ooks						
1.	Stua	rt A.Boyer, "SCADA: Supe	rvisory Control ar	nd Data Ac	equisition", by ISA; 4th Revised			
		ion 2010.						
2.		er, W. C, "Energy Managen						
3.			ol and Automation	of Electri	c Power Distribution Systems",			
	•	or and Francis, 2007.						
4.					Related Systems", by Gordon			
		arke, Deon Reynder & Edw						
Mode o	Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar							
Recomr	nende	ed by Board of Studies	05/03/2016					
Approv	ed by	Academic Council	40 th AC	Date	18/03/2016			

EEE4008	High Voltage Engineering	L	T	J	C
		3	0 (0	3
Pre-requisite	EEE3003	Sylla	bus	vers	ion
Anti-requisite	Nil			v.	1.0

- 1. Discuss and analyze the various breakdown mechanisms in gaseous, liquid and solid dielectrics
- 2. Design high voltage, high current and impulse generators
- 3. Analyze the various methodologies for high voltage, high current and impulse voltage measurement
- 4. Explain the various types of over-voltages in power system and methods for insulation coordination of power apparatus

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Discuss and analyze various types of electrical stress control techniques in gas and vacuum insulation systems
- 2. Derive and analyze the expression of current growth and breakdown voltage
- 3. Derive and analyze the various mechanisms of breakdown in liquid and solid dielectrics breakdown
- 4. Identify the various methodologies for high voltage and high current generation
- 5. Design high voltage direct current, alternating current and impulse generators
- 6. Analyze the various types of high voltage and high current measurement techniques
- 7. Evaluate the impact of various insulation tests of electrical power apparatus

Module:1 High voltages in electrical systems and electric stress: 6 Hours

Levels of High voltage – Electrical insulation and Dielectrics – importance of electric field intensity in the dielectrics – Electric field stresses – gas / vaccum as insulator - estimation and control of electric stress – Surge voltage their distribution and control.

Module:2 Conduction and breakdown in gases

Gases as insulating media - Collision Processes – Ionization Processes – Townsend's current growth equation – Current growth in the presence of secondary processes - Townsend's criterion for breakdown - the experimental determination of coefficients α and γ – breakdown in electro negative gases – time lags for breakdown – streamer theory of breakdown in gases – paschen' law – breakdown in non-uniform field and corona discharges.

6 Hours

Module:3 Conduction and breakdown in Liquid, solid dielectrics 6 Hours

Liquids as insulator – conduction and breakdown in pure liquids – conduction and breakdown in commercial liquids – testing of insulating oils – breakdown in solid dielectrics – intrinsic, electromechanical and thermal - breakdown in composite dielectrics.

Module:4 Generations of high voltages and currents 6 Hours

Generations of high direct current and alternating voltages – generation of impulse voltages and currents – tripping and control of impulse generators.

Module	:5	Measurement of high volt	tages and curren	ts		6 Hours
		of high direct current vo				
		of high current - direct,				
impulse	volta	ge and current measuremen	ts – measurement	of direct c	urrent	resistivity - measurement
of dielec	of dielectric constant and loss factor - partial discharge measurement.					
Module		High voltage testing of ele				7 Hours
		sulators and bushings - Te				
Testing	of tr	ansformers - Testing of surg	ge arrestors – radio	o interferen	ce mea	asurements.
Module	:7	Over voltage and insul	ation coordinat	ion in ele	ectric	6 Hours
		power system:				
		es for over voltages – ligh				
_		voltage - bewley's lattice		ciples of in	nsulati	on coordination on high
		xtra high voltage power sys	tem.		1	
Module	:8	Contemporary issues:				2 Hours
			Total	Lecture H	lours	45 Hours
Text Bo	ok(s)					
	` '	Voltage Engineering by	M.S.Naidu and	V. Kamar	aiu –	TMH Publications, 5rd
	_	on,2013.				
		Voltage Engineering: Fur	damentals by E.	Kuffel, W.	S.Zaen	gl, J.Kuffel by Elsevier,
	_	Edition, 2000.	ř	,		•
Referen	ce B	ooks				
1.	Extr	a High Voltage AC Transi	mission Engineer	ing , Rako	sh Da	s Begamudre, New Age
	Inter	national (P) Ltd., New Delh	i - 2007.			
2.	High	Voltage Engineering by C.	L.Wadhwa, New	Age Interna	ational	s (P) Limited, 2010.
3.	3. High Voltage Engineering:, E. Kuffel, W. S. Zaengl, J. Kuffel, Cbs Publishers New Delhi,					
	_	Edition, 2005.	•	<u> </u>	•	,
		uation: CAT / Assignment	Quiz / FAT / Pro	ject / Semi	nar	
Recomm	nende	d by Board of Studies	05/03/2016			
		Academic Council	40 th AC	Date	18/03	/2016
FF	·· - J					

EEE4009	FACTS and HVDC	L T P J C 3 0 0 4 4
Pre-requisite	EEE3003, EEE 3004	Syllabus version
Anti-requisite	Nil	v. 1.0

- 1. Understand the importance of controllable parameters and benefits of FACTS controllers.
- 2. Identify the significance of HVDC over HVAC transmission systems, types, control and application of HVDC links in practical power systems.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Study the applications of FACTS Controllers in power flow
- 2. Sort out the significance of shunt, series compensation and role of FACTS devices on system control.
- 3. Analyze the functional operation and design the controller of GCSC, TSSC, TCSC and SSSC.
- 4. Discuss the principles, operation and control of UPFC and IPFC.
- 5. Describe the SSR theory and its mitigation methods using FACTS controllers.
- 6. Explain the HVDC concepts and application of HVDC systems in bulk power transmission.
- 7. Classify the DC links and describe the operation of various MTDC systems.
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1	Introduction	6 Hours
Control of p	ower flow in transmission lines, Application and	classification of FACTS controllers.
Introduction	to HVDC transmission- Comparison between HVDC	C and HVAC systems
Module:2	Shunt connected Devices	6 Hours
Objectives of	of shunt compensation, Methods of controlla	able VAR generation, Static Var
Compensator	; STATCOM	
Module:3	Series connected devices	7 Hours
Objectives of	f series compensation, GCSC, TSSC, TCSC and SS	SC
Module:4	Combined controllers	6 Hours
Unified Pow	er Flow Controller, Interline Power Flow Controll	ler and Generalized Unified Power
Flow Control	ller	
Module:5	Sub synchronous Resonance	5 Hours
SSR Theory	and Mitigation using FACTS controllers	
37.11.6	THE CALL	# YT
Module:6	HVDC Transmission	7 Hours
Introduction	to CSI and VSI based HVDC Controllers. Convert	ter control, Configuration of HVDC
system Rece	ent Trends in HVDC transmission, HVDC systems in	n India. Case study
36 1 1 5	D 111	
Module:7	Dc Links	6 Hours
Types of DC	links, Back to back HVDC connections. Multi-term	inal HVDC systems
Module:8	Contemporary issues:	2 Hours
	Total Lecture Hours	45 Hours

Text Bo	Text Book(s)						
1.	Narain Hingorani & Lazzlo Gyu	Narain Hingorani & Lazzlo Gyugi "Understanding FACTS. Concepts & Technology of					
	FACTS", Standard publishers &	distributors, 200	1.				
2.	K.R.Padiyar,"HVDC Power Tra	nsmission Systen	ns " New .	Academic Science , 2017			
Referen	nce Books						
1.	R.MohanMathur, Rajiv.K.Varn	na, "Thyristor I	Based FA	ACTS Controllers for Electrical			
	Transmission systems" John W	iley and Sons, 20	11.				
2.	Jos Arrillaga, Y. H. Liu, Nevill	le R. Watson "	Flexible I	Power Transmission: The HVDC			
	Options", Wiley 2007.						
Mode o	Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar						
Recomi	Recommended by Board of Studies 05/03/2016						
Approv	ved by Academic Council	40 th AC	Date	18/03/2016			

EEE4010	Power Quality	L	T	P	J	C
		2	0	0	4	3
Pre-requisite	EEE3004	Sylla	bus	ve	rsi	on
Anti-requisite	Nil			1	v. :	1.1

- 1. To describe power quality characteristics as per IEEE/IEC standards
- 2. To simulate and analyze overvoltage and transients in power systems
- 3. To evaluate SAIDI/SAIFI and THD at customer site using PQ analyzer
- 4. To conduct power quality survey at an Industrial/Datacentre/Hospital site

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Define and Describe power quality characteristics as per IEEE/IEC standards
- 2. Analyze voltage sag and interruption
- 3. Differentiate over voltages and enumerate the methods to reduce over voltages
- 4. Analyze harmonics & Design of filters for harmonic reduction
- 5. Apply IEEE/IEC power quality standards for measurements and analysis
- 6. Evaluate power quality at an Industry/Data centre/Hospital and Develop solution
- 7. Design a model to Evaluate power quality in grid integration of Microgrid
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1 Introduction To Power Quality

4 Hours

Terms and definitions: Overloading - under voltage - over voltage. Concepts of transients - short duration variations such as interruption - long duration variation such as sustained interruption. Sags and swells - voltage sag - voltage swell - voltage imbalance - voltage fluctuation - power frequency variations. International standards of power quality. Computer Business Equipment Manufacturers Associations (CBEMA) curve.

Module:2 Voltage Sags And Interruptions

4 Hours

Sources of sags and interruptions - Estimating Voltage Sag Performance -Fundamental Principles of Protection -Solutions at the End-User Level-Evaluating the Economics of Different Ride-Through Alternatives -Motor-Starting Sags ,Utility System Fault-Clearing Issues

Module:3 Overvoltages

4 Hours

Sources of over voltages - Capacitor switching - lightning - ferro resonance. Mitigation of voltage swells - surge arresters - low pass filters - power conditioners. Lightning protection - shielding - line arresters - protection of transformers and cables

Module:4 Harmonics

4 Hours

Harmonic sources from commercial and industrial loads, locating harmonic sources. Power system response characteristics - Harmonics Vs transients. Effect of harmonics - harmonic distortion - voltage and current distortion - harmonic indices - inter harmonics - 2-9kHz harmonics - Infraction harmonics

	(Deemed to be University under section 3 of UGC Act, 1956)									
Module	e:5	Power Quality Standards A	And Regulations		4 Hours					
Standar	ds - 1	EEE, IEC, ANSI, EN, UL, L	imits and regulation	ons on po	wer quality in transmission and					
distribution network										
Module		Power Quality Monitoring	•		4 Hours					
					Measuring Instruments-Power					
-	•		_	iality Mea	surement Data-Application of					
Intellig	gent S	Systems-Power Quality Monit	oring Standards							
				ı						
Module		Harmonic Analysis Tools A			4 Hours					
					(HCS), PQ Box – Case Studies					
_	-		and renewables or	n power q	uality parameters in a electrical					
network	c grid									
				ı						
Module	e:8	Contemporary issues:			2 Hours					
			Total Lecture Ho	ours	30 Hours					
Text Bo	ook(s)								
1.	Ro	ger C. Dugan, Mark F. M	AcGranaghan, Sur	ya Santo	so "Electrical Power System					
	Qι	ality", Tata Mcgraw-hill, Nev	w Delhi, 2012.		Quality", Tata Mcgraw-hill, New Delhi, 2012.					
2. Adreas Eberhard, Power Quality, , InTech, 2011.										
	Ac	lreas Eberhard, Power Quality								
	Ac	lreas Eberhard, Power Quality								
Refere	ence	Books	y, , InTech, 2011.							
	ence	Books	y, , InTech, 2011.	Quality in	n Power Systems and Electrical					
Refero	ence Mo	Books chammad A.S Masoum, Ewal achines", Academic Press, El	d F.Fuchs, Power sevier, 2015.							
Refer	ence Mo Ma	Books chammad A.S Masoum, Ewal achines", Academic Press, Elim Singh, Ambrish Chandra,	d F.Fuchs, Power sevier, 2015. Kamal Al-Haddad	, "Power						
Refero	ence Mo Ma	Books chammad A.S Masoum, Ewal achines", Academic Press, El	d F.Fuchs, Power sevier, 2015. Kamal Al-Haddad	, "Power						
Reference 1. 2.	ence Mo Ma Bh	Books chammad A.S Masoum, Ewal achines", Academic Press, Elim Singh, Ambrish Chandra,	d F.Fuchs, Power sevier, 2015. Kamal Al-Haddad /iley & sons Ltd, 2	, "Power 015	Quality: Problems and					
Refere 1. 2. Mode	ence Mo Mo Bh Mi of Ev	Books chammad A.S Masoum, Ewal achines", Academic Press, Elaim Singh, Ambrish Chandra, itigation Techniques", John Waluation: CAT / Assignment	d F.Fuchs, Power sevier, 2015. Kamal Al-Haddad /iley & sons Ltd, 2	, "Power 015	Quality: Problems and					
Referce 1. 2. Mode Recomm	ence Ma Ma Bh Mi of Ev	Books chammad A.S Masoum, Ewal achines", Academic Press, Elim Singh, Ambrish Chandra, itigation Techniques", John W	d F.Fuchs, Power sevier, 2015. Kamal Al-Haddad Viley & sons Ltd, 2 / Quiz / FAT / Proj	, "Power 015	Quality: Problems and					

EEE4011	Energy Audit and Conservation		L	T	P	J	\mathbf{C}
EEE-011	Energy Addit and Conservation		2	0	0	4	3
Pre-requisite	EEE3003		bus	ve	rsi	on	
Anti-requisite	Nil				1	v. 1	0.

- 1. To understand the energy audit and energy saving concept in electrical system
- 2. To understand the energy scenario and Electricity Acts
- 3. To understand the effect of over exploitation of energy resources

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Understand Indian Energy Policy and Electricity ACT.
- 2. Discuss the impact of Climatic change on Environment and Energy resources.
- 3. Explain needs of energy management through energy audit.
- 4. Solve energy management problem using modern tools.
- 5. Estimate the energy consumption and derive energy saving opportunities
- 6. Design energy ratings for components.
- 7. Interpret ECBC for various Buildings & Support firms with HVAC specifications.
- 8. Design a component or a product applying all the relevant standards with realistic constraints.

Module:1	Energy Scenario and Energy Conservation Act	5 Hours
	2001 and related policies	

Types of Energy resources, final energy consumption, Indian energy scenario and consumption, energy needs of growing economy, energy intensity, long term energy scenario, energy pricing, energy security, energy conservation and its importance, energy strategy for the future. Energy conservation Act 2001 and its features, Electricity Act 2003, Integrated energy policy, National action plan on climate change

Module:2 Energy, Environment and Climate change 3 Hours

Energy and environment, air pollution, climate change United Nations Framework Convention on Climate Change (UNFCC), sustainable development, Kyoto Protocol, Conference of Parties (COP), Clean Development Mechanism (CDM), CDM Procedures case of CDM – Bachat Lamp Yojna and industry; Prototype Carbon Fund (PCF).

Module:3 Energy Management & Audit 3 Hours

Energy audit, need, types of energy audit. Energy management (audit) approach-understanding energy costs, bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, fuel and energy substitution, energy audit instruments and metering, precautions, thermography, smart metering

Module:4 Energy Monitoring and Targeting 3 Hours

Defining monitoring & targeting, elements of monitoring & targeting, data and information-analysis, techniques - energy consumption, production, cumulative sum of differences (CUSUM). Energy

Management	Information	Systems	(EMIS)

Module:5 Electrical system 5 Hours

Electricity billing, electrical load management and maximum demand control, power factor improvement, selection and location of capacitors, performance assessment of PF capacitors, distribution and transformer losses. Star labelled distribution transformers, Demand side management, Assessment of transmission and distribution efficiency, losses due to harmonics and voltage unbalance, Maximum demand controllers, automatic power factor controllers, energy efficient transformers.

Module:6 Electric motors 3 Hours

Factors affecting motor performance, rewinding and motor replacement issues, energy saving opportunities with energy efficient motors. Star labeled energy efficient motors, motor history sheet (new, Ist rewind, 2nd rewind), Star operation, voltage unbalance, energy efficient motors, soft starters with energy saver, variable speed drives.

Module:7 Energy conservation in Buildings and Energy Conservation Building Codes (ECBC) 5 Hours

Energy Conservation Building Codes (ECBC), building envelope, insulation, lighting, Heating, ventilation, air conditioning (HVAC), fenestrations, water pumping, inverter and energy storage/captive generation, elevators and escalators, star labeling for existing buildings, Energy Service Companies based case studies

Module	e:8 Contemporary issues:	2 Hours							
	Total Lecture Hour	s 30 Hours							
Text Bo	Text Book(s)								
1.	Wayne C. Turner, Steve Doty, "Energy Management Handbook", The Fairmont Press, Inc.,								
	2013.								
2.	Course Material for Energy Audit and Managers Example 1	n, Vol. 1-4 Energy Audit Manual the							
	Practitioner's Guide Jointly published by EMC and N	PC, 2017.							
Reference Books									
1.	Barney L. Capehart, Wayne C. Turner, William	J. Kennedy , " Guide to Energy							
	Management", The Fairmont Press, Inc, 2016.								
2.	Albert Thumann, Terry Niehus, William Younger, "Handbook of Energy Audits" The								
	Fairmont Press, Inc, 2013.								

Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar

Recommended by Board of Studies	05/03/2016				
Approved by Academic Council	40 th AC	Date	18/03/2016		

	(Deemed to be University under section 3 of UGC Act, 1956)						
EEE4012 Renewable Energy Sources			L	T	P	J	C
			3	0	0	0	3
Pre-requisite	EEE3003	Sy	lla	bus	s vo	ers	ion
Anti-requisite	isite Nil v. 1.0				1.0		
Course Objectives:							
1 T '	. 1 4 1 1 1 6						

- 1. To impart in depth knowledge of various types of renewable energy sources.
- 2. To develop a micro grids using different renewable energy sources.
- 3. To understand the basic principles of operation of the various renewable energy sources.

Expected Course Outcome:

On completion of the course the student will be able to

- 1. Gain knowledge on different types of renewable energy sources.
- 2. Understand and design different type's thermal collectors and PV cells.
- 3. Comprehend the types and analyse the performance of wind mills.
- 4. Understand the basic operating principles of tidal and wave energy to design an Ocean Thermal Energy Conversion (OTEC) plant.
- 5. Identify geothermal energy sources and its application.
- 6. Utilization of biomass energy conversion techniques for conversion of waste into useful energy.
- 7. Understand the fuel cells types, working principles and its related applications.

Module:1 Introduction to Energy Sources

4 Hours

Energy sources on earth – Energy utilisation – Global energy problems and role of renewable energy – Introduction to alternate energy sources.

Module:2 | **Solar Energy and Applications**

8 Hours

Solar radiation - Solar radiation geometry - Solar radiation measurements - Principles, Characteristics and efficiency of different types of collectors-Solar cell-Solar cell array. Solar energy applications: water heaters, air heaters, solar cooling, solar cooking, solar pumping, and solar drying - Solar electric power generation: Solar tower concept (solar pond) and Solar photo-voltaic.

Module:3 Wind Energy

7 Hours

Energy from the wind - Types and General theory of wind mills - Performance of wind machineswind power efficiency - wind electric generation schemes -Applications of wind Energy - standalone and grid connected systems.

Module:4 | Tidal and Wave Energy

7 Hours

Energy from tides and waves - Tidal Barrage -working principles and operation of different types tidal and wave power generation- Design of 5 MW OTEC pro-commercial plant. Economics and Environmental impacts of OTEC.

Module:5 | Geothermal Energy

6 Hours

Estimation of geothermal power – Geothermal sources - principle of working and operation of different types of geothermal power generation- Future of geothermal energy.

Module:6 Bio-Energy

6 Hours

Biomass conversion techniques: Biogas generation, classification and types of biogas plants, Energy from biomass: Industrial wastes, municipal waste, burning plants and agricultural wastes.

Module	e:7 Fuel Cells Energy		5 Hours			
Fuel ce	lls - Principle of operation, classification and type	s of fuel ce	lls – Applications- Limitations			
and fut	are prospect.					
Modul			2 Hours			
	Total Lecture F	Iours	45 Hours			
Text B	ook(s)					
1.	Frank Kreith, Susan Krumdeick, Principles of	Sustainable	Energy Systems, CRC press,			
	Taylor and Francis group, Second Edition, 2014					
2.	G.D. Rai, Non-Conventional Energy Sources, Kha	anna Publis	hers, 2004.			
Refere	nce Books					
1.	John Twidell and Tony Weir, Renewable Ener	gy Resource	ces, Second edition, Taylor &			
	Francis, 2006.					
2.	S.P. Sukhatme, Solar Energy, Principles of Ther	mal Collect	ion and Storage, Tata McGraw			
	Hill Publishers, Fourth Print, February 2015.		-			
3.	G.D. Rai, Solar Energy Utilizations, Khanna Publ	ishers, Seco	ond Revised Edition, 2004.			
4.	Ronald Shaw, Wave Energy: A Design Challer	nge, Eills H	Horwood Ltd. Publishers, First			
	Edition 1982.					
5.	5. Putnam, Energy from the Wind, Prentice Hall of India.2004.					
Mode o	of Evaluation: CAT / Assignment / Quiz / FAT / Pro	ject / Semi	nar			
Recom	mended by Board of Studies 05/03/2016					
Approv	ed by Academic Council 40 th AC	Date	18/03/2016			

EEE4013	Smart Grid		T	Ρ.	J	C
LEE-013			0	0 4	4	4
Pre-requisite	EEE3003, EEE3004	Sylla	bus	vei	rsic	on
Anti-requisite	Nil			V	7. 2	2.0

- 1. Architecture designs
- 2. Measurement and Communications Technologies
- 3. To familiarize the transmission and distribution automation using smart Grid.
- 4. Integration of vehicles with rechargeable batteries in to distribution networks.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Describe the necessity and evolution of smart grid with policies
- 2. Identify the appropriate measurement techniques for smart grid implementation
- 3. Apply theoretical concepts for analyzing the performance of the grid
- 4. Identify the appropriate choice for data transaction in a secure manner
- 5. Understand various power transmission automation techniques
- 6. Explain the working of distribution automation and the two way power flow of distribution system
- 7. Design the concept of V2G & G2V using Electric vehicle & Batteries
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1 | Smart Grid Architectural Designs

7 Hours

Introduction. Evolution of electric Grid, Need for smart grid, difference between Conventional grid and smart grid, General View of the Smart Grid Market Drivers, Functions of Smart Grid Components, present development and international policies in smart grid.

Module:2	Smart	Grid	Communications	And	8 Hours
	Measure	ement Tec			

Communication and Measurement , Monitoring, PMU, Smart Meters, and Measurements Technologies ,Wide Area Monitoring Systems (WAMS), Phasor Measurement Units (PMU) , Smart Meters , Smart Appliances, Advanced Metering Infrastructure (AMI),, GIS and Google Mapping Tools Multi agent Systems (MAS) Technology ,Multi agent Systems for Smart Grid Implementation , Micro grid and Smart Grid Comparison

Module:3 Performance Analysis Tools For Smart Grid Design 6 Hours

Challenges to Load Flow in Smart Grid and Weaknesses of the Present Load Flow Methods ,types ,Load Flow State of the Art: Classical, Extended Formulations, and Algorithms , Congestion Management Effect , Load Flow for Smart Grid Design , Cases for the Development of Stochastic Dynamic optimal Power Flow (DSOPF), Application to the Smart Grid, Static Security Assessment (SSA) and Contingencies, Contingency Studies for the Smart Grid

Module:4	Information Security And	Communication	6 Hours
	Technology For Smart Grid		

Data communication, switching techniques, communication channels, HAN, NAN, WAN, Bluetooth, Zigbee, GPS, Wi-Fibased communication, Wireless mesh network, Basic of cloud computing and cyber security for smart grid, Broadband over power line (BPL)

Module:5 Transmission Automation: 7 Hours

Introduction, Transmission Infrastructure functionality, Transmission technology, Energy Management System, Map Board Automatic Generation Control (AGC), Supervisory Control, Contingency Reserve Management, Interchange Scheduling, SCADA Master Terminal Unit, Transmission Substations, Synchrony phasor as IEDs, Relays as IEDs, Programmable Logic Controllers as IEDs, RTUs as IEDs, Smart Transmission Cyber Security.

Module:6 Distribution Automation:

6 Hours

Introduction, Distribution System Architecture, Distribution automation, working of Distribution Automation, ,role of Smart Grid Function of Distribution Automation, Importance of the Distribution System and Its Security Challenges ,Securing the Distribution System, Distribution Management Systems ,Standards, Inoperability, and Cyber Security

Module:7 Integration Of Vehicles With Rechargeable Batteries Into Distribution Networks

3 Hours

The revolution of individual electrical transport, consequences on the electrical network. Demand management and vehicle-to-grid, Vehicles as "active loads" Energetic services,. Frequency regulation.

Module	e:8	Contempor	ary issues:			2 Hours	
				Total Lecture H	lours	45 Hour	
Text Bo	ook(s))			•		
1.	Jame	es momoh, "S	mart grid fund	lamentals of desig	n and ana	lysis, "IEEE Press, a john wiley	
	& sons, inc., publication, 2012.						
2.	Bernd M. Buchholz, Zbigniew Styczynski, "Smart grid fundamentals and Technologies in						
	Electricity Networks", Springer ,Heidelberg New York Dordrecht London, 2014.						
Referei	nce B	ooks					
1.	Jana	ka Ekanayake	e, Nick Jenki	s, Kithsiri Liyana	age, Jianzl	nong Wu, Akihiko Yokoyama,	
	"Sm	ard grid techn	ology and app	lications,: Wiley,	2012.		
2.	Stua	rt Borlase " Sı	mart grid: Infr	astructure, Techno	ology and s	solutions, "CRC Press 2012.	
Mode o	f Eva	luation:	CAT I & II –	30%, DA I & II –	- 20%, Qui	z – 10%, FAT – 40%	
Recom	nende	ed by Board of	f Studies	05/03/2016			
Approv	ed by	Academic Co	ouncil	40 th AC	Date	18/03/2016	

EEE4016	Electric Vehicles	L T P J C 2 0 0 4 3
Pre-requisite	EEE3004	Syllabus version
Anti-requisite	Nil	v. 1.0

1. This course introduces the fundamental concepts, principles, analysis and design of hybrid electric vehicles.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Comprehend the performance of conventional vehicles.
- 2. Infer the hybrid electric vehicles and its impact on environment
- 3. Analyze the various hybrid vehicle configurations and its performance.
- 4. Interpret the electric components used in hybrid and electric vehicles
- 5. Design the sizing of drive systems for electric vehicles.
- 6. Choose proper energy storage systems for vehicle applications
- 7. Identify various communication protocols and technologies used in vehicle networks
- 8. Design a component or a product applying all the relevant standards with realistic constraints.

Module:1 Introduction to Conventional Vehicles:

3 Hours

Basics of vehicle performance, vehicle power source characterization, transmission characteristics, and mathematical models to describe vehicle performance

Module:2 Introduction to Electrical Vehicles:

3 Hours

History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, future of electric vehicles, comparison with IC engine drive vehicles

Module:3 | Electric Vehicle Drive Train:

4 Hours

Transmission configuration, Components, gears, differential, clutch, brakes, regenerative braking, motor sizing. Basic concept of electric traction, Introduction to various drive train topologies, power flow control in electric drive topologies, fuel efficiency analysis

Module:4 | **Electric Propulsion Unit:**

4 Hours

Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Introduction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.

Module:5 | Sizing the drive system:

3 Hours

Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems.

Module:6 | Energy Storage:

4 Hours

Introduction to energy storage requirements in hybrid and Electric vehicles, Battery based energy storage and its analysis, fuel cell based and super capacitor based energy storage and its analysis. Hybridization of different energy storage devices

Module	e:7	Energy managemen	ıt stra	tegies and Cas	e		7 Hours
		Studies:					
Introdu	ction	to energy managemen	nt stra	tegies used in	hybrid a	nd e	electric vehicle, classification of
differen	t ene	rgy management stra	ategies	s, comparison	of differ	ent	energy management strategies,
implem	entati	on issues of energy st	rategie	es - Design of a	Hybrid 1	Elec	tric Vehicle (HEV), Design of a
Battery	Elect	ric Vehicle (BEV).					
Module	e:8	Contemporary issu	ies:				2 Hours
				Total Lecture	e Hours		30 Hours
Text Bo	ook(s)						
1.	Iqba	Hussain, "Electric a	and H	ybrid Vehicles	-Design	Fund	lamentals", CRC Press, Second
	Edit	on, 2011.					
2.	Meh	rdad Ehsani, Yimin	Gao,	and Ali Emad	i, "Mode	ern l	Electric, Hybrid and Fuel Cell
	Veh	cles: Fundamentals",	CRC 1	Press, 2010.			
Referen	nce B	ooks					
1.	Chri	s Mi, MA Masrur,	and	D W Gao,	"Hybrid	Elec	ctric Vehicles- Principles and
	App	ications with Practica	l Pers	pectives", Wile	y, 2011.		
2.	Dav	de Andrea, "Battery	mana	agement Syste	ms for 1	Larg	e Lithium-Ion Battery Packs",
	Arte	ch House, 2010.					
Mode o	f Eva	uation: CAT I &	II – 3	0%, DA I & II	$-20\%, \zeta$	Quiz	- 10%, FAT - 40%
Recomi	nende	d by Board of Studies	S	05/03/2016	•		
Approv	ed by	Academic Council		40 th AC	Date		18/03/2016

EEE4017	Industrial Drives and Automation	L	T P	J	C
		3	0 0	4	4
Pre-requisite	EEE3004, EEE3001	Sylla	bus ve	ersi	on
Anti-requisite	Nil			v. .	1.0

- 1. To explore the various DC, AC and special machine drives for industrial applications
- 2. To study the various open loop and closed loop control schemes for drives.
- 3. To introduce the hardware implementation of the basic controllers using PLC.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Discuss the basic components of the drive system from automation perspective.
- 2. Analyze the various converter and chopper fed DC drive with appropriate control.
- 3. Explain the various scalar and vector control methodologies for induction motor drive.
- 4. Classify the synchronous motor drive with relevant control techniques.
- 5. Identify the various special machines and its control.
- 6. Understand the basic logics of PLC
- 7. Apply the PLC programming to control drives.
- 8. Design a component or a product applying all the relevant standards with realistic constraints.

Module:1 Introduction

5 Hours

Introduction to Electric Drives – Need of electric drives, basic parts, present scenario of electric drives, Mechanical Dynamics in an Electric Drive – Understand the concept of Industrial Automation and exposure on its components. Identify the Scope.

Module:2 DC Motor Drive

6 Hours

Four quadrant chopper circuit –steady state analysis of chopper controlled DC motor drives – DC motor drive using half controlled and fully controlled single phase and three phase rectifiers, continuous and discontinuous conduction modes of operation, 4-quadrant operation using dual converter- Braking. Analysis of Closed Loop Control of DC Motor.

Module:3 Induction Motor Drive

6 Hours

Induction motor with variable voltage operation -Variable frequency operation- constant v/f operation -constant torque and field weakening regions-Vector control strategies-Direct torque control scheme-Slip power recovery scheme- analysis-Applications

Module:4 | Synchronous motor Drive

5 Hours

Synchronous motor Drive with voltage source inverter, load commutated thyristor inverter and Cycloconverter - Control strategies - Constant torque angle control - Unity power factor control - Constant mutual flux linkage control.

Module:5 | Special Machine Drives

7 Hours

Permanent magnet synchronous motor - Field oriented control - Direct torque control - Sensor-less control. Brushless Direct current (BLDC) machine control strategies, Voltage Source Inverter fed BLDC-Torque ripple minimization - Application.

	Vellore Institute of Technic (Deemed to be University under section 3 of UG	
Module:6	Introduction to Programmable Logic	7 Hours
	Controllers	
PLC archi	tecture, Input Output modules, PLC interfacing with	plant, memory structure of PLC.
PLC progr	ramming methodologies: ladder diagram, STL, function	nal block diagram, creating ladder
diagram f	rom process control descriptions, introduction to IE	C61131 international standard for
PLC.		
Module:7	PLC based Control	5 Hours
Bit logic in	structions, ladder diagram examples, interlocking, lat	ching, inter dependency and logical
functions, I	PLC Timer & Counter functions, Control components	, sensors, actuators and valves, PID
configuration	on, various network topologies and communication	protocols like Profibus, Foundation
field bus, D	evicenet, HART	
Module:8	Contemporary issues:	2 Hours
	Total Lecture Hours	45 Hours
Text Book	(\mathbf{s})	
1. Ve	dam Subramanyam, "Electric Drives - Concepts and	Applications", Tata McGraw Hill,
20	11.	
2. Ri	chard Shell, Handbook of Industrial Automation, CRC	Press, 2000.
Reference	Rooks	

John Webb: Programmable Logic Controllers principles & Applications, PHI, 2009. 1. A K Gupta, Industrial Automation and Robotics, Firewall Media, 2013. 2. 3. Bimal K Bose, "Modern Power Electronics and AC Drives", Pearson Education Asia, 2012. R. Krishnan, "Permanent Magnet Synchronous and Brushless DC Motor Drives", Taylor and 4. Francis, 2010 5. Haitham Abu-Rub, Atif Iqbal, Jaroslaw Guzinski, "High Performance Control of AC Drives with Matlab/Simulink Models", John Wiley & Sons, 2012. CAT I & II – 30%, DA I & II – 20%, Quiz – 10%, FAT – 40% Mode of Evaluation: 05/03/2016 Recommended by Board of Studies

Approved by Academic Council 40th AC Date 18/03/2016

EEE4018	Advanced Control Theory		L	T	P	J	C
			3	0	0	4	4
Pre-requisite	EEE 3001	Syllabus vers				ersi	ion
Anti-requisite	Nil					v.	2.0

- 1. To impart in-depth knowledge in the field of control theory, analysis and design of MIMO systems in state space
- 2. Basic understanding on features of linear and nonlinear systems
- 3. To analyze the features of linear and nonlinear systems using phase plane analysis and describing function analysis
- 4. To analyze the stability of linear and nonlinear systems using stability concepts

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Model physical systems using state variable approach
- 2. Analyze MIMO systems by state space approach
- 3. Design state feedback controller and observer for simple and practical dynamic systems
- 4. Identify and classify the nonlinearities in the physical systems
- 5. Analyze the features and stability of nonlinear systems using phase portraits
- 6. Analyze the systems with common nonlinearities using describing function
- 7. Analyze stability of linear and non linear systems
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1 | State Variable Representation

6 Hours

Introduction, Concept of State Equation for Dynamic Systems, Non Uniqueness of State model, State Diagrams, Physical Systems and State Assignments - State space representation of multivariable systems

Module:2 | **Solution Of State Equations**

6 Цопра

State transition matrix – Properties and Computation. Controllability and Observability, Stabilizability and Detectability.

Module:3 Design In State Space

7 Hours

State Feedback, Output Feedback, Design Methods, Pole Assignment, Full Order and Reduced Order Observers. Introduction to Linear Quadratic problems.

Module:4 Introduction To Non Linear Sytems

5 Hours

Introduction, Features of Linear and Non Linear Systems, Types of non-linearity, Common nonlinearities in control systems, Typical Examples, Concept of phase portraits – Singular points – Limit cycles

Module:5 PHASE PLANE ANALYSIS

7 Hours

Construction of phase portrait, Concepts of phase plane analysis Phase plane analysis of linear system and nonlinear system, Existence of limit cycles.

Module:6 Describing Function Analysis

6 Hours

Describing function fundamentals, Describing functions of common nonlinearities, Describing function analysis of nonlinear systems, Limit cycles, Stability of Oscillations

Module:7 | Stability Analysis

6 Hours

Stability Concepts, Equilibrium Points, BIBO and Asymptotic Stability, Lyapunov theory, Lyapunov's Direct method, Variable gradient method Frequency Domain Stability Criteria, Popov's

TVICTIOC	<i>1</i> & 1t5	Extension.							
Modul	e:8	Contemporary issues:			2 Hours				
	,		ture Hou	45 Hours					
Text B	ook(s)			•					
1.	Kats	uhiko Ogata, "Modern Control Engine	ering ", P	HI Learn	ing Pvt Ltd, 5 th Edition, 2010.				
2.	Hass	an K Khalil, "Nonlinear Control ", Pea	rson Prer	ntice Hall	l, 1 st Edition, 2014.				
Refere	nce Bo	ooks							
1.	M. C	Gopal, "Modern Control Systems Theor	ry", New	Age Pub	lishers, 3 rd Edition, 2014.				
2.	Rich	ard C. Dorf, Robert H. Bishop, "Mode	rn Contro	ol Systen	ns", Prentice Hall, 12 th Edition,				
	2010). 							
Mode o	Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar								
Recom	mende	ed by Board of Studies 05/03/201	16	•					
Approv	ed by	Academic Council 40 th AC]	Date	18/03/2016				

EEE4019	Advanced Digital Design with FPGAs	L	T	P	J	C	
		2	0	0	4	3	
Pre-requisite	EEE3002	Sylla	Syllabus version				
Anti-requisite	Nil				v.	1.0	
Course Objective							
	complex digital systems using Hardware Description Language.						
	n field programmable gate array (FPGA) technologies and		e as	SO	за	tec	
computer	aided design (CAD) tools to synthesize and analyze digital syste	ms.					
Expected Cours	a Outcome						
	on of this course the student will be able to:						
	nd recognize the trade-offs involved in digital design flows for sy	stem					
	and synthesize Verilog HDL.	500111					
	and synthesize digital modules and circuits for a wide application	range.					
4. Design st	ate machines to control complex systems.						
-	erilog test bench to test Verilog modules.						
	ynchronous DSP system in Verilog and verify its performance.						
_	floating point arithmetic using the IEEE-754 Standard.	4					
•	component or a product applying all the relevant standards with r	realistic					
constrain							
Module:1 In	troduction to FPGAs			3 F	In	urs	
	doudchon to 11 Ons						
		ces (CP				c_{10}	
Basic Programm	hable Logic architectures, Complex Programmable Logic Device ate Arrays (FPGAs), Design Flow, Design Tools.	ces (CP				CIC	
Basic Programm	able Logic architectures, Complex Programmable Logic Device	ces (CF					
Basic Programm Programmable C Module:2 In	troduction to Verilog HDL		PLD	s), 5 H	Fi Io	urs	
Basic Programm Programmable C Module:2 In	hable Logic architectures, Complex Programmable Logic Device ate Arrays (FPGAs), Design Flow, Design Tools.		PLD	s), 5 H	Fi Io	urs	
Basic Programm Programmable C Module:2 In Review of Veri	troduction to Verilog HDL		PLD	s), 5 H	Fi Io	urs	
Basic Programm Programmable C Module:2 In Review of Veri delays, switch-le	troduction to Verilog HDL log HDL, Modeling styles: Behavioral, Dataflow, and Structuvel Modeling, Hierarchal structural modeling.		deli	s), 5 I ng,	Fi Hou	urs	
Basic Programm Programmable C Module:2 In Review of Veri delays, switch-le Module:3 In	troduction to Verilog HDL log HDL, Modeling styles: Behavioral, Dataflow, and Structuvel Modeling, Hierarchal structural modeling.		deli	s), 5 I ng,	Fi Hou	urs	
Basic Programm Programmable C Module:2 In Review of Veri delays, switch-le Module:3 In Lo	troduction to Verilog HDL log HDL, Modeling styles: Behavioral, Dataflow, and Structuvel Modeling, Hierarchal structural modeling. aplementing Logic using MSI Combinational origin Blocks		deli	s), 5 I ng,	Fi Hou	urs gate	
Basic Programm Programmable C Module:2 In Review of Veri delays, switch-le Module:3 In Lo	troduction to Verilog HDL log HDL, Modeling styles: Behavioral, Dataflow, and Structuvel Modeling, Hierarchal structural modeling.		deli	s), 5 I ng,	Fi Hou	urs	
Basic Programm Programmable C Module:2 In Review of Veri delays, switch-le Module:3 Im Lo Multiplexer, Del	troduction to Verilog HDL log HDL, Modeling styles: Behavioral, Dataflow, and Structuvel Modeling, Hierarchal structural modeling. Applementing Logic using MSI Combinational ogic Blocks Multiplexer, Encoder, Decoder, ROM, PAL, PLA.		deli	5 H ng,	Hou	ur:	
Basic Programm Programmable Co Module:2 In Review of Veri delays, switch-le Module:3 In Lo Multiplexer, Del Module:4 Vo	troduction to Verilog HDL log HDL, Modeling styles: Behavioral, Dataflow, and Structuvel Modeling, Hierarchal structural modeling. Inplementing Logic using MSI Combinational ogic Blocks Multiplexer, Encoder, Decoder, ROM, PAL, PLA. Erilog Modelling of Sequential Circuits		deli	5 H ng,	Hou	ur;	
Basic Programm Programmable Co Module:2 In Review of Veri delays, switch-le Module:3 In Lo Multiplexer, Del Module:4 Vo	troduction to Verilog HDL log HDL, Modeling styles: Behavioral, Dataflow, and Structuvel Modeling, Hierarchal structural modeling. Applementing Logic using MSI Combinational ogic Blocks Multiplexer, Encoder, Decoder, ROM, PAL, PLA.		deli	5 H ng,	Hou	urs	
Basic Programm Programmable Company Module:2 In Review of Veridelays, switch-le Module:3 In Lo Multiplexer, Del Module:4 Vo Flip-Flops, Shift	troduction to Verilog HDL log HDL, Modeling styles: Behavioral, Dataflow, and Structuvel Modeling, Hierarchal structural modeling. Inplementing Logic using MSI Combinational ogic Blocks Multiplexer, Encoder, Decoder, ROM, PAL, PLA. Erilog Modelling of Sequential Circuits		deli	5 H ng,	Hou	urs	

Adders and Substractors, Multiplication Digital Signal Processing modules: FIR and IIR Filters, Bus structures, Synchronous & Asynchronous data transfer, UART baud rate generator, A simple

6 Hours

CPU design.

Design

Module:6

Floating point arithmetic circuits Module:7 3 Hours

Adders	Adders, Subtractors, Multipliers						
Modul	e:8	Contemporary issues:			2 Hours		
Wiodui		Comporary assures	Total Lecture H	ours	30 Hours		
Text B	ook(s)			L			
1.		nael D Ciletti, "Advanced I on, 2011.	Digital Design wit	h the Ver	ilog HDL" Prentice Hall, 2 nd		
2.	Samir Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis" Pearson, Second Edition, 2009.						
Refere	nce Bo	ooks					
1.		hen Brown & Zvonko Vran A Mc Graw Hill Ltd. 3 rd Ed		als of dig	ital Logic with Verilog Design"		
2.	1	g-Bo Lin., Digital System by, 2008.	Designs and Pra	ctices Us	ing Verilog HDL and FPGAs.		
3.		ds, R., McAllister, J., Yi, Yessing systems. John Wiley	•	G. FPGA	-based implementation of signal		
Mode o	of Eval	uation: CAT / Assignment /	Quiz / FAT / Pro	ject / Sem	inar		
Recom	mende	ed by Board of Studies	05/03/2016				
Approv	ed by	Academic Council	40 th AC	Date	18/03/2016		

EEE4020	Embedded System Design		L	T	P	J	C
			2	0	0	4	3
Pre-requisite	EEE4001	Syllabus vers		ion			
Anti-requisite	Nil					v.	1.0
0 011 11							

- 1. To give an emphasis on the characteristics and hardware architecture of embedded system and real time operating systems.
- 2. To provide essential knowledge on various communication protocols and understanding of Mealy and Moore machines.
- 3. To provide the essential knowledge in the embedded modeling and design of finite state machines.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Understand the characteristics and concepts of embedded system.
- 2. Understand the architecture of hardware embedded system
- 3. Compare the concepts of RTOS with general purpose OS.
- 4. Design hardware components/architecture for embedded system applications.
- 5. Interpret the wired and wireless communication protocols.
- 6. Design state space model using Moore and Mealy technique
- 7. Analyze the embedded system modelling with state transition and FSM.
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1 Introduction to Embedded systems:

3 Hours

Embedded system- Definition, Categories, Requirements. Challenges and issues in embedded software development, Trends in embedded software development, Applications of embedded systems.

Module:2 Hardware architecture of embedded system:

4 Hours

Processor, Memory, Memory models, Latches and Buffers, crystal, Timers, reset circuit, Watchdog timer, chip select logic circuit, ADC and DAC, Display units, Communication interfaces, Introduction to emulators.

Module:3 | Real time operating system (RTOS) with Kernel:

4 Hours

RTOS vs General purpose OS, Kernel Architecture and Functionalities - Task management, Process Scheduling, Resource management (Semaphores and Mutex), Task Synchronization. Embedded software development Life cycle.

Module:4 Serial Bus for embedded systems:

5 Hours

I2C- Features, Arbitration, Bit Transfer Waveform and exceptions. CAN- Layered Architecture of CAN, properties, Data Rates, Frame types. USB- Physical interface, Enumeration process in USB, Types of packets, Types of transfers.

Module:5 Wireless Applications:

4 Hours

Introduction to wireless networking –Basics. Bluetooth – Overview, power levels, Device communication, Base band, Packet format, packet heading, packet types and packet timing. Overview of IEEE 802.15.4 standard feature, Device types and Frame format. ZigBee – Architecture objectives, Network model, ZigBee stack block diagram, Network layer. ZigBee Vs

	(Deem	ed to be University under section 3 of	f UGC Act, 1956)		
Bluetooth.					
Module:6	Introduction to Moore ar	nd Mealy models		4 Hours	
Design of			ore and M	lealy FSM- Block diagram,	
_		1 0		le, Relative trade-offs. State	
space mod	els of sequential machines- Ir	ntroduction.			
Module:7	Embedded System Model	lling:		4 Hours	
Finite State	•		Design exa	mples implementing state and	
	on diagram for vending mach		_		
	<u> </u>				
Module:8	Contemporary issues:			2 Hours	
		Total Lectu	re Hours	30 Hours	
Text Book(s)				
1. Dav	id.E. Simon, "An Embedded	Software primer",	Pearson E	ducation Inc., 2012.	
2. Tan	my Noergaard, "Embedded	systems architectu	re: a comp	rehensive guide for engineers	
and	programmers" Berlin: Elsevi	er, 2014.			
Reference l	Books				
1. Xia	cong Fan, "Real-time embed	ded systems: Desi	gn principl	es and engineering practices",	
Am	sterdam [Netherlands]: Newn	es, 2015.			
2. Fran	k Vahid and Tony Givargis,	"Embedded Syste	m Design:	A Unified Hardware/Software	
App	roach", Wiley; Student edition	on, 2010.			
Mode of Ev	aluation: CAT / Assignment	Quiz / FAT / Pro	ject / Semii	nar	
Recommend	led by Board of Studies	05/03/2016			
Approved b	Approved by Academic Council 40 th AC Date 18/03/2016				

EEE4027	Robotics And Control	L T P J	C
			3
Pre-requisite	EEE3001	Syllabus ver	sion
Anti-requisite	Nil	v	. 1.0

- 1. To develop the student's knowledge in various robot structures and their workspace.
- 2. To develop student's skills in performing spatial transformations associated with rigid body motions & some knowledge and analysis skills associated with trajectory planning.
- 3. To develop student's skills in performing kinematic analysis of robotic systems and some knowledge and skills associated with robot control

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Select different types of sensors and actuators for robotic systems
- 2. Apply spatial transformation to obtain the forward kinematic equation of robot manipulators.
- 3. Analyse forward and inverse kinematics for simple robot manipulators.
- 4. Derive Jacobian matrix and identify singularities.
- 5. Identify the dynamics of the robotic manipulator using Euler Lagrangian approach
- 6. Generate joint trajectories for motion planning.
- 7. Implement the multivariable controller for setpoint tracking and disturbance rejection
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Module:1	Introduction	2 Hours
		•

Brief History, Types of robots, Degrees of freedom of robots, Robot configurations and concept of workspace, End effectors and Different types of grippers, vacuum and other methods of gripping. Pneumatic, hydraulic and electrical actuators, applications of robots, specifications of different industrial robots.

Module:2	Rigid	Motion	and	Homogeneous	5 Hours
	transfor	rmation			

Position definitions. Coordinate frames. Different orientation descriptions. Free vectors. Translations rotations and relative motion, Composition of rotation, rotation with respect to fixed frame and current frame, parameterisation of rotation, Euler Angele, roll, pitch, yaw, axis/angle representation, Homogeneous transformation

Module:3 Forward Kinematics 4 Hours

Link coordinate frames. Denavit-Hartenberg convention. Assignment, of coordinate frame, Joint and end effector Cartesian space. Calculation of DH parameters and forward kinematic equation of different configuration of manipulator, Planner elbow manipulator, Cylindrical three link, SCARA, Spherical Wrist and other configuration.

Module:4 Velocity Kinematics: 4 Hours

Forward kinematics transformations of position Translational and rotational velocities. Velocity Transformations. Singularity, The Manipulator Jacobian.

Module:5 Robot Dynamics 4 Hours

Lagrangian formulation, general expression for kinetic and potential energy of n-link manipulator, Newton-Euler equations of motion. Derivation of equations of motion for simple cases: two-link manipulators.

		(Deeme	ed to be University under section 3 of	OGC Act, 1950)			
Modul	e:6	Trajectory Planning& Pr	ogramming				5 Hours
Traject	ory p	lanning and avoidance o	f obstacles.Trajec	ctory for	point to	point	motion,Cubic
polyno	mial t	rajectory,Quintic polynomi	al, LSPB(Linear	segment	with para	bolic b	lend)Minimum
time tr	ajectoi	ry, Trajectories for Paths S	pecified by Via P	oints. Rob	ot langua	ges, co	mputer control
and Ro	bot so	ftware					
1						4 Hours	
Actuator dynamics, Set point tracking Feed forward control, Drive Train dynamics. Introduction to						roduction to	
force c	ontrol	and multivariable control.					
Modul	e:8	Contemporary issues:					2 Hours
			Total Lecture H	ours			30 Hours
Text B	ook(s))					
1.	M.W	. Spong, S. Hutchinson, and	d M. Vidyasagar,	Robot Mo	deling an	d Contr	ol, Wiley, 2nd
		e edition, 2012					
2.	J.J. C	Craig, Introduction to Robot	ics: Mechanics and	d Control,	Pearson	Education	on, 4 th Edition,
	2017						
3.		Groover, et.al., Industrial R	obots: Technology	, Program	ming and	applica	tions, McGraw
	Hill,	2 nd indian edition, 2012.					
Refere	nce B	ooks					
1.	Robo	ot Manipulators : Modeling	g, Performance Ar	nalysis and	d Control	by Eti	enne Dombre;
	Wisa	ıma Khalil, Somerset : Wile	y, 2013.				
2.	МО	Tokhi, A K M Azad,Flexi	ble robot manipula	ator :mode	elling,simi	ılation a	and control 2 nd
	editi	on, 2017.					
3.	Ashi	tava Ghosal.Robotic fundar	mental Concept as	nd Analys	is,Oxford	Univer	sity Press 11 th
	impr	ession 2015.					
N/ 1	CE	L .' CATE / A .'	/O: /EAT/D:	. / 0			
Mode (of Eva	luation: CAT / Assignment /	Quiz / FAT / Proj	ect / Semi	nar		
Recom	mende	ed by Board of Studies	05/03/2016				
		Academic Council	40 th AC	Date	18/03/20	16	

EEE4028	VLSI Design	L	T	P J	C
		3	0	2 0	4
Pre-requisite	EEE3002	Sylla	bus	ver	sion
Anti-requisite	Nil			V	. 2.0

- 1. To provide an understanding of the digital VLSI concepts, circuit design, principles.
- 2. To provide introduction to architecture and design concepts underlying modern complex VLSI.
- 3. To provide students with the background needed to design, develop, and test digital circuits using VHSIC Hardware Description Language (VHDL) and Verilog HDL.
- 4. To provide the students to design the digital circuits using transistors for complex systems.

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Analyze and identify the methodologies for fabricating the ICs.
- 2. Synthesize and design arithmetic circuits using HDL.
- 3. Design logic circuits using CMOS and its equivalent layout for fabrication.
- 4. Analyze the characteristics of CMOS to reduce the delay and power dissipation in logic circuits.
- 5. Identify transistor configurations for better performance in logic circuits.
- 6. Design memory devices using transistors.
- 7. Identify and design arithmetic circuits for various applications.
- 8. Design and Conduct experiments, as well as analyze and interpret data

Module:1 Overview of VLSI Design Methodology

The VLSI design process, Architectural design, logical design, Physical design, layout styles, Full custom, Semi custom approaches.

Module:2 Introduction to Verilog HDL

6 Hours

4 Hours

Introduction Verilog HDL, Gate level, data flow, behavioral modeling, Data types and Operators, Blocking and non-blocking assignment statements. Test benches.

Module:3 Introduction to MOS Devices

6 Hours

Introduction to MOS Transistor Theory: nMOS, pMOS Enhancement Transistor, MOSFET as a Switch, Threshold voltage, MOS Device Design Equations, Body effect, Second order effects. MOS Transistor Circuit Model. Stick Diagram, Layout Design Rules.

Module:4 Circuit Characterization And Performance Estimation 6 Hours

DC Characteristics of CMOS Inverter, Switching Characteristics of CMOS Inverter, Transistor Sizing Analytical Delay model- Rise Time, Fall Time. Gate Delays, RC Delay Models, Logical Effort. Power Dissipation: Static- Dynamic-Short Circuit Power Dissipation

Module:5 Combinational logic Circuits

6 Hours

Introduction, Static CMOS Design- Complex Logic Gates, Ratioed Logic, Pass-Transistor Logic, Transmission gate Logic, Dynamic CMOS Logic Design: Dynamic Logic Design Considerations. Speed and Power Dissipation of Dynamic logic, Signal integrity issues, Cascading Dynamic gates.

		(Deem	ed to be University under section 3 of	UGC Act, 1956)		
Mod	dule:6	Sequential Logic Circuits	}			6 Hours
Sta	tic and D	ynamic Latches and Registe	ers, Timing issues,	pipelining		
Mod	dule:7	Designing arithmetic circ	mita			9 Hours
		le carry, Carry-Look ahead,		rray based-Rin	nle carry adde	
		Multiplier using Tree based-				
		arithmetic circuits using HD		du 1100, Bootii	manipher, sq	auror.
	_	ultiplier and Accumulator, F		erilog Coding for	or arithmetic ci	ircuits.
Mod	dule:8	Contemporary issues:				2 Hours
			Total Lecture H	ours		45 Hours
List	of Chall	lenging Experiments (Indic	cative)			2,5,9
1.	Four b	it adder using different appr	oaches for delay a	nd Area reducti	on	2 Hours
2.	Four B	it Wallace tree multiplier	-			2 Hours
3.	Four b	it dada tree multiplier				2 Hours
4.	Four bi	t squarer design				2 Hours
5.	Multip	ier and Accumulator design				2 Hours
6.	FIR filt	er design				2 Hours
7.	CMOS	switch level implementation	n of Complex Bool	ean functions		2 Hours
8.	CMOS	switch level implementation	n of adder and subt	ractor		2 Hours
9.	Implem	nentation of Boolean function	n using various tra	nsistors		2 Hours
10.	Positive	e and negative edge triggere	d register design			2 Hours
				Total Labor	ratory Hours	30 hours
Text	t Book(s)				
1	1. Jan	Rabaey, Anantha Chandra	kasan, B.Nikolic,	"Digital Inte	grated circuit	s: A design
	persp	pective". Second Edition, Pro-	entice Hall of India	a, 2013.		
2		H.E.Weste, David Money		VLSI DESIG	N: a circuits	and systems
	persp	pective", Fourth edition, Pea	rson 2015.			
Ref	erence B					
1	1. Sam	ir Palnitkar, "Verilog HDL"	, Prentice Hall, 20	10.		
2	2. Sung	g-Ma Kong, Yusuf Leblebi	ici and Chulwoo	Kim, "CMOS	digital integra	ated circuits:
	anal	ysis and design", 4th edition	, McGraw-Hill Ed	ucation, 2015.		
Mod	le of Eva	luation: CAT I & II – 3	0%, DA I & II – 2	0%, Quiz – 109	%, FAT – 40%	
Reco	ommende	ed by Board of Studies	05/03/2016			
App	roved by	Academic Council	40 th AC	Date	18/03/2016	
	<u>`</u>				•	

DDD 40:	25	T.	to be University under section 3 of 1			T M D T		
EEE40	31	Карю	d Prototyping wi	th FPGAs		L T P J		
_						0 0 4 0		
Pre-req		Nil		Syllabus ver				
Anti-re	•	Nil				V	7.1.0	
	Objectives:							
	variety of 2. Engineer	rrse exposes students f prototype electric and ring design by appl tional tools to the syntle	d electronic syster ying a combina	ns hardwa tion of l	re numan creativ			
	ed Course O							
	-	of this course the stude						
1.	Design and C	Conduct experiments, a	as well as analyze	and interp	ret data			
List of	Experiment	S						
1	Accur	nulator design in Veril	log			4 Hours		
2	MAC	design in Verilog				4 Hours		
3	HDL 1	programming- Adder,	Subtractor, Multpl	exer, Dem	ultiplexer	4 Hours		
4	Code	converter				4 Hours		
5	Shift r	register/Universal shift	t register			4 Hours		
6	Upcou	unter / Downcounters				4 Hours		
7	FIR fi	lter				4 Hours		
8	Array	multiplier				4 Hours		
9	-	Prototyping of Pow m Application Using X			for Photovolta	aic 4 Hours		
10		n Principles for Rap			sors Using 3-	-D 6 Hours		
11	_	Control Prototyping notive Applications	of Active Vibr	ation Con	trol Systems	in 6 Hours		
12		Prototyping of a Low nelf DC Power Supply	,			ff- 6 Hours		
13	Rapid	Prototyping of Miniat	ture Capsule Robo	ots		6 Hours		
					oratory Hour	s: 60 Hours	S	
Referen	nce Books				-			
1.		Chua, Kah Fai Leons, 3rd Edition, Kindle	0	Lim Rapi	d Prototyping	: Principles	and	
2.		oboulas, CAD-CAM &		ng Applica	ation Evaluation	n, Bookboon		
3.	R. C. Cofer	Benjamin Harding , R	Rapid System Prot	otyping w	ith FPGAs			
Recomm	nended by B	Soard of Studies	13/10/2018					
Approv	ed by Acade	mic Council	53 rd AC	Date	13/12/2018			

			to be University under section 3 of				-		
EEE4038	}	Testii	ng and Calibration	on System	<u>S</u>	L	T	P J	C
						0	0	2 0	
Pre-requ		EEE4021/EEE2004				Sylla	bus	s ver	sion
Anti-requ		Nil						V.	. 1.0
Course C	Course Objectives:								
1.	1. To explore the basic concepts and terminology of testing and calibration systems.								
Expected	Course O	Outcome:							
On the co	mpletion o	of this course the stude	nt will be able to:						
	1. Design a	and Conduct experime	nts, as well as ana	llyze and i	nterpret data	ı			
List of Ex	xperiment	S							
1	Gauge U	a comparative expe Jsing a Dead Weigh Calibrator.					3	Hour	S
		the errors and e	estimate the un	certainties	during p	ressure	3	Hour	<u>s</u>
2		ment. Perform an ex							
		overcome the same.	1		1				
3		an experimental study	on calibration of	rotameter	. Evaluate th	e same	3	Hour	S
3		ation of uncertainties							
		uncertainty calculation	_				3	Hour	S
4		the same using mu		brator sys	stem. Valida	ate the			
		or a given electrical ci							
5		a verification and val				single-	3.	Hour	S
		attmeter. Perform unce					2	Hour	
6		re and calibrate the ure of a kettle between					3.	Hour	S
		a calibration and ur					3	Hour	· ·
7		ng temperature of a sys				101 101	٠.	Hour	3
		a verification and				asuring	3	Hour	s
8		. Perform measureme			101 1110			-1041	~
9		an experiment for RT			calibration.		3	Hour	s
10	Conduct	an experiment for tor	que transducer cal	ibration ar	nd check the	errors	3	Hour	S
	1	1	•		aboratory			Hot	
Referenc	e Books				<u>, </u>				
		Handbook of Measur	ing Instruments h	v Alessan	dro Brunelli	.Ist Edit	ion	JSA	
		suration and Calibration		•			-1011	,	
		d Signal Conditioning					nd F	Editio	 m.
	Wiley India		oy rumon rumus	i ireiry, v or		, , , , ,		201010	·11,
Mode of l	Evaluation:	: CAT / Assignment /	Quiz / FAT / Proj	ect / Semi	nar				
Recomme	ended by B	oard of Studies	13/10/2018						
		mic Council	53 rd AC	Date	13/12/2013	8			
	- ,								

ECE3501	IoT Fundamentals	L	T	P	J	C
	Job Role: SSC/Q8210	2	0	2	4	4
Pre-requisite	Nil	S	yllab	us v	vers	ion
Anti-requisite	Nil				v.	1.0

- 1. To impart knowledge on the infrastructure, sensor technologies and networking technologies of IoT.
- 2. To analyse, design and develop IoT solutions.
- 3. To explore the entrepreneurial aspect of the Internet of Things
- 4. To apply the concept of Internet of Things in the real world scenarios

Expected Course Outcome:

After successfully completing the course the student should be able to

- 1. Identify the main component of IoT
- 2. Program the controller and sensor as part of IoT
- 3. Assess different Internet of Things technologies and their applications

Module:1	Introduction:	2 hour
IT-ITeS/BPM In	dustry – An Introduction, the relevance of the IT-ITeS sector	, Future Skills –
An Introduction,	General overview of the Future Skills sub-sector	
Module:2	Internet of Things - An Introduction:	3 hours
	and the trends, Impact of IoT on businesses and society, Exiacross industries.	sting IoT use cases
Module:3	IoT Security and Privacy:	6 hours
	vacy risks, analyze security risks, Technologies and met standards and regulations, Social and privacy impacts	hods that mitigate
Module:4	IoT Solutions	6 hours
Planning for Io	evelopment, Need and Goals for IoT solution, Adoption Solution: Evaluate costs, competition, technology challerations, Need for stakeholder buy-in	
Planning for Io	Solution: Evaluate costs, competition, technology challed	
Planning for Ior resource consider Module:5 Prototype development	Solution: Evaluate costs, competition, technology challerations, Need for stakeholder buy-in	5 hours ods and metrics to
Planning for Ior resource consider Module:5 Prototype development	Solution: Evaluate costs, competition, technology challerations, Need for stakeholder buy-in Prototyping the Pilot execution: pping Stages, deploy real-time UI/UX visualizations, Methods	5 hours ods and metrics to
Planning for Ion resource consider Module:5 Prototype develor analyze and converted Module:6 Roadmap for development of the Module:6	Solution: Evaluate costs, competition, technology challerations, Need for stakeholder buy-in Prototyping the Pilot execution: pping Stages, deploy real-time UI/UX visualizations, Methery business outcomes, feedback and data obtained from execution.	5 hours ods and metrics to cution. 5 hours on, key Milestone,
Planning for Ion resource consider Module:5 Prototype develor analyze and converted Module:6 Roadmap for development of the Module:6	Solution: Evaluate costs, competition, technology challerations, Need for stakeholder buy-in Prototyping the Pilot execution: ping Stages, deploy real-time UI/UX visualizations, Methere business outcomes, feedback and data obtained from executions: Scalability of IoT Solutions: reloping complete IoT solutions, Strategies for implementations.	5 hours ods and metrics to cution. 5 hours on, key Milestone,
Planning for Ion resource consider Module:5 Prototype develor analyze and convert Module:6 Roadmap for develor Scalability of Ion Prototype Ion Prototype Ion Prototype Ion Prototype Ion Prototype Ion Ion Prototype Ion	Prototyping the Pilot execution: ping Stages, deploy real-time UI/UX visualizations, Methods, platforms and tools. Web and Mobile I Build and Maintain Relationships at the Workplace,	5 hours ods and metrics to cution. 5 hours on, key Milestone, Interfaces

(Deemed	
1. Arshdeep Bahga, Vijay Madisett University Press, 2015.	i, "Internet of Things: A hands-on Approach",
	mally, "Designing the Internet of Things", Wiley, Nov
	man, Martin Charlier, Ann Light, Algred Lui," UX for the consumer internet of things", O'Reilly, (1 st
Reference Books	
1. Rethinking the Internet of things Francis daCosta, Apress, 2014	: A Scalable Approach to Connecting Everything by
2. Learning Internet of Things by P	eter Waher, Packt Publishing, 2015
	, by Adrian Mcewen, Hakin Cassimally, Wiley India
Private Limited	
4. Cloud Computing, Thomas Erl, l	Pearson Education, 2014
5. Foundations of Modern Network	ing: SDN, NFV, QoE, IoT, and Cloud, William
Stallings, Addison-Wesley Profe	ssional; 1 edition
6. https://nsdcindia.org/sites/default	/files/MC_SSCQ8210_V1.0 IoT-Domain % 20
Specialist_09.04.2019.pdf	
List of Experiments	1,2,14
	room and output data to the web API.
	From anywhere using raspberry pi.
3. Build a web based application to	automate door that unlocks itself using facial recognition.
	nalytics, consists of IoT device, cloud, and mobile and
web app.	
web app. 5. Smart Parking System	
5. Smart Parking System	ing and weather prediction
5. Smart Parking System6. IoT based Healthcare application	ing and weather prediction
5. Smart Parking System6. IoT based Healthcare application7. Real-time environmental monitor8. Traffic pattern prediction	ing and weather prediction
 Smart Parking System IoT based Healthcare application Real-time environmental monitor Traffic pattern prediction 	ing and weather prediction
 Smart Parking System IoT based Healthcare application Real-time environmental monitor Traffic pattern prediction Smart Street light 	Total Laboratory Hours 30 hours
 Smart Parking System IoT based Healthcare application Real-time environmental monitor Traffic pattern prediction Smart Street light 	
 Smart Parking System IoT based Healthcare application Real-time environmental monitor Traffic pattern prediction Smart Street light Plant health monitoring 	

ECE3502	IoT Domain Analyst	L	T	P	J	C
	Job Role: SSC/Q8210	2	0	2	4	4
Pre-requisite	Nil	Sy	llabu	s ve	rsic	n
Anti-requisite	Nil				v.	1.0

- 1. To impart knowledge on the infrastructure, sensor technologies and networking technologies of IoT.
- 2. To analyse, design and develop IoT solutions.
- 3. To explore the entrepreneurial aspect of the Internet of Things
- 4. To apply the concept of Internet of Things in the real world scenarios

Expected Course Outcome:

After successfully completing the course the student should be able to

- 1. Identify the main component of IoT
- Program the controller and sensor as part of IoT
- 3. Assess different Internet of Things technologies and their applications

Module:1 IoT Solution Models:	3 hour
Module:1 IoT Solution Models:	3 nour

Models applied in IoT solutions, Semantic models for data models, Application of semantic models, information models, information models to structure data, relationships between data categories.

Module:2	Data Models :	3 hours
Module:2	Data Models :	3 hou

Tags to organize data, tag data to pre-process large datasets, predictive models for forecasting, Application of predictive models.

Module:3 Simulation Scenarios: 4 hours

Models to simulate real-world scenarios, Application of the models, stages of data lifecycle, reuse existing IoT solutions, reusability plan.

Module:4 Use Case Development 4 hours

Approaches to gather business requirements, defining problem statements, business requirements for use case development, Assets for development of IoT solutions.

Module:5 Value engineering and Analysis: 4 hours

Principles and phases of Value Engineering and Analysis, Frameworks for Value Engineering in IoT solutions, cost-function analysis of IoT solution components, action plans to incorporate Value Engineering, Data modelling requirements, Development models: Waterfall, Agile, Spiral, V models, monetization models for IoT use cases - 'Outcomes As A Service' model.

Module:6	Data Analytics for IoT Solutions:	6 hours

Data generation, Data gathering, Data Pre-processing, data analyzation, application of analytics, vertical-specific algorithms, Exploratory Data Analysis.

Module	7 Deploymen	t of Ana	lytics Solutions	6 hours	
cloud/ed for data	Anomaly Detection and Data Clustering, Predictive Analytics and Streaming Analytics, cloud/edge methods, integrating analytics models, performance of analytical models, Templates for data insights, deriving insights.				
			Total Lecture Hours	30 hours	
Text Bo	ok(s)				
1.		Madisett	i, "Internet of Things: A hands-on A	Approach",	
2.	•	im Cassi	mally, "Designing the Internet of T	hings", Wiley,Nov	
I e	DesigningConnected Production),2015		man, Martin Charlier, Ann Light, A JX for the consumer internet of thin		
Referen	ce Books				
	_	_	: A Scalable Approach to Connecting	ng Everything by	
	Francis da Costa, Apres				
			Peter Waher, Packt Publishing, 2015		
I I	Designing the Internet o Private Ltd	f Things	, by Adrian Mcewen, Hakin Cassim	ally, Wiley India	
4. (Cloud Computing, Thor	nas Erl, l	Pearson Education, 2014		
	Foundations of Modern Stallings, Addison-Wesl		ring: SDN, NFV, QoE, IoT, and Clossional; 1 edition	oud, William	
6. l		s/defaul	t/files/MC_SSCQ8210_V1.0_IoT D	omain % 20	
List of E	Experiments				
1.	Measure the light intens	sity in th	e room and output data to the web A	API.	
2.	Control your home pow	ver outle	t from anywhere using raspberry pi.		
	Build a web based appl recognition.	ication t	o automate door that unlocks itself u	ising facial	
	Drinking water monitor web app.	ring and	analytics, consists of IoT device, clo	oud, and mobile and	
	Smart Parking System				
	IoT based Healthcare a	pplicatio	n		
7.	Real-time environment	al monit	oring and weather prediction		
	Traffic pattern prediction	on			
	Smart Street light				
10.	Plant health monitoring	,			
			Total Laboratory	Hours 30 hours	
	nended by Board of Stud				
Approve	d by Academic Council	l	Date		

MEE1006	Applied Mechanics and Thermal Engineering		LI	P	J	C
			2 0	2	0	3
Pre-requisite	Nil	`Sy	llab	us '	ver	sion
Anti-requisite	Nil					v.2.1

- 1. To make the students to understand the principles of solid mechanics.
- 2. To make the students to understand the basic concepts of mechanical vibrations.
- 3. To familiarize the students with the properties of fluids and the applications of fluid mechanics.
- 4. To make the students to understand the principles of thermodynamics and to get broad knowledge in its applications.
- 5. To provide the students a gist of the theory behind the refrigeration and air conditioning system.
- 6. To make the students to understand the principles of heat transfer.

Expected Course Outcome:

Student will be able to

- 1. Evaluate the allowable loads and associated allowable stresses before mechanical failure in different types of structures.
- 2. Assess the vibrations associated with various mechanical systems.
- 3. Apply the fundamental laws of thermodynamics for the analysis of wide range of thermodynamic systems.
- 4. Explain basic concepts of fluid mechanics and their applications.
- 5. Demonstrate and analyze various refrigeration and air conditioning systems.
- 6. Evaluate heat transfer through different modes.

Module 1 Solid Mechanics

5 hours

Concept of stress and strain-Normal and shear stress -relationship between stress and strain-Elasticity- poisson's ratio-shear force and bending moment diagrams for simply supported, cantilever and overhanging beams - Analysis of forces in truss members

Module 2 | **Mechanical Vibrations**

5 hours

Single degree of freedom systems- Un-damped and damped- Natural frequency- transverse vibration of shafts- critical speed by Rayleigh's and Dunkerley's method. Forced vibration-Harmonic excitation-Magnification factor- Vibration isolation-Torsional vibration-Holzer's analysis.

Module 3 | Fluid Mechanics

4 hours

Properties of fluid- Uniform and steady flow- Euler's and Bernoulli's Equations- pressure losses along the flow. Flow measurement- Venturi meter and Orifice meters, Pipes in series and parallel. Introduction to Turbines and pumps - classification of turbines - specific speed and speed governance. Classification of pumps- characteristics and efficiency.

Module 4 Thermodynamic systems

3 hours

Basic concepts of Thermodynamics - First law of thermodynamics - Second law of thermodynamics - applications. Working Principle of four stroke and two stroke engines - Open and closed cycle gas turbines

Module 5 | Steam Boilers and Turbines

3 hours

Formation of steam – Thermal power plant – Boilers -Modern features of high-pressure boilers - Mountings and accessories - Steam turbines: Impulse and reaction principle.

Module 6	Compressors,	Refrigeration	and	Air	5 hours
	conditioning				

Air Compressors- Principle of operation of reciprocating, centrifugal and axial flow compressors - Basic functions of refrigeration- Vapour Compression and Vapour absorption systems-Principle of air conditioning system- Types and comparison.

Module 7 Heat Transfer

3 hours

Fundamentals of heat transfer-conduction, convection and radiation - Free convection and forced convection - Applications like cooling of electronic components, electric motor and transformers

Module 8	Contemporary Discussion		2 hours
	Total L	ecture hours	30 hours

Mode: Flipped Class Room, [Lecture to be videotaped], Use of physical cut section models to lecture, Visit to Industry, Min of 2 lectures by industry experts.

Practical Experiments

- 1. Evaluation of Engineering Stress / Strain Diagram on Steel rod, Thin and Twisted Bars under tension.
- 2. Compression test on Bricks, Concrete blocks.
- 3. Natural frequency of longitudinal vibration of spring mass system.
- 4. Determination of torsional vibration frequency of a single rotor system
- 5. Undamped free vibration of equivalent spring mass system
- 6. Damped vibration of equivalent spring mass system
- 7. Flow through Venturimeter
- 8. Flow through Orifice Meter
- 9. Verification of Bernoulli's Apparatus
- 10. Performance test on air-conditioning system
- 11. Performance test on vapour compression refrigeration system
- 12. Heat transfer in natural/forced convection
- 13. Heat transfer through a composite wall.

Mode of Evaluation: Continuous Assessment includes CAT I, CAT II, Assignments/Quizzes, FAT

Text Book(s)

1. R.K. Rajput, (2010), Thermal Engineering, Lakshmi Publications

Reference Books

- 1. Rogers and Mayhew, 'Engineering Thermodynamics Work and Heat Transfer', Addision Wesley, New Delhi, 1999.
- 2. B.K. Sarkar, 'Thermal Enginerring', Tata McGraw Hill, New Delhi, 1998.
- 3. Ahmadal Ameen 'Refrigeration and Airconditioning' Prentice Hall of India Ltd, 2006.
- 4. P.K. Nag, 'Heat Transfer', Tata McGraw Hill 2002.
- 5. R.K. Rajput, (2006), Strength of materials (Mechanics of solids), S. Chand & Company Ltd.

6.	P.K. Nag, 'Basic and Applied Engin	eering Thermo	odynamics', Tat	a McGraw Hill, New
	Delhi,2010.			
7.	B.K. Sachdeva, 'Fundamentals of Engir	neering Heat ar	nd Mass Transfer	r (SI Units)', New Age
	International (P) Limited (2009).			
8.	C.P. Arora 'Refrigeration and Air Cond	itioning', Tata	McGraw Hill (20	001).
	Recommended by Board of Studies		17/08/2017	
	-			
	Approved by Academic Council No.	47 th AC	Date	05/10/2017

PHY 1002	Materials Science	L T P J C
		3 0 2 0 4
Pre-requisite	Nil	Syllabus version
Anti-requisite	Nil	v. 1.0

To enable the students to understand the nature of different types of materials namely Conducting, Semi conducting, Dielectrics, Magnetic and Superconducting materials.

Expected Course Outcome:

- 1. Students will be able to understand the fundamentals of physics for conducting materials and how it is pertinent for engineering related applications
- 2. Students can understand how to describe the basic classification of semiconducting materials and how to develop an engineering related devices
- 3. Students will be able to describe the fundamental polarization mechanism involved in dielectrics and how it is responsible with different frequency of radiation including how stress and strain plays a major role in piezoelectric.
- 4. Learn basic magnetization concepts in detail and study different properties of magnetic materials, including the analysis of various magnetic properties and its applications.
- 5. Students will be able to describe the phenomenon of superconduction and explain how superconductors behave in magnetic fields including some engineering applications of superconductors.
- 6. Gain the basic phenomenon behind the mechanism between materials and light and how a material blacking, absorbing and enhancing the light including the complete idea of negative index and negative materials by understanding the universal parameters of permeability and permittivity.
- 7. Gain an introduction to nanomaterials and in depth knowledge about synthesis and properties of bulk and nanostructured materials, including their applications.
- 8. Gain knowledge by demonstrating to understand electrical, thermal, dielectric, semiconducting and magnetic properties of materials LAB

Module:1 | Conducting Materials

6 hours

Drude-Lorentz Classical free electron theory of metals, electrical conductivity, relaxation time, drift velocity, Matthiessen's rule, thermal conductivity Wiedemann-Franz law, drawbacks of classical theory, Kronig-Penny Model, Quantum theory (derivation) and its success, Band theory of solids.

Module:2 | Semiconducting Materials

7 hours

Band theory of solids – Kronig-Penney Model & its success; P and N type – direct and indirect semiconductor; Density of energy state; Variation of Fermi level with respect to temperature and carrier concent rat ion in intrinsic and extrinsic semiconductors; Hall effect – theory – experimental proof; Hall Sensors, Problems.

Module:3 | Dielectric Materials

7 hours

Introduction, Clausius-Mosotti relation; Polarization mechanisms, electronic, ionic and orientation, Temperature dependence of dielectric constant, Frequency dependence of dielectric constant, Dielectric loss, dielectric breakdown types, dielectric materials as electrical insulators -

1	Vellore Institute of Techno (Deemed to be University under section 3 of UGC A	et, 1956)	
examples,	Problems, Ferroelectric and Piezoelectric materials		
Module:4	8		6 hours
magnetic materials	parameters and their relations - Origin of magnetization moment, Bohr magneton, Properties of dia, para, - Domain theory of ferromagnetism, Hysteresis, son-computer hard disk	ferro, antiferro	and ferromagnetic
	Superconducting Materials		6 hours
	uctors, types, properties, Meissner Effect, BCS (Applications- Josephson Effect-SQUID-Cryotron; Pro		Tc Superconductors
Module:6	Metamaterials		6 hours
	on, Natural and Artificial Materials, Photonic Band	lgap Materials	
frequency	of a wire medium, Resonant elements for metamates sonant loop, Effective permeability, Effect of negative	erials, Polariza	ability of a current -
Module:7	Material Synthesis		6 hours
	ynthesis processes, PVD sputtering, Chemical Va	nor denosition	
	n of thin films, bulk and nanomaterials (any one mate		Examples.
Module:8	Contemporary issues:		2 hours
	are by industry experts		2 1100115
	and of an analysis production		
	-		
	Total Lo	ecture Hours	45 hours
Text Bool		ecture Hours	45 hours
1. C.M.			
1. C.M. Public	Srivasta and Srinivasan, "Science of Engineering Macations, 2003. Vijaya & G Rangarajan, "Materials Science", Tata Mo	terials", Tata N	AcGraw Hill
1. C.M. Public 2. M S V Ltd., 2	Srivasta and Srinivasan, "Science of Engineering Macations, 2003. Vijaya & G Rangarajan, "Materials Science", Tata Mo	terials", Tata N cGraw – Hill P	McGraw Hill Tublishing Company
1. C.M. Public 2. M S V Ltd., 2 Element Electrical Elec	Srivasta and Srinivasan, "Science of Engineering Macations, 2003. Vijaya & G Rangarajan, "Materials Science", Tata Mac2003. Entary Solid State Physics by M. Ali Omar, Pearson Edical Properties of Materials (eighth edition, 2010), L.	terials", Tata M eGraw – Hill P Education India	McGraw Hill rublishing Company 1, 1975
1. C.M. Public 2. M S V Ltd., 2 Element 4. unive	Srivasta and Srinivasan, "Science of Engineering Macations, 2003. Vijaya & G Rangarajan, "Materials Science", Tata Mac2003. Entary Solid State Physics by M. Ali Omar, Pearson Entary Properties of Materials (eighth edition, 2010), L. Ersity Press).	terials", Tata M eGraw – Hill P Education India	McGraw Hill rublishing Company 1, 1975
1. C.M. Public 2. M S V Ltd., 2 Element 4. unive Reference	Srivasta and Srinivasan, "Science of Engineering Macations, 2003. Vijaya & G Rangarajan, "Materials Science", Tata Mac2003. Entary Solid State Physics by M. Ali Omar, Pearson Entary Solid State Physics (eighth edition, 2010), L. resity Press). Books	terials", Tata M eGraw – Hill P Education India Solymar and I	McGraw Hill Tublishing Company 1, 1975 D. Walsh (Oxford
1. C.M. Public 2. M S V Ltd., 2 Electron 4. unive Reference 1. Pillai 2. S.O. I	Srivasta and Srinivasan, "Science of Engineering Macations, 2003. Vijaya & G Rangarajan, "Materials Science", Tata Mac2003. Entary Solid State Physics by M. Ali Omar, Pearson Entary Properties of Materials (eighth edition, 2010), L. Ersity Press).	terials", Tata McGraw – Hill P Education India Solymar and I	McGraw Hill Tublishing Company 1, 1975 D. Walsh (Oxford Tional (P) Ltd, 2007.
1. C.M. Publid 2. M S V Ltd., 2 Electr 4. unive Reference 1. Pillai 2. S.O. I Hill P	Srivasta and Srinivasan, "Science of Engineering Macations, 2003. Vijaya & G Rangarajan, "Materials Science", Tata Mac2003. Entary Solid State Physics by M. Ali Omar, Pearson Entary Solid State Physics (eighth edition, 2010), L. resity Press). Books S O, "Solid State Physics", revised sixth edition, New Casap, "Principles of Electronic Materials and device ublishing Company Ltd., 2002.	terials", Tata McGraw – Hill Peducation India Solymar and I	McGraw Hill Tublishing Company 1, 1975 D. Walsh (Oxford Tional (P) Ltd, 2007.
1. C.M. Publid 2. M S V Ltd., 2 Electron 4. unive Reference 1. Pillai 2. S.O. I Hill P 3. Van V	Srivasta and Srinivasan, "Science of Engineering Macations, 2003. Vijaya & G Rangarajan, "Materials Science", Tata Mac2003. Entary Solid State Physics by M. Ali Omar, Pearson Entary Properties of Materials (eighth edition, 2010), Lesity Press). Books S O, "Solid State Physics", revised sixth edition, New Yasap, "Principles of Electronic Materials and device	terials", Tata McGraw – Hill P Education India Solymar and I v Age Internations", Second editors Wesley, 1995.	McGraw Hill Tublishing Company 1, 1975 D. Walsh (Oxford Tonal (P) Ltd, 2007. Tion, Tata McGraw –
1. C.M. Publid 2. M S V Ltd., 2 Electron 4. unive Reference 1. Pillai 2. S.O. I Hill P 3. Van V 4. Ragha 1998.	Srivasta and Srinivasan, "Science of Engineering Macations, 2003. Vijaya & G Rangarajan, "Materials Science", Tata Mocations, 2003. Entary Solid State Physics by M. Ali Omar, Pearson Entarly Properties of Materials (eighth edition, 2010), L. resity Press). Books S O, "Solid State Physics", revised sixth edition, New Casap, "Principles of Electronic Materials and device ublishing Company Ltd., 2002. Vlack L, "Materials Science for Engineers", Addison avan V, "Materials Science and Engineering", Preservijaya & G Rangarajan, "Materials Science", Tata Mocations and Casarajan, "Materials Science", Tata Mocations	terials", Tata McGraw – Hill P Education India Solymar and I v Age Internations", Second edit Wesley, 1995. httice – Hall o	McGraw Hill Tublishing Company 1, 1975 D. Walsh (Oxford Tional (P) Ltd, 2007. Tion, Tata McGraw – If India, New Delhi,
1. C.M. Public 2. M S V Ltd., 2 Electron 4. unive Reference 1. Pillai 2. S.O. I Hill P 3. Van V 4. Ragha 1998. 5. M S V Ltd., 2	Srivasta and Srinivasan, "Science of Engineering Macations, 2003. Vijaya & G Rangarajan, "Materials Science", Tata Mocations, 2003. Entary Solid State Physics by M. Ali Omar, Pearson Entarly Properties of Materials (eighth edition, 2010), L. resity Press). Books S O, "Solid State Physics", revised sixth edition, New Casap, "Principles of Electronic Materials and device ublishing Company Ltd., 2002. Vlack L, "Materials Science for Engineers", Addison avan V, "Materials Science and Engineering", Preservijaya & G Rangarajan, "Materials Science", Tata Mocations and Casarajan, "Materials Science", Tata Mocations	terials", Tata MeGraw – Hill Peducation India Solymar and I v Age Internation s", Second edit Wesley, 1995. htice – Hall o	McGraw Hill Tublishing Company 1, 1975 D. Walsh (Oxford Ional (P) Ltd, 2007. Ition, Tata McGraw – If India, New Delhi, Tublishing Company

8.	8. P.Bhattacharya, "Semiconductor Optoelectronic Devices", Prentice Hall, 1994.						
Mo	Mode of Evaluation: CAT / Assignment / Quiz / FAT / Seminar						
List	List of Challenging Experiments (Indicative)						
1.	Thermal and Electrical Conductivi	ty of a Good Cond	luctor		4 hours		
2.	Dielectric study - dielectric behaviorarious temperature and determine			material at	4 hours		
3.	Hall Effect - Determine the Hall co (Semiconductor) crystal	pefficient of a give	n Germar	nium	4 hours		
4.	4. Solar Cell - Draw I-V characteristic of a solar cell and determine the maximum power generated from solar cell, fill factor and efficiency.						
5.	5. Magnetic Susceptibility - by Quinke's Method						
6.	6. Band Gap - using four probe method						
7.	Schering bridge: To find unknown	capacitance and r	eactance o	of the circuit	3 hours		
8.	8. B-H curve of magnetic materials						
9.							
	sample by ESR spectrometer						
	Total Laboratory Hours						
	de of evaluation: Continuous Assess		essment T	est (FAT)			
	commended by Board of Studies	05/03/2016		l			
App	proved by Academic Council	40 th AC	Date	18/03/2016			

EEE102 1	1	Electrical Safety	L	T P	\mathbf{J}	C		
			0	0 2	0	1		
Pre-requ	isite	Nil Sylla	Syllabus ve			n		
Anti-req		v. 1.0						
Course (Objectives:	:						
1. A	pply standa	ard safety procedures in an industrial environment.						
		the purpose and scope of the Standards and Electrical Codes to be t	follo	owe	1.			
3. R	Recognize t	he standard workplace hazards, warning signs and labels.						
_	d Course C							
1. D	esign and C	Conduct experiments, as well as analyze and interpret data						
List of E	xperiment	†s						
1		of Various types of protection devices			2 hc	ours		
•		Fuses				,		
		MCB						
	c.	ELCB						
2	Study	of Various types of Earthing			2 hc	ours		
	a.							
	b.	Sizing of pipe Earthing and plate Earthing as per IS 3043 standar	rd fo	or				
		Earthing arrangement						
3		luction of Electrical safety precautions			2 hc	ours		
	a.							
4		Electrical Gloves specification ication of operation of power supply tester.			2 hc	ours		
4 5		g of Neutral Link.				ours		
<u>6</u>	_	ation resistance for Motors				ours		
7		ation resistance for Cables				ours		
8		urement of Earth resistance				ours		
9		continuity test				ours		
10		tivity test for ELCB				ours		
11		s, Procedure for operation, maintenance and application of	fi			ours		
		guishers	11		J 110	. 6.1.0		
12		otance criteria for ohmic value of Earthing for various purpose			3 hc	ours		
	-	Industry						
	b.	_						
	c.	Commercial						
	d.	Laboratories						
		Total Lecture Hours	8		30 I	Hou		

Text B	Book(s)							
1.	S. Rao, and H.L. Saluja: Elect	rical Safety, F	ire Engineeri	ng and Safety Management, Khanna				
	Publishers, Delhi.							
Refere	ence Books							
1.	H. Cotton: Electrical Technolo	gy, Wheeler I	Publishing Co	mpany.				
2.	S.L. Uppal: A Textbook of Electrical Engineering, Khanna Publishers, Delhi							
3.	NSC, Chicago: Accident Prevention Manual for Industrial Operations							
4.	M.G. Say: Electrical Earthing	M.G. Say: Electrical Earthing and Accident prevention, Newnes, London, 1954.						
5.	John V Grimaldi and Rollin	H Simonds.	, Safety Ma	nagement Indian Electricity Act &				
	Rules							
6.	Komamoto and Henley, Proba	bilistic Risk A	Assessment fo	or Engineering and Scientists, IEEE				
	Press, 1995.							
7.	Heinrich et al., Industrial Accid	lent Preventio	n, McGraw H	fill, 1980.				
8.	Petersen D, Techniques for safe	ety manageme	nt - A system	s approach, ASSE 1998.				
Mode	of assessment: Assignments/FAT							
Recom	nmended by Board of Studies	10/05/2017						
Approv	ved by Academic Council	53 rd AC	Date	13/12/2018				

EEE1022	Fundamentals of Reliability Engineering		L	T	P	J	C
			1	2	0	0	2
Pre-requisite	MAT2001/MAT2002	Syllabus version		n			
Anti-requisite	Nil	v. 1	.0				

- 1. Apply the principles & methods of reliability and safety engineering tools and techniques for Design problems
- 2. Understand the importance of reliability and its relationship with quality and safety
- 3. Identify the factors influencing the reliability of a system

Expected Course Outcome:

On the completion of this course the student will be able to:

- 1. Summarize the requirements of system reliability and its role.
- 2. Develop models to analyze and predict reliability performance using block diagrams.
- 3. Design to meet the reliability and safety objectives of the components.
- 4. Examine the various reliability test strategies and select the best strategy to assess
- 5. Analyze reliability in manufacturing and maintenance engineering
- 6. Understand the influence of variability in production on system reliability
- 7. Develop the reliability predictive models using software tools

Module:1 Reliability Fundamentals

2 Hours

Terms and Definitions - RAMS, Benefits of Reliability Engineering, Bathtub Curve, Interrelationship Between Rams and Quality, Product Life Cycle - Phases and Applicable RAMS Activities, Reliability Engineer- role and responsibilities in product life cycle, Ethics in reliability engineering.

Module:2 | Probability And Statistics For Reliability

2 Hours

Basics of Statistics and Probability Concepts, Probability Distributions, Probability Functions, Sampling Plans for Statistics and Reliability Testing, Confidence Intervals, Introduction to Weibull Analysis.

Module:3 | Reliability And Safety In Design - I

3 Hours

Reliability Requirements - Allocation, Reliability Modelling, Life Estimation, Part And Assembly Reliability Considerations, Introduction to Reliability Analysis Techniques - FMEA, Fault Tree Analysis, Worst Case Analysis, Durability Analysis

Module:4 Reliability And Safety In Design - Ii

3 Hours

Finite Element Analysis, Safety Analysis, Thermal Analysis, Electromagnetic Analysis, Maintainability and Testability Analysis, Common Mode Failure Analysis, Risk Matrix, Stress and Strength Analysis, Physics of Failure and Failure Mechanisms.

Module:5 Reliability Testing

4 Hours

Reliability Testing Strategies Introduction, Design of Experiments, Combinatorial Testing, HALT, RGT, ALT, Fracas And Root Cause Analysis. Sample Size and Test Duration – Guidelines

		•	B COND.	(Deeme	d to be University under se	ection 3 of U	JGC Act, 1956)			
Module	e:6	Reliability	In	Manufa	cturing,	In-S	ervice	Reliability	And	4 Hours
		Maintenanc	e Eng	gineering	5					
		rocess Contro		_				•	_	
		iability Track			Cost Analysis	s, Ma	intenanc	e Engineering	g - Intro	oduction and
Differe	ent ty	pes of mainter	nance.							
Module		Tutorials								12 Hours
Reliabil	ity P	rediction - I	PTC '	Windchil	l Prediction,	, Relia	ability,	Maintainabili	ty And	l Availability
Modelli	ng - I	Reliasoft Bloc	ksim,	Reliabili	ty Data Analy	ysis -	Reliasof	t Weibull++		
Module	e:8	Contempo	rary i	ssues:						2 Hours
							To	tal Lecture l	Hours	30 Hours
Text Bo	ook(s))								
1.	C. E	beling, "An I	ntrod	uction to	Reliability ar	nd Ma	intainab	ility Enginee	ring", 2	nd edition,
	Wav	eland Press, l	Inc., 2	010						
Referen	ice B	ooks								
1.	V. S	ankar, "Syste	m Rel	iability C	Concepts", His	imalay	a Publis	hing House, 2	2015.	
2.	Roy	Billinton ar	nd Ro	onald N.	Allan, "Rel	liabili	ty Evalı	uation of En	gineeri	ng Systems",
	Rep	rinted in India	B. S.	Publicat	ions, 2007.					
3.	E. B	alagurusamy,	"Reli	ability Eı	ngineering", T	Tata N	AcGraw	Hill, 2003.		
4.		rles E. Ebelin							McGrav	v Hill, 2000.
5.	Patr	ic D. T. O	conno	r, "Practi	cal Reliabilit	ty En	gineerin	g", 4th Edition	on, Joh	n Wesley &
		s, 2003.						<i>.</i>		J
Mode o	f Eva	luation: CAT	/ Ass	ignment /	Quiz / FAT	/ Proje	ect / Sen	ninar		
Recomm	nende	ed by Board o	f Stud	lies	13/05/2018					
		Academic Co			53 rd AC		Date	13/12/2018	3	
								1		

EEE1023		Industrial Drives		T	Т	P	J	\boldsymbol{C}
		Industrial Drives		L				
				2				3
Pre-requisit		EEE2001,EEE2002		Sy	llab	us		rsion
Anti-requisi		EEE3004					'	v. 1.0
Course Obje								
		d the fundamental concepts and principles of	Industrial Electric	Driv	es			
	•	arious controlling methods in drives						
3. To a	nalyze t	he challenges in industrial drives						
Expected Co	nirse O	utcome:						
		f this course the student will be able to:						
•		erent types of loads and drives						
		different components of electric drives						
		s controlling methods to electric drives						
		power converter requirements of various driv	es					
5. Illustr	rate vari	ous selection criteria for drives						
		types of issues with electric drives						
		ne selection criteria of motors for different ap						
8. Design	gn and (Conduct experiments, as well as analyze and	interpret data					
	ı		_					
Module:1		luction						
Motion Conc	epts – T	luction Types of Load - Types of Variable Speed Driver	ves- Dynamics of m	notoi	:/loa			
	epts – T		ves- Dynamics of m	notoi	:/loa			
Motion Conc state stability	eepts – T	Types of Load - Types of Variable Speed Driv	ves- Dynamics of m	notoi	·/loa	ıd -	- st	eady
Motion Conc state stability Module:2	epts –]	Types of Load - Types of Variable Speed Driving ic Motors				nd –	- st	eady lours
Motion Conc state stability Module:2 Torque Produ	Electruction –	Types of Load - Types of Variable Speed Driving Community of Motors Different type of motors — Characteristics of				nd –	- st	eady lours
Motion Conc state stability Module:2 Torque Produ	Electruction –	Types of Load - Types of Variable Speed Driving ic Motors				nd –	- st	eady
Motion Conc state stability Module:2 Torque Produ electric moto	Electruction – r – adva	rypes of Load - Types of Variable Speed Driving Company of Motors Different type of motors — Characteristics of Characteristic				nd –	- st	lours
Module:2 Torque Produelectric moto	Electruction – r – adva	ic Motors Different type of motors — Characteristics of antages of electric motor ion of industrial drives	 Electric Motors – p	oowe	r sta	nd –	7 H s in	lours
Module:2 Torque Produelectric moto Module:3 Components	Electruction – r – adva	ric Motors Different type of motors — Characteristics of antages of electric motor ion of industrial drives ric drive — power rating of motors and conve	 Electric Motors – p	oowe	r sta	nd –	7 H s in	lours
Module:2 Torque Produelectric moto	Electruction – r – adva	ric Motors Different type of motors — Characteristics of antages of electric motor ion of industrial drives ric drive — power rating of motors and conve	 Electric Motors – p	oowe	r sta	nd –	7 H s in	lours
Module:2 Torque Produelectric moto Module:3 Components	Electruction – r – adva	ric Motors Different type of motors — Characteristics of antages of electric motor ion of industrial drives ric drive — power rating of motors and conve	 Electric Motors – p	oowe	r sta	77 age	7 H	lours lours eral
Module:2 Torque Production moto Module:3 Components Application of	Electruction – r – adva Selectruction – felectruction – felec	ic Motors Different type of motors —Characteristics of antages of electric motor ion of industrial drives ric drive — power rating of motors and converations notive industrial drives	Electric Motors – p	emei	r sta	77 age	7 H	lours lours eral
Module:2 Torque Produelectric moto Module:3 Components Application (Module:4	Electruction – r – adva Selectruction – felectruction – felec	ric Motors Different type of motors — Characteristics of antages of electric motor ion of industrial drives ric drive — power rating of motors and converations	Electric Motors – p	emei	r sta	77 age	7 H	lours lours eral
Module:2 Torque Production moto Module:3 Components Application Com	Electruction – adva Selectruction – adva Selectruction – adva Autonelection	ic Motors Different type of motors —Characteristics of antages of electric motor ion of industrial drives ric drive — power rating of motors and converations notive industrial drives — different components— control methods — c	Electric Motors – p	emei	r sta	77age	7 H 7 H 6 H	lours eral
Module:2 Torque Production moto Module:3 Components Application Com	Electruction – adva Selectruction – adva Selectruction – adva Autonelection	ic Motors Different type of motors — Characteristics of antages of electric motor ion of industrial drives ric drive — power rating of motors and converations notive industrial drives — different components— control methods — costs control and manufacturing industrial	Electric Motors – p	emei	r sta	77age	7 H 7 H 6 H	lours eral
Module:2 Torque Production moto Module:3 Components Application of Module:4 Criteria for se	Electruction – r – adva Selectrof electronside Autonelection Process drives	ic Motors Different type of motors —Characteristics of antages of electric motor ion of industrial drives ric drive — power rating of motors and converations notive industrial drives — different components— control methods — cost control and manufacturing industrial	Electric Motors – p	emer	r sta	77age	7 H end	lours eral lours
Module:2 Torque Production moto Module:3 Components Application Components Application Components Module:4 Criteria for second	Electruction – r – adva Selectrof electronside Autonelection Process drives	ic Motors Different type of motors — Characteristics of antages of electric motor ion of industrial drives ric drive — power rating of motors and converations notive industrial drives — different components— control methods — costs control and manufacturing industrial	Electric Motors – p	emer	r sta	77age	7 H end	lours eral lours
Module:2 Torque Production Module:3 Components Application G Module:4 Criteria for se Criteria for se	Electruction – r – adva Selectrof electronside Autonelection Process drives	ic Motors Different type of motors —Characteristics of antages of electric motor ion of industrial drives ric drive — power rating of motors and converations notive industrial drives — different components— control methods — cost control and manufacturing industrial	Electric Motors – p	emer	r sta	77age	7 H end	lours eral lours
Module:2 Torque Production Module:3 Components Application G Module:4 Criteria for se Criteria for se	Electraction – r – adva Selectraction – adva Selectractionside Auton election Procestarives election	ic Motors Different type of motors —Characteristics of antages of electric motor ion of industrial drives ric drive — power rating of motors and converations notive industrial drives — different components— control methods — cost control and manufacturing industrial	Electric Motors – p	emer	r sta	77- G	- st	lours eral lours

6 Hours

Challenges in industrial drives

Module:7

Modu	ıle:8	Contemporary issues:				2 Hours
1,1001		1 0	Total Lecture	Hours		45 Hours
Text 1	Book(s)				
1.	G. I	K. Dubey, "Fundamentals ion, 2015	of Electrical Dri	ves", Na	rosa Publishing House	Second
2.		al K Bose, "Modern Power	Electronics and A	C Drives"	, Pearson Education A	sia, 2005
Refer	ence B	ooks				
1.	R. K	rishnan, "Electric Motor D	rives: Modeling, A	analysis, a	nd Control", Prentice I	Hall, 2001
2.		tin Hughes , "Electric M vier, 2005	otors and Drives	: Fundam	entals, Types and Ap	oplications"
3.	Mal	colm Barnes, "Practical Var	riable Speed Drive	s and Pow	ver Electronics", Newno	es 2003
Modo	of Evo	luation: CAT / Assignment	/ Oniz / EAT / Dro	vicat / Sam	ninor	
Mode	oi Eva	iuation. CA1 / Assignment	/ Quiz / I'AI / Fic	ject / Sen	iiiiai	
List o	f Chall	lenging Experiments (Indi	cative)			
1.	FC 302	Drives Operating Instruction	ons			3 hours
2.	Speed U	Jp & Down of FC 302 drive	e using MCT 10 Se	oftware.		3 hours
	Start/St softwar	op Command with reversin e.	g and preset by FC	C 302 drive	e using MCT 10	3 hours
4.	Speed o	control of Induction Motor I	Orive using V/F Co	ontrol		3 hours
5.	Speed o	control of Induction Motor I	Orive using VVC+			3 hours
6.	Speed o	control of Induction Motor I	Orive using Flux S	ensor less	Control	3 hours
7.	AC Dri	ve Load test using coupled	motor-generator se	etup		3 hours
		Control of Switched Relucta				3 hours
9.	Speed (Control of Permanent Magn	et Synchronous M	otor Drive	e (PMSM)	2 hours
10.	Speed (Control of Synchronous mor	tor drive using V/F	control		2 hours
11.	Speed (Control of Synchronous mor	tor drive using flux	sensor le	ess control	2 hours
12.	Speed (Control of synchronous driv	e using PI/PID Co	ntroller		2 hours
				Tota	al Laboratory Hours	30 hours
Mode	of Eva	luation: Assignments/FAT				
Recor	nmende	ed by Board of Studies	13/10/2018			
		Academic Council	53 rd AC	Date	13/12/2018	

	(Deemed to be University under section 3 of UGC Act, 1956)						
EEE4014 Switched Mode Power Conversion			L	T	P	J	C
			2	0	0	4	3
Pre-requisite	EEE3004	S	Sylla	abı	us	ver	sion
Anti-requisite	Nil					V	. 1.0
Course Objectives							
1. To provide	knowledge on switch mode power conversion concepts and ap	plica	tior	ıs			

- 2. Design and analysis of appropriate switched mode power supplies for particular application

Expected Course Outcome:

After completion of this course, the student will be able to:

- 1. Understand the concepts of switched mode power conversion
- 2. Analyse different non isolated DC-DC converters under steady-state condition.
- 3. Perform circuit analysis for different dc –dc converters under different operating conditions
- 4. Compare isolated and non-isolated dc-dc converters
- 5. Design magnetic components of dc-dc converters
- 6. Apply EMI filtering techniques for suppression of EMI generated by different switched mode converters.
- 7. Know the applications of switched mode power converters for different domains
- 8. Design a component or a product applying all the relevant standards with realistic constraints

Introduction	6 Hours							
Linear converters Vs switching converters. Basic principles of switch-mode power conversion-								
steady state in switching converters, volt-second an	d ampere-second balance equations-							
Steady state analysis of (CCM) Buck Converter, Boost Converter, and Buck - Boost converter								
Discontinuous conduction Mode analyses	3 Hours							
(DCM)								
ost converter. Losses and efficiency								
Non-Ideal converter analysis	4 Hours							
and buck converters. Losses and efficiency								
Introduction to Isolated DC-DC converters	4 Hours							
analysis of isolated dc-dc converters including for	ward, flyback, half bridge and full							
ogies								
	Discontinuous conduction Mode analyses (DCM) Ost converter. Losses and efficiency Non-Ideal converter analysis nd buck converters. Losses and efficiency Introduction to Isolated DC-DC converters analysis of isolated dc-dc converters including for							

4 Hours Module:5 Magnetic Design Selection of energy storage inductor, Design of high frequency Inductor and high frequency transformer

EMI Suppression in SMPS 4 Hours Module:6 EMI filter components, Conducted EMI suppression, and grounding. Non-linear phenomena in switched mode power converters: Chaos. **Applications** Module:7

High-Frequency Power Sources for Fluorescent Lamps and Low-Input-Voltage Regulators for Laptop Computers and Portable Electronics

Module	e:8	Lecture by industry expe	erts.		2 Hours					
			Total Lecture H	ours	30 Hours					
Text Bo	Text Book(s)									
1.	Rob	ert W. Erickson and Dra	gan Maksimovic,	"Fundar	mentals of Power Electronics",					
	Springer, reprint of the original 2nd edition (2012).									
2.	2. Simon Ang, Alejandro Oliva, "Power-Switching Converters", CRC Press, Vol. No., thin									
	Edit	ion, 2010.								
Referen	nce B	ooks								
1.	Phili	ip T Krein, "Elements of I	Power Electronics	", Oxfor	d University Press, 2nd Edition,					
	2012	2.								
2.	Ned	Mohan, Undeland and Rob	bin, "Power Electi	onics: coi	nverters, Application and design"					
	John	Wiley & sons. 2013 (reprin	ıt).							
Mode o	f Eva	luation: CAT / Assignment	Quiz / FAT / Proj	ject / Sem	inar					
Recom	nende	ed by Board of Studies	05/03/2016							
Approv	ed by	Academic Council	40 th AC	Date	18/03/2016					

EEE4015	Power Converters Analysis and	Design	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
			2 0 0 4 3
Pre-requisite	EEE3004		Syllabus version
Anti-requisite	Nil		v. 1.0
Course Objecti	ves:	·	
2. To analy	a systematic approach for design of all power electronic converters with active and duce the basics of Multilevel inverters		rs
Expected Cours	se Outcome:		
	on of this course the student will be able to:		
1. Describe	the various AC to DC converters		
-	he various three phase rectifiers		
•	the various DC to DC converters with commutation		
	he basic inverter types with modulation technique	S	
	he AC to AC converters with different loads	niawaa fan navy	on conventors
	the various types of Pulse Width Modulation Tech the recent Multilevel Inverters with their advantage		er converters
	component or a product applying all the relevant		realistic
constrain		standards with	Tearistic
Constituin			
Module:1 SI	NGLE PHASE AC-DC CONVERTERS		3 Hours
	ni converters- Fully Controlled Converters		
<u> </u>	,		
Module:2 Tl	HREE PHASE AC-DC CONVERTERS		3 Hours
Three Phase Sen	ni converters- Fully Controlled Converters		-
	•		
Module:3 De	C-DC CONVERTERS		5 Hours
Analysis and des	sign of DC to DC converters- Control of DC-DC	onverters- Bucl	
•	c-Boost converters - Cuk converters - Chopper and		
	**		
Module:4 Do	C-AC CONVERTERS		4 Hours
Single phase and	1 Three phase inverters - Voltage source and Cur	rent source inv	
• 1	of 3 phase inverter – PWM Techniques – Harmon		
*	<u>.</u>		
Module:5 A	C-AC CONVERTERS		5 Hours
	ver conversion using voltage controllers. Singl	e phase and T	
_	gle phase step up, step down cycloconverters – the	_	

Module:7 **ADVANCED POWER CONVERTERS** 4 Hours

Page 170

Single Pulse Modulation- Multiple Pulse Width Modulation- SPWM- Space Vector Modulation-

PWM TECHNIQUES FOR INVERTERS

phase to three phase cycloconverters

Harmonic Elimination Techniques

Module:6

B.TECH (EEE)

Multilevel concept – diode clamped – flying capacitor – cascade type multilevel inverters - Matrix converters

	Iours							
 Text Book(s) Rashid M.H., 'Power Electronics-Circuits, Devices and Applications', Prentice Hall Indi New Delhi, 2013. Ned Mohan, Undeland and Robbin, 'Power Electronics: converters, Application and design', John Wiley and sons. Inc, Newyork, 2007 P.C Sen., 'Modern Power Electronics', Wheeler publishing Company, 1st Edition, New Delhi, 2005 Reference Books R. Krishnan, 'Electric motor drives: modeling, analysis, and control', Prentice Hall PTR, 2005 								
 Rashid M.H., 'Power Electronics-Circuits, Devices and Applications', Prentice Hall Indi New Delhi, 2013. Ned Mohan, Undeland and Robbin, 'Power Electronics: converters, Application and design', John Wiley and sons. Inc, Newyork, 2007 P.C Sen., 'Modern Power Electronics', Wheeler publishing Company, 1st Edition, Ne Delhi, 2005 Reference Books R. Krishnan, 'Electric motor drives: modeling, analysis, and control', Prentice Hall PTR, 2 	Hours							
New Delhi, 2013. 2. Ned Mohan, Undeland and Robbin, 'Power Electronics: converters, Application and design', John Wiley and sons. Inc, Newyork, 2007 3. P.C Sen., 'Modern Power Electronics', Wheeler publishing Company, 1st Edition, New Delhi, 2005 Reference Books 1. R. Krishnan, 'Electric motor drives: modeling, analysis, and control', Prentice Hall PTR, 2005								
 Ned Mohan, Undeland and Robbin, 'Power Electronics: converters, Application and design', John Wiley and sons. Inc, Newyork, 2007 P.C Sen., 'Modern Power Electronics', Wheeler publishing Company, 1st Edition, New Delhi, 2005 Reference Books R. Krishnan, 'Electric motor drives: modeling, analysis, and control', Prentice Hall PTR, 2005 	ia,							
design', John Wiley and sons. Inc, Newyork, 2007 3. P.C Sen., 'Modern Power Electronics', Wheeler publishing Company, 1st Edition, Ne Delhi, 2005 Reference Books 1. R. Krishnan, 'Electric motor drives: modeling, analysis, and control', Prentice Hall PTR, 2								
 P.C Sen., 'Modern Power Electronics', Wheeler publishing Company, 1st Edition, Ne Delhi, 2005 Reference Books R. Krishnan, 'Electric motor drives: modeling, analysis, and control', Prentice Hall PTR, 2 	nd							
Delhi, 2005 Reference Books 1. R. Krishnan, 'Electric motor drives: modeling, analysis, and control', Prentice Hall PTR, 2								
Reference Books 1. R. Krishnan, 'Electric motor drives: modeling, analysis, and control', Prentice Hall PTR, 2	ew							
1. R. Krishnan, 'Electric motor drives: modeling, analysis, and control', Prentice Hall PTR, 2								
2 P.C. San 'Principles of electric machines and nower electronics' John Wiley & Sons 20	2001							
2. 1. C Sch., 1 Thicipies of electric machines and power electronics, John Whey & Sons, 20	013							
3. Joseph Vithayathil, 'Power Electronics Principles and Applications', Tata McGraw	v-Hill							
edition, 2010.								
4. Bin Wu, 'High-Power Converters and AC Drives', John Wiley & Sons, 2006.								
Mode of Evaluation: CAT / Assignment / Quiz / FAT / Project / Seminar								
Recommended by Board of Studies 05/03/2016								
Approved by Academic Council 40 th AC Date 18/03/2016								